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ABSTRACT

We consider the problem of how to reduce the cost of communication that is
required for the parallel training of a neural network. The state-of-the-art method,
Bulk Synchronous Parallel Stochastic Gradient Descent (BSP-SGD), requires many
collective communication operations, like broadcasts of parameters or reductions
for sub-gradient aggregations, which for large messages quickly dominates overall
execution time and limits parallel scalability. To address this problem, we develop
a new technique for collective operations, referred to as Linear Pipelining (LP).
It is tuned to the message sizes that arise in BSP-SGD, and works effectively on
multi-GPU systems. Theoretically, the cost of LP is invariant to P , where P is
the number of GPUs, while the cost of more conventional Minimum Spanning
Tree (MST) scales like O(logP ). LP also demonstrate up to 2x faster bandwidth
than Bidirectional Exchange (BE) techniques that are widely adopted by current
MPI implementations. We apply these collectives to BSP-SGD, showing that the
proposed implementations reduce communication bottlenecks in practice while
preserving the attractive convergence properties of BSP-SGD.

1 INTRODUCTION

Scaling up neural networks with respect to parameter sizes, training sets, or both has drastically
improved the state-of-the-art performance in several domains ranging from scene understanding,
speech recognition, even to playing Go against professional players. Although training a large
network saturated with nonlinearities is extremely time-consuming, the benefits brought forth by the
large-scale sparks a surge of interests to parallelize the training on multi-GPUs. The parallelization
of SGD demands synchronizations to exchange gradients and parameters per iteration, and this
introduces the significant communication overhead. Previous studies have focused on trading the
SGD convergence rate for fast gradient updates, such as stale or asynchronous SGD, 1-bit compressed
gradient, etc. However, these methods are rarely adopted by Deep Learning frameworks as they
depend on the balance between the enhanced iteration throughput and the decelerated convergence
rate. Since BSP retains the convergence properties of SGD, the optimization of it should be interested.

The gradient aggregations and parameter exchanges in BSP SGD are typical operations of commu-
nication collectives (Chan et al., 2007). Messages in the large-scale neural networks training are
dense, long, and fixed-length, while the performance of collective algorithms is drastically sensitive
to these attributes. Besides, the processing speed is several orders of magnitude faster than the
network unidirectional transmission rate. These prioritize the utilization of network bandwidth in
the collective design. However, we have seen sub-optimal collective algorithms, e.g. MST and BE,
widely adopted by the deep learning community (Agarwal et al., 2014) (Jia et al., 2014) (Duchi et al.,
2011). MST only suits for the latency dominant case such as frequent short message exchanges,
while the bandwidth term of BE can be further improved (Thakur et al., 2005).
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Figure 1: Illustrations of various methods to accelerate the training. Black blocks stands for computa-
tions, and white blocks stands for communications. CUDNN reduces the computation cost, while we
reduce the communication cost.

In this paper, we introduce a new Linear Pipeline based collectives for the multiGPU training. The
collectives demonstrate O(log(P )) and up to 2 speedups, with respect to MST and BE based ones;
and the bounds only hold in training large neural networks. In particular, the theoretical analysis
and the implementation yield an interesting insight that the cost of our design is invariant to GPU
numbers, i.e., the cost of collective operations on 2 GPUs is similar to 20 GPUs. The design explores
message granularity to maximize simultaneous bidirectional data exchanges. In specific, it divides a
message into fine-grained blocks as the basic communication element. A GPU sends a block (via
DMA 1) while receiving (via DMA 2) a new block from a neighbor. The copies are asynchronous
launched on two GPU streams, and numerical operations further overlap data copies. As a result, our
method renders a highly efficient pipeline to exchange messages for the neural network training.

The proposed collective design achieves 2.3x to 360.55x speedups to Open MPI alternatives on 6
GPUs. In training GoogLeNet, we set up the same BSP SGD implementation but different underlying
collectives. Our design demonstrates up to 1.7x convergence speedups to MST based Caffe.

2 RELATED WORK

The communication overhead has been widely identified as the major bottleneck to the data-parallel
SGD (Shamir (2014), Li et al. (2014)). The data parallelism linearly adds the processing power by
concurrent gradient computations with multiple GPUs. But it also requires synchronizations to collect
sub-gradients or to broadcast parameters. In practice, the communication rate is several orders of
magnitude slower than the computation (Coates et al., 2013). Various approaches have been proposed
to debase the overhead.

The first group relaxes synchronous models of SGD to increase the iteration throughput (Dean et al.
(2012), Zinkevich et al. (2010)). In this case, the relaxed SGD enables computations on a GPU to
partially overlap with communications on others as demonstrated in Fig.1c and Fig.1d. Recht et al.
(2011) proposed a lock free Asynchronous SGD (ASGD) that entirely gets rid of the synchronization
requirement by allowing free concurrent parameters updates. But the relaxation only works well
on sparse learning problems. In response, Ho et al. (2013) introduced the concept of staleness by
bounding the fastest and the slowest machine within a few iterations apart to ensure the correctness.
These relaxations claim to be effective as the enhanced iteration throughput offsets the disadvantages
of degraded convergence rate. However, recent advances in deep learning frameworks (Cui et al.
(2016)) have reestablished the advantages of BSP over relaxed ones in training neural networks. This
reiterates the importances of studying BSP SGD.

The second group tries to reduce the overall communication volume. Seide et al. (2014) quantized
gradients from 32 bits into 1 bit to reduce the message length, but the lost gradient information
decelerates the convergence rate. Another approach is to accelerate the convergence with a large batch.
Dekel et al. (2012) shows the convergence rate of mini-batch SGD is O(1/

√
Tb+ 1/T ) with b being

the batch size. This result indicates a large batch needs fewer iterations to find a solution, thereby
less overall synchronizations. However, unwieldy increasing the batch size is also unfavorable under
limited computing resources demonstrated by Wang et al. (2016). Please note these methods still
need synchronizations. Our work will further improve their performances.
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Figure 2: The data flow of broadcast, reduce and allreduce on 3 GPUs.

The third group conducts system optimizations to minimize the communication cost. Agarwal &
Duchi (2011) andAgarwal et al. (2014) presented sub-gradient aggregations guided with a MST that
takes log(P ) steps to fully synchronize the model. Deep learning frameworks such as Caffe (Jia et al.,
2014) also adopt this approach. Unfortunately, MST only suits for latency dominant scenarios (i.e.
high frequent short messages). Although collective algorithms have been thoroughly discussed in the
HPC community (Almási et al. (2005), Gabriel et al. (2004), Shipman et al. (2006)), few studies their
performances for the deep learning. Performances of collectives significantly vary w.r.t messages
and network topologies, while messages in the network training are dense, long and fixed-length.
Therefore, it is imperative to address such peculiarities in the collectives. Worringen (2003) proposed
a pipeline collective model in shared memory environment for CPU data, but communications of
different MPI processes sharing the same CPU memory bus within the same CPU socket. This
causes bandwidth competition among different processes, thereby poor performance for the collective
communication in shared memory environment for CPU data. In contrast, PCI-E is bi-directional.
The latest GPUs also feature two independent DMA engines for simultaneous independent in/out
communications. The hardware updates pave the way for LP based GPU communications.

3 LINEAR PIPELINE BASED COLLECTIVE DESIGN DEDICATED FOR NEURAL
NETWORK TRAINING ON MULTI-GPUS

This section presents a new LP based MultiGPU collective design ensued by the concrete proof of its
performance in training neural networks. The general idea of LP is as follows: a) we dissect a long
message into fine-grained blocks. b) a GPU receives a block from the prior GPU via DMA1 while
sending a block to the next one via DMA2. Please note each block exchange utilizes an independent
physical link, and the entire network is fully utilized once the pipeline is filled.

Broadcast tackles the synchronizations of parameters among multiple GPUs. It copies the source
vector to every GPUs. Fig.2a demonstrates the data flow of broadcast collective on 3 GPUs. GPU0
is the source, and the rest are destinations. Broadcast starts with filling the pipe by coping block a
on GPU0 to GPU1 at the step 1. Let’s focus on GPU1. At each step, GPU1 receives a block from
GPU0 via DMA1, while GPU1 is also sending a block to GPU2 via DMA2. The data exchange in
either way utilizes an independent link and DMA engine to achieve the maximal unidirectional rate.
Hence, the bandwidth is fully exploited.

Reduce aggregates the sub-gradients to reconstruct the global one. It combines the elements provided
in the vector of each GPU, and returns the combined value in the receive vector to a specific GPU. It
supports basic arithmetic operations such as summations and multiplications. Fig.2b demonstrates
the data flow of reduce collective. GPU2 is the root that aggregates the vectors across all GPUs.
Reduce starts with filling the pipe by writing block a0 to a buffer on GPU1. Then, GPU1 reduces the
received block a0 with a1 to yield a′ (within the rectangle of Fig.2b). Please note the computation
is much faster than the communication, we assume no latency on it. In practice, computations are
further overlapped with communications. In the next time step, GPU1 retrieves b0 from GPU0 to
reduce to b′ via DMA 1, while GPU1 is also sending a′ to GPU2 to reduce to a′′ via DMA 2. b′′, c′′,
d′′ are reduced at the time step 3, 4, 5 in a similar fashion.

AllReduce enables us to collect sub-gradients and broadcast the latest parameters with only one
synchronization point per SGD iteration. It combines vectors from all GPUs and distributes the
result back to them. Mathematically, it is equivalent to a reduce followed by a broadcast. However,
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Table 1: The estimated costs of 3 collective communications.

Bidirectional Exchange (BE) Minimal Spanning Tree (MST) Linear Pipeline (LP)

broadcast (log p+ p− 1)α+ 2( p−1
p n)β log p(α+ nβ) (p− 1 + n

b )α+ (b(p− 1) + n)β

reduce (2 log p)α+ 2( p−1
p n)β + ( p−1

p n)γ log p(α+ nβ + nγ) (p− 1 + n
b )α+ (bp− b+ n)(β + γ)

allreduce (2 log p)α+ 2( p−1
p n)β + ( p−1

p n)γ log p(2α+ 2nβ + nγ) 2(p− 1 + n
b )α+ (bp− b+ n)(2β + γ)

allreduce is more efficient than two separate calls as it only needs to fill the pipeline once. For
example, it takes 9 timesteps to allreduce 4 message blocks, while broadcast + reduce will cost 10.
Fig.2c demonstrates the data flow of allreduce collective. It starts with reducing a′′, after which a′′
is broadcast to GPU1 and GPU2 at the timestep 5, 6 respectively. Please note d0 utilizes the outbound
DMA at the timestep 4, therefore a′′ has to wait tile timestep 5. b′′, c′′, d′′ are allreduce in a similar
fashion.

Our collective is also specifically designed to accommodate GPU architecture features such as
asynchronous kernel launches and the multi-stream processing. For example, the rectangle of Fig.2a
demonstrates the data transfers are asynchronous launched on two separate streams. The copies
happen at the red time steps are scheduled on the stream 0, while the black time steps are scheduled
on the another stream. This overlaps the overhead of GPU kernel launches, further improving the
pipeline. We demonstrate the data flow of collectives on 3 GPUs. If there are k GPUs, GPU n,
0 < n < k − 1, duplicates the same pattern of GPU 1.

3.1 ARCHITECTURE ANALYSIS

LP is the optimal collective algorithm to fully exploit the network bandwidth of a MultiGPU system.
Even though PCI-E supports full-duplex communication between any two endpoints, each PCI-E
endpoint device only has one input and output port. This results in bandwidth competition if a GPU
is receiving from multiple GPUs. Similarly, each PCI-E switch only contains one input and output
port used for inter-switch communication, and inter-switch communications of the same direction
also compete for the PCI-E bus. It is known that any delay in data movement between two GPUs
interrupts the pipelining in the collectives. In such architecture, the communication from parent to
children in MST based collective algorithm will compete the same PCI-E bus, and therefore breaks
pipelining. The data exchange of BE also suffers from inter-switch communications congested in
one direction. In contrast, LP connects all GPUs into a chain, and data always flow in one direction.
Hence, data movements between two GPUs exclusively occupy the entire PCI-E bus and ensures the
uninterrupted pipelining.

3.2 THEORETICAL ANALYSIS

We adopt a cost model widely used by the MPI community to analyze collective operations (Thakur
et al. (2005), Thakur & Gropp (2003)). The model assumes the time taken to send a message between
two nodes follows:

T = α+ βn+ γn (1)

where α is the latency or startup time of sending a message, β and γ is the transmission rate and
reduce rate measured by time per byte, n is the message size in bytes. We also denote p as the node
count, and b as the block size (in bytes) in the pipeline.

Proposition 1 If the network latency α → 0, Linear Pipeline demonstrates O(log p) and up to 2
times speedup w.r.t Minimal Spanning Tree and Bidirectional Exchange on a message of size n→∞,
respectively.

Proof. First, we derive the costs of 3 Linear Pipeline based collectives. According to Fig.2, the
length of pipeline is p− 1 + n

b blocks assuming each block to be b bytes. A block exchange takes
α+ βb+ γb (with reduce) or α+ βb (without reduce). Consequently, broadcast essentially costs
(α+βb)(p− 1+ n

b ) = (p− 1+ n
b )α+(b(p− 1)+n)β. Similarly reduce costs (α+βb+ γb)(p−

1+ n
b ) = (p− 1+ n

b )α+(b(p− 1)+n)(β+ γ). The cost of allreduce is approximately equivalent
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with a reduce followed by a broadcast. Therefore, the cost of allreduce is broadcast + reduce,
2(p− 1 + n

b )α+ (bp− b+ n)(2β + γ).

Secondly, we derive the costs of 3 MST based collectives. MPI adopts MST to broadcast or reduce
short messages (Thakur et al. (2005)), the length of which is less than 12 KB. The core concept
of MST is to organizes p GPUs into a balanced tree of height dlogpe. Then, it takes dlog pe steps
to traverse all GPUs in the tree. Each step carries the message of length n, resulting in the cost
of broadcast to be the tree height times costs per step, i.e. log p(α + nβ) (we omit the ceiling
for simplicity). Similarly, MST reduce is log p(α + nβ + nγ), and allreduce is a combination
of broadcast and reduce. Please note the latency term is log pα, which is the smallest among
algorithms in Table.1. Therefore, MST only suits for high frequent short messages.

Finally, we present the costs of 3 BE based collectives. MPI broadcast handles long messages with a
MST based scatter followed by a BE allgather. Please refer to Chan et al. (2007) for the analysis of
BE collectives. Basically, scatter costs

∑dlogpe
k=1 (α+ 2−knβ) = log pα+ p−1

p nβ, while allgather
costs (p − 1)α + p−1

p nβ. The cost of broadcast is the sum of these two. The MPI long message
reduce consists of a reducescatter plus a gather, while allreduce consists of a reducescatter
and a allgather. The cost for reducescatter is log pα + p−1

p nβ + p−1
p nγ, and both the costs of

gather and allgather are log pα+ p−1
p nβ (also in Chan et al. (2007)). TABLE 1 summarizes the

costs of broadcast, reduce and allreduce under 3 different underlying algorithms.

The proposition holds under the assumptions of α → 0 and n → ∞, and these assumptions are
legitimate for the training of large scale neural networks on multiGPUs. Nowadays, the PCI Express
x16 effectively reduces the latency α down to 10−7s that is approximate to zero. The current
two sockets shared memory machine supports up to 8 GPUs indicating p is limited. Let’s take
an appropriate block size b to ensure n

b � α. This enables us to safely ignore the latency term,
e.g. log pα in MST broadcast. On the other hand, current deep convolutional neural network
features tremendous parameters. For example, the parameter sizes of AlexNet is 50 MegaBytes. The
transmission rate1 β ∼ 109Byte/Seconds. In compared with the trivial latency term, the bandwidth
term dominates the entire cost T . This result leads us to simplify the costs of BE, MST, and LP based
broadcast (table. 2) to be 2p−1

p nβ, nβ log p and (b(p− 1)+n)β, obtaining the following equations:

Tbroadcast BE
Tbroadcast LP

≈
2(1− 1

p )

1 + b
n (p− 1)

< 2 (2)

Tbroadcast MST

Tbroadcast LP
≈ log p

b(p−1)
n + 1

< log p (3)

Compared with broadcast, reduce has the additional γ term. Please note the processing speed of
GPUs exceeds TFLOPs; the term γ ∗ n → 0. Therefore, it is also legitimate to ignore the γ term,
yielding the same result Treduce BE/Treduce LP < 2 and Treduce MST /Treduce LP < log p. We
complete our proof to the proposition 1.

Another interesting point is the cost of Linear Pipeline is invariant to GPU count p regardless of
message length n. This implies broadcasting a vector to 8 GPUs may cost same to 2 GPUs. In
practice, we set the block size b around 64 KB, and p is within 101 These suggests the bandwidth
term, e.g. the cost of LP broadcast (bp − p + n)β, is identical to nβ. Therefore, the cost of LP
collectives are less likely to be affected by GPU counts p.

3.3 DEEP LEARNING WITH EFFICIENT BSP SGD

We formulate the neural network training as the following optimization problem. Let ψ be a loss
function with weight vector w as function parameters that takes randomly sampled images dt as the
input. The objective of training is to find an approximate solution to the following problem:

min
w

E{ψw(dt)} =
∫

Ω

ψw(dt)dP (4)

1https://en.wikipedia.org/wiki/InfiniBand
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Algorithm 1: BSP SGD with communications/computations overlapping.
1 while not converge do
2 broadcast(w0

t )
3 for i ∈ [0, 1, ...,max layers] do
4 nonblocking broadcast(wi+1

t )
5 Forward(i)
6 sync broadcast()

7 Backward(max layers)
8 for i ∈ [max layers− 1, ..., 1, 0] do
9 nonblocking reduce(∇ψi+1

sub)
10 Backward(i)
11 sync reduce()

12 wt+1 = GradientUpdate()

Algorithm 2: BSP SGD uses broadcast + reduce.
1 while not converge do
2 ∇ψsub = ForwardBackward(dt)
3 ∇ψ = reduce(∇ψsub)
4 if root then
5 wt+1 = GradientUpdate()

6 broadcast(wt+1)
7 barrier /* sync new w */

Algorithm 3: BSP SGD uses allreduce.
1 while not converge do
2 ∇ψsub = ForwardBackward(dt)
3 ∇ψ = allreduce(∇ψsub)
4 barrier /* collect ∇ψsub */
5 wt+1 = GradientUpdate()
6 if iter%5 = 0 then
7 broadcast(wt+1)

A typical training iteration of neural network consists of a Forward and Backward pass. Forward
pass yields a loss that measures the discrepancy between the current predictions and the expected;
Backward pass calculates the gradient, the negative of which points to the steepest descent direction.
Gradient Descent updates the w as follows:

wt = wt−1 − ηt∇ψw(dt) (5)

Guided with Data Parallelism, BSP SGD evenly divides dt into p slices d1
t ,d

2
t , ...,d

p
t so that every

GPU computes a sub-gradients toward di
t in parallel. The global gradient is equivalent to the average

of sub-gradients. After finishing the gradient update, wt is synchronized to all GPUs. We integrate
the proposed collectives into this process to harness parallel processing capabilities of multiGPU
system. In this paper, we discuss two ways of BSP SGD implementations.

•fork and join: This approach forks the gradient computations, and joins sub-gradients with com-
munications. In this case, communications do not overlap with computations. Alg.2 and Alg.3
demonstrate two collective based implementations using 2 and 1 synchronization points.

In Alg.2, synchronizations rely on broadcast and reduce. Each GPU calculates a sub-gradient
referred to as ∇ψsub. The master GPU reconstructs ∇ψ by reducing all ∇ψsub. Then, GPUs
synchronize latest weight w by broadcasting.

In Alg.3, synchronizations only rely on allreduce. The differences between this and Alg.2 are that
1) there is only 1 synchronization point; 2) every GPU computes the gradient update. However, the
parameters are not consistent after several iterations due to the precision issues of float multiplications
inGradientUpdate. We synchronize w every 5 iterations to eliminate such error while still retaining
the benefit of using allreduce (line 7-8 Alg.3).

•overlapping communications with computations: Another approach is to orchestra communica-
tions and computations overlapping at each network layer. In the forward pass, GPUs broadcast
network parameters of layer t+1 amid forward computations at layer t. In the backward pass, GPUs
all-reduce or reduce sub-gradients of layer t+1 amidst backward computations at layer t. As a
result, layer-wise.computations partially overlap with communications further improving the SGD
efficiency. Alg.1 outlines the general idea of communications and computations overlapping during
the networks training. We use the nonblocking collective to achieve the overlapping. amidst backward
computations at layer t.
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Figure 3: The performance of different collective algorithms at different message sizes on 4 K40m.

GPU K40m Count
2 3 4 5 6T

im
e
 t

o
 B

r
o

a
d

c
a
s
t 

2
0
0
M

B

10
-2

10
-1

10
0

BE

MST

LP

(a) Broadcast
GPU K40m Count

2 3 4 5 6

T
im

e
 t

o
 R

e
d

u
c

e
 2

0
0

M
B

0.05

0.1

0.15 BE

MST

LP

(b) Reduce
GPU K40m Count

2 3 4 5 6T
im

e
 t

o
 A

ll
R

e
d

u
c
e
 2

0
0
M

B

0.2

0.4

0.6

0.8

1

1.2

BE

MST

LP

(c) AllReduce

Figure 4: The scalability experiment: it measures performance variations with increasing GPUs.

•pros and cons of both approaches: The cost of Alg.2 or Alg.?? is comm + compt, while the
overlapping is max(comm, compt). If the network has over a few hundred MB of parameters,
the overlapping will be significantly better than the fork and join approach. However, Alg.2 and
Alg.3 are relatively easy to implement; the performance on networks < 100 MB is similar to that of
overlapping.

4 EXPERIMENT

4.1 COLLECTIVES EVALUATION

The MST and BE implementations used in benchmarks are Caffe 2 and OpenMPI. Caffe optimizes
the GPU placement in an MST to fully utilize inter-GPU peer to peer (P2P) access. OpenMPI and
our implementation, similar to Caffe, also take advantages of P2P. We setup AlexNet and GoogLeNet
training using 3 kinds of BSP SGD proposed in section 3.3.

Fig.3 presents the performance of LP, MST, and BE based collectives at different message sizes on 4
K40m. The LP broadcast demonstrates an average of 29.2x and 2.3x speedup over BE and MST
based alternatives in Caffe and OpenMPI; the LP reduce demonstrate an average of 360.55x and
8.7x speedup over BE and MST based reduce, and the LP AllReduce demonstrates an average of
109.2x and 7.9x speedup over BE and MST based allreduce. In theory, LP is approximately 2x
faster than both the MST (p = 4 → logp = 2) and BE. An extraordinary speedup against MPI is
observable due to inefficient data movement in OpenMPI. It moves data to host RAM to perform
reduce operations on the CPU before being copied to the target GPU. Instead, we perform reduce on
the GPUs, and data blocks directly flow to the target GPU via P2P access. The overlapped reduce
computations with communications enables our reduce and allreduce to be 8x faster than that of
MST. At each step of MST, GPUs reduce the incoming data only after the entire data is available. In
contrast, our fine-grained block design enables communications and computations overlapping by
reducing a block while receiving a new one in the pipeline. broadcast only involves data copies, and
both we and Caffe use P2P to transmit the data. Therefore, the speedup of MST broadcast (2.3x),
conforms to the 2.0x theoretical prediction.

The theoretical analysis indicates both the cost of LP and BE are invariant to the GPU count
p, while the cost of MST increases with p by a factor of logp. This is also noticeable in the
scalability experiment demonstrated in Fig.4. Please note there is a cost jump between 4 and 5 GPUs.
Communications have to go through QPI after 4 GPUs, which incurs the additional cost of copying

2Caffe implements an MST based broadcast and reduce for the multiGPU training.
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Table 2: The iteration profile. comm stands for communications, and compt stands for computations.
% represents the percentages of communications in an iteration. The statistics are the average of
30000 AlexNet iterations, and 67000 GoogLeNet iterations. We set the batch size of AlexNet to
1000, and GoogLeNet to 80. AlexNet and GoogLeNet are 256MB and 51MB, respectively.

MST Alg.1 BE Alg.1 BE Alg.3 LP Alg.1 LP Alg.2 LP Alg.3
comm compt comm% comm compt % comm compt % comm compt % comm compt % comm compt %

AlexNet 0.77s 0.92s 45.5% 1.05s 0.94s 52.7% 0.22s 0.93s 18.9% 0.084s 0.93s 8.3% 0.057s 0.94s 5.7% 0.011s 0.93s 1.2%
GoogLeNet 0.046s 0.267s 14.7% 0.334s 0.264s 55.9% 0.137s 0.263s 34.3% 0.02s 0.265s 7% 0.016s 0.26s 5.8% 0.01s 0.263s 3.7%
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Figure 5: The training losses in fixed iterations on 4 K40m. We set GoogLeNet lr = 0.01. AlexNet
starts at lr = 0.015, and set to 0.0015 after the average loss < 2. The solver is SGD + momentum, and
the dataset is ImageNet.

through the host RAM. The cost of pipeline method robustly stays the same if GPU counts =[2,3,4]
or [5,6], and QPI explains the inconsistency. The communication steps of MST for 2,3,4,5,6 GPUs
are 1,2,2,3,3, respectively. The MST experiments verify the logp cost increase w.r.t GPU counts by
evident cost jumps at 3 and 5 GPUs. The data flow of OpenMPI between two GPUs follows GPU
RAM→host RAM→GPU RAM. Therefore, OpenMPI costs linearly increase with GPU counts p.

4.2 IMPACT ON THE NEURAL NETWORK TRAINING

Fig.5 demonstrates LP collectives effectively reduce the total training time without affecting SGD’s
convergence properties in training large scale neural networks. We use inspurCaffe, Caffe and cuhk’s
Caffe branch to benchmark the performance of BE-Alg.1, MST-Alg.1 and BE-Overlap-Alg.3. We
also implement Alg.1,2,3, integrated with LP collectives, in Caffe to ensure the consistency. Please
note the model size affects the communication time, while the batch size affects the computation time.
We carefully set these parameters to cover as many cases as possible. Please refer to the captions of
TABLE.2 and Fig.5 for the experiment details. We assume these algorithms have similar convergence
speeds in iterations as losses of AlexNet are approximate to 1 after 30000 iterations and losses of
GoogLeNet are approximate to 2 after 67000 iterations. Whereas, the time taken to reach the target
loss varies dramatically. For example, the speedups of LP-Overlap-Alg.3 over BE-Alg.1 in training
AlexNet and GoogLeNet are 2.12x and 2.19x, respectively.

Under the same Alg.1 but different underlying collective algorithms, LP-Alg.1 presents 1.91x and
1.74x speedup over BE-Alg.1 and MST-Alg.1 in AlexNet, and 1.6x and 1.1x speedup over BE-Alg.1
and MST-Alg.1 in GoogLeNet. The iteration profiles of these 3 algorithms in TABLE.2 indicate the
communication cost of LP-Alg.1 is only 10% of BE-Alg.1, and 11% of MST-Alg.1 in AlexNet; and
6% of BE-Alg.1, and 43% of MST-Alg.1 in GoogLetNet.

The experiments demonstrate that the speed of 3 proposed BSP SGD is Alg.3 > Alg.2 > Alg.1.
The result conforms to our expectations as the cost of Alg.3 is max(comm, compt), while the
cost of Alg.1 and Alg.2 is comm + compt. However, the performance gain is quite limited from
Alg.2 to Alg.3 as there is little room left for reducing communications from pipeline Alg.2 to Alg.3
demonstrated in table.2. If the model parameters keep increasing, we expect Alg.3 to be more efficient
than Alg.2.
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