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Abstract
With the power of large pretrained language001
models, various research works have integrated002
knowledge into dialogue systems. The tradi-003
tional techniques treat knowledge as part of004
the input sequence for the dialogue system,005
prepending a set of knowledge statements in006
front of dialogue history. However, such a007
mechanism forces knowledge sets to be con-008
catenated in an ordered manner, making models009
implicitly pay imbalanced attention to the sets010
during training. In this paper, we first investi-011
gate how the order of the knowledge set can012
influence autoregressive dialogue systems’ re-013
sponses. We conduct experiments on two com-014
monly used dialogue datasets with two types of015
transformer-based models and find that models016
view the input knowledge unequally. To this017
end, we propose a simple and novel technique018
to alleviate the order effect by modifying the po-019
sition embeddings of knowledge input in these020
models. With the proposed position embed-021
ding method, the experimental results show that022
each knowledge statement is uniformly consid-023
ered to generate responses.024

1 Introduction025

Transformer-based (Vaswani et al., 2017) pre-026

trained language models are widely used to build di-027

alogue systems (Zhang et al., 2020; Xu et al., 2021;028

Komeili et al., 2021; Roller et al., 2020; Thoppilan029

et al., 2022; Rae et al., 2021; Chen et al., 2021;030

Ham et al., 2020; Hosseini-Asl et al., 2020; Bao031

et al., 2021). In addition to general-purpose dia-032

logue systems, many specialized dialogue systems033

have been proposed. Representative examples in-034

clude personalized dialogue systems (Wolf et al.,035

2019; Zhang et al., 2018; Wu et al., 2021; Cao et al.,036

2022; Song et al., 2020), knowledge-grounded dia-037

logue systems (Dinan et al., 2019; Kim et al., 2021;038

Tao et al., 2021; Cai et al., 2020; Liu et al., 2021),039

and prompting dialogue systems (Su et al., 2022).040

To build specialized dialogue systems, integrat-041

ing additional information into the input sequence042

I'm 22 years old What's your plan today?

I'm 22 years, I am not sure.

I am an teacher What's your plan today?

I teach Math in a school.

I love baseball What's your plan today?

Play baseball at the park.

Imbalanced

K1

K2

K3

K3

K1

K2

Knowledge History

Figure 1: The order effect illustration. Models’ re-
sponses are influenced by the order of the input knowl-
edge set.

is necessary. Wolf et al. (2019) prepend persona 043

sentences to personalize the history; while Su et al. 044

(2022); Dinan et al. (2020); Keskar et al. (2019); 045

Xu et al. (2020a) prepending task-specific signals 046

to prompt and control the model. 047

These methods prepend additional information 048

in front of the history as a sequence for models’ 049

input. Furthermore, the approach generates an un- 050

necessary order among equal knowledge sets since 051

the knowledge is connected in the sequence. Thus 052

models might be influenced by the order and gen- 053

erate imbalanced responses. 054

Previous works focus on how perturbations in 055

dialog history affect models’ responses (Sankar 056

et al., 2019; O’Connor and Andreas, 2021; Sinha 057

et al., 2021; Lampinen et al., 2022; Webson and 058

Pavlick, 2021; Xu et al., 2020b; Khandelwal et al., 059

2018). They conduct many experiments and mea- 060

sure the effect of perturbations from the aspect of 061

response quality and information theory to show 062

that these language models are robust and not sen- 063

sitive to the perturbations in input history. How- 064

ever, dialog history and knowledge are inherently 065

different aspects of a conversation. Dialog his- 066

tory has a temporal property, i.e., the topic and 067

specificity of conversation change as the dialog 068

progresses, whereas knowledge facts are informa- 069

tion referenced to generate a response. Although 070

the perturbation in history does not influence the 071

results generated by the model (Sankar et al., 2019; 072

O’Connor and Andreas, 2021), in our early obser- 073
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I live in NYCI have a dog I love baseballI like to go shopping I'm 22 years old What's your plan today?

Knowledge History

t1 x 4t1 x 4 t1 x 3t1 x 5 t1 x 4 t2 x 4
Word Embedding

12, 13, 14, 155, 6, 7, 8 9, 10, 110, 1, 2, 3, 4 16, 17, 18, 19 20, 21, 22, 23
Token Embedding

Position Embedding

Multiple Position Embedding

0, 1, 2, 30, 1, 2, 3 0, 1, 20, 1, 2, 3, 4 0, 1, 2, 3 0, 1, 2, 3Updated 
Position Embedding

Figure 2: Input format for GPT-series models. The position ids do not treat knowledge equally but as a sequence.
The updated position embeddings show our proposed method, where each knowledge statement is encoded with its
own position embeddings, hence, models can treat each input sentence equally during training. The same color of
blocks indicates using the same layer to generate embeddings.

vation, we found that prepending knowledge influ-074

ences models’ responses. For example, Figure 1075

demonstrates an example where the model exhibits076

imbalanced attention to input knowledge, and the077

order of knowledge influences the generated re-078

sponses. This might cause the model to generate079

inappropriate responses since it attends to knowl-080

edge that might not be relevant to a dialog context.081

The contributions of this work are as follows:082

• We conduct experiments across two typical083

methods and two models on multiple datasets084

to show that the order of knowledge sentences085

does affect generated responses.086

• We propose a simple approach to alleviate this087

sentence-level order effect by manipulating088

the position embedding layers.089

2 Knowledge-grounded Dialogue090

Methods091

In this work, we study the order effect in Trans-092

ferTransfo (Wolf et al., 2019), which is a state-093

of-the-art knowledge-grounded method. We train094

TransferTransfo on two datasets and measure the095

sentence-level order effect on the test datasets.096

2.1 TransferTransfo097

The TransferTransfo architecture is built on top of098

GPT-series models, which simply concatenates the099

knowledge sets and context in a single sequence,100

putting the reply at the end. To help models dis-101

tinguish speakers and position of input tokens, it102

builds three parallel input sequences for word, po-103

sition, and segments, and fuses them into a single104

sequence. For the loss function, in addition to a105

language modeling loss, a next sentence predic-106

tion loss is added. The total loss is the weighted107

sum of the 1) language modeling loss, which is108

computed as the cross-entropy loss between the 109

predicted logits and the ground truth response and 110

2) the next-sentence prediction loss, which is a 111

classification loss to distinguish the ground truth re- 112

sponse from distractors that are randomly sampled 113

from the dataset. 114

In the original TransferTransfo implementation, 115

the authors have already pointed out that the order 116

of the knowledge set influences the model’s perfor- 117

mance. To this end, they augment training data by 118

permuting the knowledge sets several times. 119

2.2 Experimental Setups 120

We conduct experiments on two datasets: 121

Persona-Chat (Zhang et al., 2018): This persona- 122

grounded dialogue dataset consists of crowd- 123

sourced dialogues between a pair of annotators 124

provided with 4-5 persona statements each. 125

Topical-Chat (Gopalakrishnan et al., 2019): This 126

is a knowledge-grounded dialogue dataset, where 127

the dialogs are constructed by a pair of annotators 128

conversing about specific topics. The annotators 129

are provided with wiki data with 4-5 facts as knowl- 130

edge sources. 131

In our experimental setup, we shuffle the knowl- 132

edge set’s order 50 times during testing and im- 133

plement TransferTransfo on GPT (Radford et al., 134

2018) and GPT-2 (Radford et al., 2019) models. 135

3 The Order Effect of the Knowledge Set 136

Models are said to have an order effect of input 137

if the generated responses are sensitive and influ- 138

enced by order of input sequence. Previous works 139

(Sankar et al., 2019; O’Connor and Andreas, 2021; 140

Sinha et al., 2021; Lampinen et al., 2022; Webson 141

and Pavlick, 2021; Xu et al., 2020b; Khandelwal 142

et al., 2018) focus on whether perturbation in di- 143

alogue history affect models’ responses. In this 144
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Figure 3: Experimental results under TransferTransfo method, the lines indicate the average of 50 times shuffling
results with standard deviation represented in the area. The data with 4 and 5 knowledge sets are displayed
separately.
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Figure 4: Experimental results under LM loss only method, the lines indicate the average of 50 times shuffling results
with standard deviation represented in the area. The data with 4 and 5 knowledge sets are displayed separately.

work, to be more specific, we investigate if sen-145

tence level change in the order of input knowledge146

sets will result in substantial semantic differences147

in the generated responses.148

3.1 The Order Effect Measurement149

To address the sentence-level order effect of the150

input knowledge set in models, we aim to measure151

the semantic difference given different orders of152

knowledge sentences. It is intuitive to measure if153

the response content is influenced by knowledge154

sets order. In other words, we measure the distri-155

bution of response-knowledge relationship in dif-156

ferent positions. We build a Natural Language157

Inference (NLI) classifier to evaluate the degree of158

entailment between responses and each knowledge159

in the set.160

The Natural Language Inference Classifier is 161

built with BERT model (Devlin et al., 2019), 162

trained on the Dialogue NLI dataset (Welleck et al., 163

2019), which is built on top of Persona-Chat dataset 164

(Zhang et al., 2018). The annotators label the rela- 165

tionship between persona and response in Persona- 166

Chat with entail, neutral, and contradict classes. 167

3.2 Results and Discussions for Order Effect 168

Figures 3 and 4 show the entailment scores of the 169

response with each position of knowledge. Fig- 170

ure 3 presents the experiments of TransferTransfo 171

with GPT and GPT-2 models across Persona-Chat 172

and Topical-Chat datasets. Figure 4 shows the re- 173

sults with "LM Loss only Method", which refers 174

to TransferTransfo without the next sentence pre- 175

diction. We observe that the distribution of data 176

3



Model Method Persona Topical
TT. LM. TT. LM.

Entailment Max - Min

GPT Origin .048 / .037 .052 / .035 .037 / .022 .046 / .041
Multi Pos .023 / .028 .051 / .041 .031 / .016 .058 / .044

GPT-2 Origin .062 / .062 .075 / .085 .052 / .036 .052 / .027
Multi Pos .039 / .044 .038 / .045 .027 / .018 .035 / .021

Perplexity ↓
GPT Origin 52.29 54.31 39.31 36.80

Multi Pos 55.47 58.43 42.37 42.98

GPT-2 Origin 61.69 61.80 20.50 18.84
Multi Pos 60.18 58.91 17.40 17.30

Coherence

GPT Origin 0.633 0.636 0.793 0.770
Multi Pos 0.644 0.621 0.732 0.744

GPT-2 Origin 0.661 0.667 0.840 0.843
Multi Pos 0.648 0.662 0.830 0.831

Diverstiy ↓
GPT Origin 0.815 0.822 0.844 0.846

Multi Pos 0.821 0.833 0.870 0.862

GPT-2 Origin 0.808 0.811 0.833 0.833
Multi Pos 0.816 0.817 0.843 0.845

Table 1: The results of measurements. The Max-Min of
entailment are reported in 4 knowledge / 5 knowledge.
The mean of quality across 50 runs are reported and
standard deviation are reported in Appendix A.3.

containing only four knowledge statements is very177

different compared to data containing five knowl-178

edge statements. Hence we show them separately.179

The NLI classification results are shown with180

BLUE lines. We can see that the distribution of181

entailment scores on different positions are imbal-182

anced. In the experiments on the GPT model, (fig-183

ures 3a, 3b, 3c, 3d, 4a, 4b, 4c, and 4d), it can184

be observed under both TransferTransfo and LM185

loss only methods, the entailment score on the last186

position is always the highest. In fact, there is a187

huge gap between the entailment scores with the188

first knowledge and the last knowledge statements.189

This indicates that GPT model focuses more on the190

last position of knowledge.191

However, the behavior of GPT-2 is very different192

from GPT model. From Figures 3e, 3f, 3g, 3h, 4e,193

4f, 4g, and 4h, we can see that GPT-2 models focus194

more on the earlier knowledge statements in the195

sequence rather than the later ones.196

These results show that the order effect exists197

across GPT and GPT-2 models (although different)198

and is influencing models’ responses and this needs199

to be solved.200

4 Alleviate the Order Effect201

In this section, we analyse the reason for the or-202

der effect in the GPT-series models and propose203

a method to alleviate the phenomenon. Figure 2204

shows the input format of the classic GPT-series.205

There are three types of embeddings in the model: 206

word embedding to capture the semantic meaning 207

of each word, token embedding to represent the 208

speaker and absolute position embedding that en- 209

codes position information of input sequence. 210

Figure 2 shows that the position ids for each 211

knowledge start from zero with different positional 212

embedding layers. In this naive setting, knowledge 213

of the set are treated equally and not input with the 214

order during training. 215

4.1 Results and Discussion 216

In the same Figures 3 and 4, the RED lines demon- 217

strate the entailment result after applying multiple 218

position embedding. We observe that all the red 219

lines, which are the GPT-series applied multiple po- 220

sition embeddings, are much smoother compared 221

to BLUE lines in both figures. Furthermore, we 222

report the difference between maximum and mini- 223

mum entailment across the positions in Table 1. It 224

shows that the difference is negligible after apply- 225

ing multiple position embeddings. This indicates 226

that we can alleviate the order effect under mod- 227

els trained with with multiple position embedding. 228

However, we also observed that on Figure 4 some 229

red lines are still as steep as before, which means 230

the order effect still exists. We think that the model 231

trained only with LM loss treats knowledge like 232

history and does not ground models on knowledge 233

sets. Under this scenario, the multiple position 234

embedding doesn’t work well. 235

For the measurement of quality, Table 1 shows 236

the perplexity, coherence, and diversity. The de- 237

tails are included in Appendix A.2. We found tiny 238

drops between origin and multiple position embed- 239

ding. More specifically, our proposed method does 240

not crash the models and can still make models 241

generate plausible responses. 242

5 Conclusions 243

In this paper, we investigate whether the order of 244

knowledge set will influence dialogue models’ re- 245

sponses. Our experiments across several datasets 246

show that the GPT-series models unfairly pay atten- 247

tion to the knowledge set and are influenced by or- 248

der of knowledge. To solve this problem, we study 249

the reason for the phenomenon and propose sim- 250

ple method to alleviate the order effect in models. 251

The experimental results show that our approach 252

reduces the order effect and makes the model select 253

the knowledge uniformly. 254
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Limitations255

This work has potential limitations:256

• We found that on the Figure 3 and 4, The en-257

tailment of the methods after applying multi-258

ple position embedding (RED lines) are some-259

times lower than origin methods(BLUE lines).260

This is not meet our expectations since we261

don’t want our method to decrease perfor-262

mance. In our opinion, we think the reason263

might be the embedding method has never264

been seen before during the pretraining of265

models, which requires the model’s additional266

efforts to adapt the embedding, thus hurts the267

performance.. We leave it as future work to268

be improved.269

• We also found that the multiple position em-270

bedding does not work very well to alleviate271

the order effect in the LM loss-only settings4.272

We have discussed this in previous sections.273

Since LM loss only does not help the model274

distinguish which parts in the input sequence275

are knowledge set and thus treat them the276

same as history. The multiple position em-277

bedding will not be trained finely to help the278

model distinguish. We also left this as a future279

work to be improved.280
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A Appendix525

A.1 Experimental Details526

• Hyperparameters: For the Hyperpa-527

rameters we use to conduct experi-528

ments, we follow TransferTransfo link529

https://github.com/huggingface/ 530

transfer-learning-conv-ai. They obtain 531

these Hyperparameters by grid searching. 532

More specifically, They finetuned the model 533

with a batch size of 32 sequences , and 534

finetune the models approximately 2 epochs 535

over training dataset. They used Adam with 536

a learning rate of 6.25e-5, and a coefficient 537

of 2 on the LM loss when summing with the 538

next-sentence prediction loss . The learning 539

rate was linearly decayed to zero over the 540

course of the training. 541

• Datasets: The link to download Persona-Chat 542

https://parl.ai/docs/tasks.html# 543

persona-chat and the train/valid/test 544

split is 9907/1000/968 dialogues.. For 545

the link to download Topical-Chat https: 546

//github.com/alexa/Topical-Chat and 547

the train/valid/test split is 8628/1078/1078 548

dialogues. 549

• Pretrained Models: For GPT model we use 550

gpt-medium as our pretrain model and use 551

microsoft/DialoGPT-medium as initial check- 552

point for GPT-2 model. 553

A.2 Evaluation Metrics 554

In addition to entailment, we aimed to employ other 555

metrics that are also important to measure a dia- 556

logue system. 557

Perplexity (Chen et al., 1998): Here we employed 558

the pretrained GPT-2 language model GPT to 559

judge if the output sentence C(x) was an accept- 560

able sentence. The computation of Perplexity 561

(Chen et al., 1998) is shown below. 562

PPL =
T∏
i=1

1

(GPT (C(x,D)i|x))1/T
(1) 563

564

Coherence: We employed the DialogRPT (Gao 565

et al., 2020) to calculate the coherence between 566

conversation model’s output and the input context. 567

DialogRPT (Gao et al., 2020) is a GPT2-based 568

ranker that finetuned on 133M human feedback 569

data. With the contrastive learning approach that 570

DialogRPT used. The ranker has better understand- 571

ing on how relevant the response is for the given 572

context. In our evaluation, we take the the proba- 573

bility that output by DialogRPT coherence model 574

(human_vs_rand) as our coherence metric. 575

Diversity: BLEU score (Papineni et al., 2002) is a 576
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commonly used metric for automatically evaluat-577

ing machine translation. However, the Self-BLEU578

(Zhu et al., 2018) score here was applied to mea-579

sure the diversity of chatbot responses. Regarding580

one sentence as the prediction and the others as the581

reference, we can calculate BLEU score for every582

sentence, and the average is the Self-BLEU score.583

A lower Self-BLEU score implies more diversity584

of the chatbot responses.585

A.3 Standard Deviation of Quality Metrics586

Model Method Persona Topical
TT. LM. TT. LM.

Perplexity

GPT Origin 0.23 0.27 0.20 0.25
Multi Pos 0.22 0.26 0.27 0.22

GPT-2 Origin 0.31 0.29 0.120 0.09
Multi Pos 0.28 0.23 0.10 0.110

Coherence

GPT Origin 0.001 0.001 0.002 0.002
Multi Pos 0.001 0.001 0.002 0.002

GPT-2 Origin 0.002 0.001 0.001 0.001
Multi Pos 0.001 0.001 0.001 0.001

Diverstiy

GPT Origin 0.002 0.002 0.002 0.002
Multi Pos 0.002 0.002 0.002 0.002

GPT-2 Origin 0.002 0.002 0.002 0.002
Multi Pos 0.002 0.002 0.002 0.001

Table 2: The results of quality measurements. The
standard deviation across 50 runs are reported.
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