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ABSTRACT

Information bottleneck (IB) is a method for extracting information from one ran-
dom variable X that is relevant for predicting another random variable Y . To do
so, IB identifies an intermediate “bottleneck” variable T that has low mutual infor-
mation I(X;T ) and high mutual information I(Y ;T ). The IB curve characterizes
the set of bottleneck variables that achieve maximal I(Y ;T ) for a given I(X;T ),
and is typically explored by optimizing the IB Lagrangian, I(Y ;T )− βI(X;T ).
Recently, there has been interest in applying IB to supervised learning, particu-
larly for classification problems that use neural networks. In most classification
problems, the output class Y is a deterministic function of the input X , which we
refer to as “deterministic supervised learning”. We demonstrate three pathologies
that arise when IB is used in any scenario where Y is a deterministic function
of X: (1) the IB curve cannot be recovered by optimizing the IB Lagrangian for
different values of β; (2) there are “uninteresting” solutions at all points of the
IB curve; and (3) for classifiers that achieve low error rates, the activity of dif-
ferent hidden layers will not exhibit a strict trade-off between compression and
prediction, contrary to a recent proposal. To address problem (1), we propose a
functional that, unlike the IB Lagrangian, can recover the IB curve in all cases.
We finish by demonstrating these issues on the MNIST dataset.

1 INTRODUCTION

The information bottleneck (IB) method (Tishby et al., 1999) provides a principled way to extract
information that is present in one variable that is relevant for predicting another variable. Given two
random variables X and Y , IB posits a “bottleneck” variable T that obeys the Markov condition
Y −X−T . By the data processing inequality (DPI) (Cover & Thomas, 2012), this Markov condition
implies that I(X;T ) ≥ I(Y ;T ), meaning the bottleneck variable cannot contain more information
about Y than it does about X . In fact, any particular choice of the bottleneck variable T can be
quantified by two terms: the mutual information I(X;T ), which reflects how much T compresses
X , and the mutual information I(Y ;T ), which reflects how well T can be used to predict Y .

In IB, bottleneck variables are chosen to maximize prediction I(Y ;T ) given a constraint on the com-
pression (Witsenhausen & Wyner, 1975; Ahlswede & Körner, 1975; Gilad-Bachrach et al., 2003),

F (r) := max
T∈∆

I(Y ;T ) s.t. I(X;T ) ≤ r , (1)

where ∆ is the set of all random variables T that obey the Markov condition Y −X−T . In practice,
the IB curve is almost always explored not via the constrained optimization problem of Eq. (1), but
rather by maximizing the so-called IB Lagrangian,

Lβ

IB(T ) := I(Y ;T )− βI(X;T ) , (2)

where β ∈ [0, 1] is a parameter that controls the trade-off between compression and prediction. The
advantage of optimizing Lβ

IB is that it avoids the non-linear constraint in Eq. (1)1.

The values of F (r) for different values of r specify the IB curve. It is known that F is concave in
r, though it may not be strictly concave (Witsenhausen & Wyner, 1975; Ahlswede & Körner, 1975;

1Note that optimizing Lβ

IB is still a constrained problem in that p(t|x) must be a valid conditional probability.
However, this constraint is usually easier to handle, e.g., by using an appropriate parameterization.
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Gilad-Bachrach et al., 2003). This seemingly minor issue of strict vs. non-strict concavity of the IB
curve will play a central role in our analysis.

Several recent papers have drawn connections between IB and supervised learning (Shamir et al.,
2010; Tishby & Zaslavsky, 2015), in particular classification using neural networks. In this con-
text, X represents neural network inputs, Y represents the output classes, and T represents inter-
mediate representations used by the learning architecture, such as the activity of hidden layer(s).
The application of IB to supervised learning has opened a promising set of novel research direc-
tions. Some of this research investigates neural network training algorithms that optimize the IB
Lagrangian (Kolchinsky et al., 2017; Alemi et al., 2016; Chalk et al., 2016), in this way allowing for
the application of IB to high-dimensional, continuous random variables. Other research (Shwartz-
Ziv & Tishby, 2017) has suggested, somewhat controversially (Saxe et al., 2018), that stochastic
gradient descent (SGD) training dynamics may implicitly favor hidden layer activity that optimally
balances compression and prediction. In particular, this research has suggested that earlier hidden
layers may favor prediction rather than compression, while latter hidden layers may favor compres-
sion rather than prediction (Shwartz-Ziv & Tishby, 2017). More generally, there has been an implicit
idea that intermediate representations that are optimal in the IB sense correspond to “interesting” or
“useful” compressions of the input (Amjad & Geiger, 2018).

Note that in most supervised classification problems, the output class Y is assumed to be a deter-
ministic function of the input X , i.e., Y = f(X) for some single-valued function f , which we refer
to as deterministic supervised learning. In this paper, we demonstrate that IB suffers from three
fundamental pathologies when applied to any situation where Y is a deterministic function of X:

1. There is no one-to-one mapping between different points on the IB curve and maximizers
of the IB Lagrangian Lβ

IB for different values of β, meaning that the IB curve cannot be
explored by maximizing Lβ

IB while varying β. This occurs because when Y is a determin-
istic function of X , the IB curve has a piecewise-linear shape and is therefore not strictly
concave. The dependence of the IB Lagrangian on the strict concavity of F (r) has been
previously noted (Gilad-Bachrach et al., 2003; Shwartz-Ziv & Tishby, 2017), but the perva-
siveness of this pathology in classification scenarios has not been recognized. We analyze
this issue and propose a solution in the form of an alternative objective function, which can
be used to explore the IB curve even when Y is a deterministic function of X .

2. When Y is a deterministic function ofX , all points on the IB curve contain “uninteresting”
solutions. In particular, the entire IB curve can be generated as a mixture of trivial solutions.
This suggests that IB-optimality is not sufficient for an intermediate representation to be an
interesting or useful compression of input data.

3. For a neural network with several hidden layers that achieves a low probability of error,
the hidden layers cannot display a strict trade-off between compression and prediction (in
particular, different layers can only differ in the amount of compression, not prediction).

In this paper we focus on supervised classification problems, although our analysis applies to any use
of IB when Y is a deterministic function of X , including some regression scenarios. In addition, in
Appendix B, we show that the above pathologies also apply to the recently proposed deterministic
IB variant of IB (Strouse & Schwab, 2017), in which the compression term is quantified using
the entropy H(T ) rather than the mutual information I(X;T ). In that Appendix, we propose an
alternative objective function that can be used to resolve the first pathology for dIB.

Note that a recent paper (Amjad & Geiger, 2018) also discusses pitfalls in using IB to analyze
intermediate representations in supervised learning. That paper does not consider the particular
pathologies that arise from the assumption that Y is a deterministic function ofX , thus its arguments
are largely complementary to ours.

In the next section, we review some of the proposed connections between supervised learning and IB.
In Section 3, we show that when Y is a deterministic function of X , as occurs in most classification
problems, the IB curve has a piecewise-linear, rather than strictly concave, shape. In Sections 4, 5
and 6, we discuss the three issues mentioned in the list above. In Section 7, we demonstrate these
issues in a real-world example, using a neural-network implementation of IB on the MNIST dataset.
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2 SUPERVISED CLASSIFICATION AND IB

In supervised learning, one is provided with a training dataset {xi, yi}i=1..N of inputs and outputs,
as well as a parameterized family of conditional distributions, {qθ(y|x)}, where θ are parameters.
We use the random variables X and Y to refer to the inputs and outputs respectively, as well as the
sets of outcomes of those random variables. We use p̂(x, y) to indicate the empirical distribution of
inputs and outputs in the training data.

It is usually assumed that the x’s and y’s are sampled i.i.d. from some “true” distribution
w(y|x)w(x). The high-level goal of supervised learning is to use the dataset to select parameters θ
such that the distribution qθ(y|x) is a good approximation of w(y|x). Supervised learning is called
classification when Y takes a finite set of values, and regression when Y is continuous-valued. In
this manuscript, we focus on classification and, without loss of generality, assume that the set of
possible output values can be written as the integers Y = {0, 1, . . . ,m}.
In practice, many supervised learning architectures use some kind of intermediate representation to
make predictions about the output, such as hidden layers in neural networks. We use the random
variable T to represent the activity of some particular hidden layer in a neural network (or, more gen-
erally, some intermediate representation in a supervised learning architecture). We assume that T is
a (possibly stochastic) function of the inputs, as determined by some parameterized conditional dis-
tribution qθ(t|x), thus T obeys the Markov condition Y −X−T . The mapping from inputs to hidden
layer activity can be either deterministic (as traditionally done in neural networks) or stochastic (as
used in some architectures (Alemi et al., 2016; Kolchinsky et al., 2017))2. The mapping from hidden
layer activity to outputs is represented with the parameterized conditional distribution qθ(y|t). The
overall mapping from inputs to outputs implemented by a neural network with a hidden layer can be
written as qθ(y|x) :=

∫
qθ(y|t)qθ(t|x)dt.

For classification problems, training often involves selecting θ to minimize cross-entropy loss,
LCE(θ) := − 1

N

∑N
i=1 log qθ(yi|xi). In the presence of a hidden layer, LCE can be written as

LCE(θ) = − 1

N

∑
i

∫
qθ(t|xi) log qθ(yi|t) dt = Ep̂θ(Y,T ) [− log qθ(Y |T )] , (3)

where Ep indicates expectation with respect to p, p̂θ(y, t) := 1
N

∑
i δ(y, yi)qθ(t|xi) is the empirical

distribution of outputs and hidden layer activity given the dataset, and δ is the Kronecker delta.

The cross-entropy loss in Eq. (3) can also be written as

LCE(θ) = H(p̂θ(Y |T )) +DKL(p̂θ(Y |T )‖qθ(Y |T )) (4)

whereH is (conditional) Shannon entropy, DKL is Kullback-Leibler (KL) divergence, and p̂θ(y|t) is
defined via the definition of p̂θ(y, t) above. Since KL is non-negative, cross-entropy loss is an upper
bound on the conditional entropy H(p̂θ(Y |T )). During training, one can decrease LCE(θ) either
by decreasing the conditional entropy H(p̂θ(Y |T )), or by decreasing the KL term by changing
qθ(Y |T ) to better approximate p̂θ(Y |T ). Minimizing LCE(θ) thus minimizes an upper bound on
H(p̂θ(Y |T )). This is equivalent to maximizing a lower bound on I(p̂θ(Y ;T )), since I(p̂θ(Y ;T )) =
H(p̂(Y ))−H(p̂θ(Y |T )), where H(p̂(Y )) is a constant that doesn’t depend on θ.

We can now make explicit the relationship between supervised learning and IB. In IB, one is pro-
vided with a joint distribution p(x, y), and then seeks a bottleneck variable T that obeys the Markov
condition Y −X − T and that minimizes I(X;T ) while maximizing I(Y ;T ). In supervised learn-
ing, one is provided with an empirical distribution p̂(x, y), defines an intermediate representation T
that obeys the Markov condition Y − X − T , and then (during training) minimizes cross-entropy
loss, thus maximizing a lower bound on I(Y ;T ). To make the analogy complete, one might choose
θ so as to simultaneously minimize I(X;T ), i.e., seek hidden layers that provide compressed repre-
sentations of input data (Alemi et al., 2016; Chalk et al., 2016; Kolchinsky et al., 2017). In fact, we
use such an approach in our experiments on the MNIST dataset, as reported in Section 7.

Before proceeding, we note a fact that will play a central role throughout the rest of this paper:
in most supervised classification problems, there is only one correct label associated with each

2If T is continuous-valued and a deterministic function of a continuous-valued X , I(X;T ) will generally
be infinite (Saxe et al., 2018; Amjad & Geiger, 2018). One should either consider noisy or quantized mappings
from inputs to hidden layers, which will generally have finite I(X;T ).
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possible input. Formally, this means that given the empirical distribution p̂(y|x), one can write
Y = f(X) for some single-valued function f . This relationship between X and Y may arise
because it holds under the “true” distribution w(y|x) from which the training dataset is sampled, or
simply because each input vector x occurs at most once in the training data (as happens in most real-
world classification training datasets). Importantly, we make no assumptions about the relationship
between X and Y under qθ(y|x), the approximate parameterized distribution implemented by the
supervised learning architecture. In particular, our analysis still holds if qθ(y|x) is non-deterministic
(e.g., as implemented by the softmax function, often used in neural networks). In addition, our
results are based on analytically-provable properties of the IB curve (i.e., global optima of Eq. (1)),
and do not concern issues of local optima that may be important in practical scenarios. They also
do not concern issues related to generalization error and finite data sampling (Shamir et al., 2010;
Tishby & Zaslavsky, 2015), which are relevant for analyzing the relationship between IB and out-
of-sample performance.

It is important to note that not all classification problems are deterministic. The map from X to Y
may be intrinsically noisy or non-deterministic (e.g., as considered by a subfield of machine learn-
ing called multilabel classification (Tsoumakas & Katakis, 2007)), or noise may be intentionally
added as a regularization technique (e.g., as done in the label smoothing method (Szegedy et al.,
2016)). Moreover, one of the pioneering papers on the relationship between IB and supervised
learning (Shwartz-Ziv & Tishby, 2017) analyzed an artificially-constructed classification problem
in which p(y|x) was explicitly defined to be noisy (see their Eq. 10). However, the stochastic re-
lationship between Y and X in that paper was arbitrary, implicitly chosen to avoid the kinds of
pathologies analyzed here. Given these caveats, we believe that many if not most real-world classi-
fication problems do in fact exhibit a deterministic relation between X and Y .

3 THE IB CURVE WHEN Y IS A DETERMINISTIC FUNCTION OF X

0 H(Y)I(X; T)
0

H(Y)

I(Y
;T

)

I(Y; T) I(X; T)
I(Y; T) H(Y)
IB curve for Y = f(X)

Figure 1: A schematic IB curve. Dashed
line is DPI bound I(Y ;T ) ≤ I(X;T ),
dotted line is I(Y ;T ) ≤ H(Y ). When
Y is a deterministic function of X , the
IB curve saturates both of these bounds,
and looks like the thick gray line.

Consider any X,Y where Y is discrete-valued and a de-
terministic function of X , so that Y = f(X). There
are two bounds on the maximal achievable I(Y ;T ),
I(Y ;T ) ≤ I(X;T ) by the DPI, and I(Y ;T ) ≤
H(Y ) (Cover & Thomas, 2012). To visualize these two
bounds, as well as other results of our analysis, we use
so-called “information plane” diagrams (Tishby et al.,
1999). The information plane represents various possi-
ble bottleneck variables in terms of their compression
(I(X;T ), horizontal axis) and prediction (I(Y ;T ), ver-
tical axis) values. The two bounds mentioned above,
I(Y ;T ) ≤ I(X;T ) and I(Y ;T ) ≤ H(Y ), are plotted
on an information plane diagram in Fig. 1.

In this section, we show that when Y is a deterministic
function of X , the IB curve saturates both bounds men-
tioned above, and is therefore not strictly concave but
rather piece-wise linear (thick gray line in Fig. 1).

To show that the IB curve saturates the DPI bound I(Y ;T ) ≤ I(X;T ) for I(X;T ) ∈ [0, H(Y )], we
define a manifold of bottleneck variables Tα parameterized by α ∈ [0, 1], where the set of outcomes
of each Tα is the same as that of Y . Let Bα be a Bernoulli-distributed random variable that is equal
to 1 with probability α and equal to 0 with probability 1− α. We define each Tα as

Tα := Bα · Y = Bα · f(X) . (5)

Thus, Tα is equal to Y with probability α, and equal to 0 with probability 1− α. From Eq. (5), it is
clear that Tα is a (stochastic) function of both X and Y , thus both Markov conditions Y −X − Tα
andX−Y −Tα hold. Applying the DPI to both Markov conditions gives I(X;Tα) ≤ I(Y ;Tα) and
I(Y ;Tα) ≤ I(X;Tα), meaning that I(Tα;X) = I(Tα;Y ) for any Tα. Note that for α = 1, Tα = Y
and thus I(Tα;Y ) = H(Y ). At the same time, for α = 0, Tα = 0, thus I(Tα;Y ) = 0. Since mutual
information is continuous in probabilities, the manifold of bottleneck variables Tα must sweep the
full range of values 〈I(X;Tα), I(Y ;Tα)〉 = 〈0, 0〉 to 〈I(X;Tα), I(Y ;Tα)〉 = 〈H(Y ), H(Y )〉 as α
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Strictly concave
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Figure 2: Failure of IB Lagrangian.
Thick gray lines shows two possible
IB curves, thin lines are isolines of
Lβ

IB for different β (colors indicated
different β), stars indicate achievable
〈I(X;T ), I(Y ;T )〉 that maximize Lβ

IB.
For not strictly concave IB curve, differ-
ent β ∈ (0, 1) only recover a single point.
For strictly concave IB curve, different β
recover different points.

ranges from 0 to 1, all while obeying I(Tα;X) = I(Tα;Y ). Thus, the manifold of Tα bottleneck
variables achieves the DPI bound over I(T ;X) ∈ [0, H(Y )].

Given its definition in Eq. (1), the IB curve must be monotonically increasing. Since 〈H(Y ), H(Y )〉
is on the IB curve (e.g., Tα for α = 1), it must be that I(Y ;T ) ≥ H(Y ) whenever I(X;T ) ≥ H(Y ).
At the same time, I(Y ;T ) ≤ H(Y ) for all T . Thus, for all optimal bottleneck variables T with
I(X;T ) ≥ H(Y ), the IB curve is a flat line with I(Y ;T ) = H(Y ).

We have shown that when Y is a deterministic function of X , the IB curve is piecewise-linear,
having the shape of the thick gray line in Fig. 1, and thus not strictly concave. Note that the IB curve
may also be not strictly concave in other situations. A sufficient condition for the IB curve to be
strictly concave is for p(y|x) > 0 everywhere (Gilad-Bachrach et al., 2003, Lemma 6).

4 ISSUE 1: IB CURVE CANNOT BE EXPLORED USING THE IB LAGRANGIAN

In this section, we show that when the IB curve is piecewise-linear, there is no one-to-one mapping
between points on the IB curve and optimizers of the IB Lagrangian for different values of β. This
means that one cannot recover bottleneck variables at different points on the IB curve by solving
T ? ∈ arg maxT∈∆ I(Y ;T ) − βI(X;T ) while varying β. This issue is diagrammed in Fig. 2, and
explained formally below.

Assume Y = f(X). For any bottleneck variable T and all β ∈ [0, 1], Lβ

IB is bounded by3

Lβ

IB(T ) = I(Y ;T )− βI(X;T ) ≤ (1− β)I(Y ;T ) ≤ (1− β)H(Y ) (6)

where the first inequality uses the DPI, and the second I(Y ;T ) ≤ H(Y ).

Now consider the bottleneck variable Tcopy := Y (or, equivalently, any one-to-one transformation of
Tcopy). Note that Tcopy corresponds to Tα for α = 1 as defined in Eq. (5), and is the “corner point”
of the IB curve in Fig. 1, achieving 〈I(X;Tcopy), I(Y ;Tcopy)〉 = 〈H(Y ), H(Y )〉. Plugging these
values into the definition of Lβ

IB gives Lβ

IB(Tcopy) = (1− β)H(Y ), which means that Tcopy achieves
the bound of Eq. (6) for all β ∈ [0, 1]. Therefore, Tcopy is an optimizer of Lβ

IB for all β ∈ [0, 1] , even
though it corresponds to only a single point on the IB curve.

Now consider the IB Lagrangian for β = 1. For this β, Lβ

IB(T ) = I(Y ;T ) − I(X;T ) ≤ 0, where
the inequality follows from the DPI. Any T that has I(X;T ) = I(Y ;T ), such as the manifold of
Tα defined in Eq. (5), achieves the maximum Lβ

IB(T ) = 0. Therefore, all solutions on the non-flat
part of IB curve in Fig. 1 simultaneously achieve the same maximum value of Lβ

IB for β = 1.

Finally, consider the IB Lagrangian for β = 0. In this case, there is no penalty on I(X;T ) and
Lβ

IB(T ) = I(Y ;T ), which is simultaneously maximized by all solutions that achieve the bound
I(Y ;T ) = H(Y ). Therefore, all solutions on the flat part of the IB curve in Fig. 1 simultaneously
achieve the same optimum value of Lβ

IB for β = 0. (Note that supervised learning algorithms
with cross-entropy loss can be considered to have β = 0, and their corresponding intermediate
representations will generally fall into this regime.)

The pathology is illustrated visually in Fig. 2, which shows two hypothetical IB curves (in thick gray
lines): a not strictly concave (piecewise-linear) curve (left), as occurs when Y is a deterministic

3It is sufficient to consider β ∈ [0, 1] because for β < 0, uncompressed solutions like T = X are maximiz-
ers of Lβ

IB, while for β > 1, Lβ

IB is non-positive and trivial solutions such as T = const are maximizers.
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Not strictly concave
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Strictly concave

0.0 0.5 1.0 1.5 2.0 2.5

Figure 3: Success of squared-IB func-
tional. Thick gray lines shows two
possible IB curves, thin lines indicate
isolines which have the same value of
Lβ

sq-IB for different values of β (indicated
by color), the stars indicate achievable
〈I(X;T ), I(Y ;T )〉 that maximize Lβ

sq-IB.
For both the not strictly concave IB curve
and the strictly concave curve, different β
values recover different solutions.

function of X , and a strictly concave curve (right). In both subplots, the colored lines indicate
isolines of the IB Lagrangian. The highest point on the IB curve crossed by a given colored line is
marked by a star, and represents the 〈I(X;T ), I(Y ;T )〉 values for a T which optimizes Lβ

IB for the
corresponding β. For the piecewise-linear IB curve, all β ∈ (0, 1) only recover a single solution
(Tcopy). For the strictly concave IB curve, different β values recover different solutions.

To summarize, when Y is a deterministic function of X , the IB curve is piecewise-linear and cannot
be explored by optimizingLβ

IB while varying β . Of course, in principle any IB curve can be explored
by solving the constrained optimization problem of Eq. (1) for different values of r (Miettinen,
1999, Thm. 3.2.2). In practice, however, solving this constrained optimization problem — even
approximately — is far from a simple task, in part due to the non-linear constraint on I(X;T ). In
particular, many off-the-shelf optimization tools cannot handle this kind of problem.

It is desirable to have an unconstrained objective function that can be used to explore any IB curve,
whether strictly or non strictly concave. For this purpose, we propose an alternative objective func-
tion, which we call the squared-IB functional,

Lβ

sq-IB(T ) := I(Y ;T )− βI(X;T )2 . (7)

We show that maximizing Lβ

sq-IB while varying β recovers all points on the increasing part of the
IB curve. To do so, we first provide a bit of analysis of why the IB Lagrangian fails. Over the
increasing region of the IB curve, the inequality constraint in Eq. (1) can be replaced by an equal-
ity constraint (Witsenhausen & Wyner, 1975, Thm 2.5), and maximizing Lβ

IB can be written as
maxT I(Y ;T ) − βI(X;T ) = maxr F (r) − βr (i.e., the Legendre transform of −F (r)). The
derivative of F (r)− βr is zero when F ′(r) = β, and any point on the IB curve that has F ′(r) = β
will maximize Lβ

IB for that β. For a piecewise linear IB curve, all points on the increasing part of
the curve have F ′(r) = 1, and will all simultaneously maximize Lβ

IB when β = 1.

Using a similar analysis, we write maxT Lβ

sq-IB = maxr F (r)−βr2. The derivative of F (r)−βr2 is
0 when F ′(r)/(2r) = β. Since F is (not strictly) concave, F ′(r) is (not strictly) decreasing in r, and
F ′(r)/(2r) is strictly decreasing in r. Thus, there can be at most one r such that F ′(r)/(2r) = β
for a given β, meaning that there can only be one point on the IB curve that optimizes Lβ

sq-IB for a
given β. Therefore, the IB curve can be explored by maximizing Lβ

sq-IB while varying β.4

Note that any point that satisfies F ′(r) = β also satisfies F ′(r)/(2r) = β/(2r). Thus, any point that
maximizes Lβ

IB for a given β also maximizes Lβ

sq-IB under the transformation β 7→ β/(2 · I(X;T )),
and vice versa. Importantly, unlike for Lβ

IB, there can be non-trivial maximizers of Lβ

sq-IB for β > 1.

The effect of optimizing Lβ

sq-IB is illustrated in Fig. 3. This figure shows two different IB curves (not
strictly concave and strictly concave), isolines of Lβ

sq-IB for different β, and points on the curves that
maximize Lβ

sq-IB. For both IB curves, the maximizers correspond to different points for different β.

Finally, note that the IB curve is the Pareto front of the multi-objective optimization problem,
{maximize I(Y ;T ),minimize I(X;T )}. Lβ

sq-IB is one modification of Lβ

IB that allows us to ex-
plore a non-strictly-concave Pareto front. However, it is not the only possible modification, and
other alternatives may be considered (this may be particularly relevant when T lives in a restricted
model class). For a full treatment of multi-objective optimization techniques, see Miettinen (1999).

4For simplicity, we’ve restricted our analysis to differentiable points on the IB curve (a more thorough anal-
ysis would concern the subderivatives of F ). Note, however, that because F is concave, it must be differentiable
almost everywhere (Rockafellar, 2015, Thm 25.5).
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5 ISSUE 2: ALL POINTS ON IB CURVE HAVE “UNINTERESTING” SOLUTIONS

It is often implicitly or explicitly assumed that optimal bottleneck variables on the IB curve will
provide “useful” or “interesting” representations of the relevant information in X about Y (see also
discussion and proposed criteria in (Amjad & Geiger, 2018)). While the concepts like usefulness
and interestingness are subjective, the general intuition can be illustrated using the following simple
example. Consider the ImageNet task (Deng et al., 2009), which involves labeling images according
to 1000 classes, such as border collie, golden retriever, coffeepot, teapot, etc. It is natural to expect
that as one explores the IB curve for the ImageNet dataset, one will identify useful compressed
representations of the space of images. Such useful representations might, for instance, specify
hard-clusterings that merge together inputs belonging to perceptually similar classes, such as border
collie and golden retriever (but not border collie and teapot). In this section, we show that such
intuitions do not necessarily hold whenever Y is a deterministic function of X .

Recall the analysis from Section 3, where Eq. (5) defines the manifold of bottleneck variables Tα
parameterized by α ∈ [0, 1]. The manifold of Tα, which spans the entire increasing portion of the
IB curve, represents a mixture of two “trivial” solutions: a constant mapping to 0, and an exact
copy of Y . (Note that the flat part of the IB curve can also be explored by a mixture of two trivial
solutions, though we do not focus on this part of the curve here.) While the manifold of Tα bottle-
neck variables is optimal in the IB sense, these bottleneck variables do not offer interesting or useful
representations of the input data. The compression offered by Tα arises by “forgetting” the input
with some probability 1 − α, rather than performing any kind of useful coarse-graining, while the
prediction comes from full knowledge of the mapping from inputs to outputs, f : X → Y .

To summarize, when Y is a deterministic function of X , the fact that a bottleneck variable T is
on the IB curve does not necessarily imply that the same bottleneck variable is useful compressed
representation of X . At the same time, we do not claim that all bottleneck variables on the IB
curve will have the trivial structure of Eq. (5). In fact, there may also be IB-optimal bottleneck
variables that compressX in interesting and useful ways (however such notions may be formalized).
Nonetheless, when Y is a deterministic function of X , for any “interesting” T , there will also be a
“trivial” Tα that achieves the same values of compression I(X;T ) and prediction I(Y ;T ), and IB
does not distinguish between the two. Therefore, identifying useful compressed representations will
generally require the use of quality functions other than just IB (Amjad & Geiger, 2018).

In Appendix B, we also analyze this issue for deterministic IB (dIB). In that case, we show that
intermediate representations T that are hard-clusterings of the outputs Y will be optimal in terms
of dIB. However, the resulting clusterings will not generally obey any intuitions about semantic or
perceptual similarity between grouped-together elements of Y , and will thus also not necessarily
provide any useful representations of the inputs.

6 ISSUE 3: NO TRADE-OFF AMONG DIFFERENT NEURAL NETWORK LAYERS

So far we’ve considered the relationship between supervised learning and IB in terms of a single
intermediate representation T (e.g., a single hidden layer in a neural network). Recent research in
machine learning, however, has focused on so-called “deep” neural networks, in which there are
multiple successive hidden layers. What is the relationship between the compression and prediction
achieved by these different layers? A recent theory (Shwartz-Ziv & Tishby, 2017) suggests that due
to SGD training dynamics, different layers of a deep neural network will explore a strict trade-off
between compression and prediction: early layers will sacrifice compression (high I(T ;X)) for
good prediction (high I(T ;Y )), while latter layers will sacrifice prediction (low I(T ;Y )) for good
compression (low I(T ;X)). Shwartz-Ziv & Tishby (2017) demonstrated a strict trade-off using an
artificial classification dataset, in which Y was defined to be a noisy function of X (their Fig. 6). As
we show here, however, such results cannot generally hold when Y is a deterministic function of X .

Recall that we consider IB in terms of the empirical distribution of inputs, hidden layers, and outputs
given the training data (Section 2). Imagine that a classifier achieves 0, or near 0, probability of error
(i.e., classifies every input correctly) on training data. This event, which can only occur when Y is a
deterministic function of X , is in fact often observed in real-world neural networks. In such cases,
we show that while latter layers may have better compression (lower I(T ;X)) than earlier layers,
they can’t have worse prediction (lower I(T ;Y )) than earlier layers. Therefore, different layers can
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only demonstrate a weak trade-off between compression and prediction. (The same arguments also
hold if the neural network achieves near-0 probability of error on held-out testing data, as long as
the information-theoretic measures are evaluated on the same held-out data distribution.)

Consider a neural network with k hidden layers, where each successive layer is a (possibly stochas-
tic) function of the preceding layer. Let T1, T2, . . . , Tk indicate the activity of hidden layer
1, 2, . . . , k respectively. Typically, the last hidden layer Tk is used to make a prediction about the
output Y . We write this predicted Y as the random variable Ŷ := aθ(Tk), where aθ is taken as a
deterministic function for simplicity. For instance, Tk might be mapped through a softmax function
to give a vector of output class probabilities qθ(Y |Tk), from which one selects the class with the
highest probability, Ŷ := arg maxy qθ(y|Tk). The probability of error — that is, the probability of
predicting the incorrect output class — is then simply Pe = E[Y 6= Ŷ ], where the expectation is
over the empirical distribution of the training dataset as well as any stochasticity generated by the
network itself (for instance if the layer-to-layer mappings are stochastic).

The above architecture obeys the Markov condition Y −X−T1−T2−· · ·−Tk− Ŷ , where we use
the fact that the true output Y is a function of X . By the DPI, for any i < j we have the inequalities

I(Y ;Ti) ≥ I(Y ;Tj) , (8) I(X;Ti) ≥ I(X;Tj) . (9)

Applying Fano’s inequality (Cover & Thomas, 2012, Thm. 2.10.1) to the chain Y − Tk − Ŷ gives

H(Pe) + Pe log |Y | ≥ H(Y |Tk) , (10)

where |Y | is the number of output classes, andH is the binary entropy function,H(x) := −x log x−
(1 − x) log(1 − x). Given our assumption that the probability of error obeys Pe = 0, Eq. (10)
implies that H(Y |Tk) = 0 and the mutual information between the last layer and Y must obey
I(Tk;Y ) = H(Y ) − H(Y |Tk) = H(Y ). Since H(Y ) is the largest mutual information that any
random variable can have about Y , by Eq. (8) it must be that I(Ti;Y ) = H(Y ) for all i = 1...k.

Our arguments do not undermine, or confirm, the high-level idea of Shwartz-Ziv & Tishby (2017),
which states that SGD training dynamics may favor compression of hidden layer activity. Instead,
our point is that if a classifier achieves 0 probability of error — which is only possible when Y is
a deterministic function of X — then different layers must achieve the same amount of prediction
I(Ti;Y ) = H(Y ) about the output class, and a strict compression/prediction trade-off between
different layers is impossible. At the same time, by Eq. (9), it may still be that latter layers compress
the input more than earlier layers. Thus, there could be a weak trade-off between prediction and
compression, i.e., latter layers will not give up any prediction but possibly gain some compression.
In terms of Fig. 1, our arguments suggest that different layers will be on the flat part of the IB curve.

7 A REAL-WORLD EXAMPLE: MNIST

We demonstrate the three issues discussed above using the MNIST dataset of hand-written digits.
We identify IB solutions for this dataset using the “nonlinear IB” method (Kolchinsky et al., 2017),
which uses gradient-descent-based training to minimize cross-entropy loss plus a differentiable non-
parametric estimate of I(X;T ) (Kolchinsky & Tracey, 2017). We use this technique to optimize an
upper bound on the IB Lagrangian, as explained in (Kolchinsky et al., 2017), as well as (via a small
modification) an upper bound on the squared-IB functional.

In our architecture, the bottleneck variable, T ∈ R2, corresponds to the activity of a hidden layer
with two hidden units. Using a two-dimensional bottleneck variable facilitates easy visual analysis
of its activity. The map from inputs X to bottleneck T has the form T = aθ(X) + Z, where
Z ∼ N (0, I) is the noise, and aθ is a deterministic function implemented using three fully-connected
layers: two layers with 800 ReLU units each, and a third layer with two linear units. Note that the
stochasticity in the mapping fromX to T makes our mutual information term, I(X;T ), well-defined
and finite. The decoding map, qθ(y|t), is implemented using a fully-connected layer with 800 ReLU
units, followed by an output layer of 10 softmax units. Results are reported for training data. See
Appendix A for more technical details and figures, including results on testing data. TensorFlow
code is available at anonymized .

Like other practical general-purpose IB methods, “nonlinear IB” is not guaranteed to find globally-
optimal IB bottleneck variables, due to factors like: (a) difficulty of optimizing the non-convex IB
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Figure 4: Theoretical and empirical IB curve found by maximizing the IB Lagrangian (A) and the
squared-IB functional (B). Stars represent solutions recovered for different values of β. Insets show
the bottleneck variable states (i.e., activity of the hidden layer) for different solutions, where colors
represent inputs corresponding to different classes (i.e., different digits). MI values in nats.

objective; (b) error in estimating I(X;T ); (c) limited model class of T (i.e., T must be expressible
in the form of T = aθ(X) +Z); (d) mismatch between actual decoder qθ(y|x) and optimal decoder
p̂θ(y|x) (see Section 2); and (e) stochasticity of training due to SGD. Nonetheless, in practice, the
solutions discovered by nonlinear IB were very close to IB-optimal, and are sufficient to demonstrate
all of the issues discussed in the previous sections.

Issue 1: IB Curve cannot be explored using the IB Lagrangian

We first demonstrate that the IB curve cannot be explored by maximizing the IB Lagrangian, but can
be explored by maximizing the squared-IB functional, supporting the arguments in Section 4. Fig. 4
shows the theoretical IB curve for the MNIST dataset, as well as the IB curve empirically recovered
by maximizing these two functionals (see also Fig. A5 for more details).

By optimizing the IB Lagrangian (Fig. 4A), we are only able to find three IB-optimal points:
(1) Maximum prediction accuracy and no compression, I(Y ;T ) = H(Y ), I(X;T ) ≈ 8 nats;
(2) Maximum compression possible at maximum prediction, I(Y ;T ) = I(X;T ) = H(Y );
(3) Maximum compression and zero prediction, I(X;T ) = I(Y ;T ) = 0.

Note that the identified solutions are all very close to the theoretically-predicted IB-curve. How-
ever, the switch between the 2nd regime (maximal compression possible at maximum prediction)
and 3rd regime (maximum compression and zero prediction) in practice happens at β ≈ 0.45. This
is different from the theoretical prediction, which states that this switch should occur at β = 1.0.
The deviation from the theoretical prediction arises due to various practical details of the optimiza-
tion done by the nonlinear IB method, as mentioned above. The switch from the 1st regime (no
compression) to the 2nd regime happened as soon as β > 0, as predicted theoretically.

In contrast to the IB Lagrangian, by optimizing the squared-IB functional (Fig. 4B), we discover
solutions located along different points on the IB curve for different values of β.

Additional insight is provided by visualizing the bottleneck variable T ∈ R2 (i.e., hidden layer
activity) for both types of experiments. This is shown for different β in the scatter plot insets in
Fig. 4. As expected, the IB Lagrangian experiments displayed three types of bottleneck variables:
non-compressed variables (regime 1), compressed variables where each of the 10 classes is repre-
sented by its own compact cluster (regime 2), and a trivial solution where all activity is collapsed
to a single cluster (regime 3). For the squared-IB functional, a different behavior was observed: As
β increases, multiple classes become clustered together and the total number of clusters decreased.
Thus, nonlinear IB with the squared-IB functional learned to group X into a varying number of
clusters, in this way exploring the full trade-off between compression and prediction.

Issue 2: All points on IB curve have “uninteresting” solutions

9
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By maximizing the squared-IB functional, we could find (nearly) IB-optimal solutions along dif-
ferent points of the IB curve. Here we show that such solutions do not provide particularly useful
representations of the input data, supporting the arguments made in Section 5.

Note that “stochastic mixture”-type solutions, in particular the family of Tα discussed in Section 3
and Section 5, are not in our model class, since they cannot be expressed in the form T = aθ(X)+Z.
Instead, our implementation favors “hard-clustering” solutions in which all inputs belonging to a
given output class are mapped to a compact, well-separated cluster in the space of hidden layer
activity (note that inputs belonging to multiple output classes may be mapped to a single cluster).
For instance, from Fig. 4B, we can see that there are solutions with 10 clusters (β = 0.05), 6
clusters (β = 0.2), 3 clusters (β = 0.5), and 1 cluster (β = 2.0). Interstingly, such hard-clusterings
are characteristic of optimal solutions for deterministic IB (dIB), as discussed in Appendix B. At
the same time, in our results, the classes are not clustered in any particularly meaningful or useful
way, and clusters contain different combinations of classes for different solutions. For instance, the
solution shown for squared-IB functional with β = 0.5 has 3 clusters, one of which contains the
classes {0, 2, 3, 4, 5, 6, 8, 9}, another contains the class 1, and the last contains the class 7. However,
in other runs for the same β value, different clusterings of the classes arose. Moreover, because the
different classes appear with close-to-uniform frequency in the MNIST dataset, any solution that
groups the 10 classes into 3 clusters of size {8, 1, 1} will achieve similar values of I(X;T ), I(Y ;T )
as the solution shown for β = 0.5.

Issue 3: No trade-off among different neural network layers

For both types of experiments, runs with β = 0 minimize cross-entropy loss only, without any reg-
ularization term that favors compression. Such runs are examples of “vanilla” supervised learning,
though with stochasticity in the mapping between the input and the 2-node hidden layer.

For β = 0 runs, the 2-node hidden layer achieved nearly-perfect prediction, I(T ;Y ) ≈ H(Y ).
However, as shown in the scatter plots in Fig. 4, these hidden layer activations fell into spread-out
clusters, rather than point-like clusters seen for β > 0. In general, hidden layer activity did not
exhibit compression, meaning that the hidden layer retained information aboutX that was irrelevant
for predicting the class Y , and fell onto the flat part of the IB curve.

Recall that our neural network architecture has three earlier hidden layers that precede T , as well as
one hidden layer that succeeds it. Due to the DPI inequalities Eqs. (8) and (9), the earlier hidden lay-
ers must have worse compression than T , while the latter hidden layer must have better compression
than T . At the same time, β = 0 runs achieve nearly 0 probability of error on the training dataset
(results not shown), meaning that all layers must achieve I(Y ;T ) ≈ H(Y ), the maximum possible.
Thus, for β = 0 runs, the activity of the all hidden layers is located on the flat part of the IB curve,
demonstrating a lack of a strict trade-off between prediction and compression.

8 CONCLUSION

There has been increasing interest in the connection between IB and supervised learning, especially
in the context of classification using neural networks. In most classification problems, the output
class Y is a deterministic function of X . In this work, we showed that in such scenarios, IB suf-
fers from pathologies that give it a qualitatively different behavior from when the mapping from
X to Y is stochastic. First, the IB curve cannot be recovered by maximizing the IB Lagrangian
I(Y ;T )− βI(X;T ) while varying β. Second, all points on the IB curve will contain “trivial” rep-
resentations of inputs, and in fact, when Y is a deterministic function of X , one can recover the
entire IB curve in a closed-form way, without performing any optimization. Finally, classifiers that
achieve vanishing probability of error cannot have a strict trade-off between prediction and compres-
sion among successive layers, contrary to recent proposals. Our findings do not apply exclusively to
supervised learning, but rather to any scenario where Y is a deterministic function of X .

Our results should not be taken to mean that the application of IB to supervised learning is with-
out merit. First, they do not apply to various non-deterministic classification problems where the
output is stochastic. Second, even for deterministic supervised learning, one may still wish to favor
compression during training, possibly to improve factors like interpretability, generalization perfor-
mance, or robustness to adversarial inputs. In this case, however, our work shows that to achieve
varying rates of compression, one should use a different objective function than the IB Lagrangian.
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Figure A5: The top row (A) shows results for the IB Lagrangian, I(Y ;T ) − βI(X;T ), and the
bottom row (B) shows results for the squared-IB functional, I(Y ;T )− βI(X;T )

2. In each row, the
left column shows the information plane (compression I(X;T ) versus prediction I(Y ;T )), with the
black dashed line showing the DPI bound I(Y ;T ) ≤ I(X;T ); the middle column shows prediction
I(Y ;T ) as a function of β; the right column shows compression I(X;T ) as a function of β. In
all plots, the solid blue line indicates values calculated for the training data set, the dashed green
line indicates values calculated for the held-out testing data set, and the black dotted line indicates
H(Y ) = ln 10. All information-theoretic quantities are plotted in nats.

A DETAILS OF MNIST EXPERIMENTS

In Section 7, we demonstrate our results on the MNIST dataset (LeCun et al., 1998). This dataset
contains a training set of 60,000 images and a test set of 10,000 images, each labeled accord-
ing to digit. X ∈ R784 is defined to be a vector of pixels for a single 28 × 28 image, and
Y ∈ {0, 1, ..., 9} is defined to be the class label. Our experiments were carried out using the “non-
linear IB” method (Kolchinsky et al., 2017). I(X;T ) was computed using the kernel-based mutual
information upper bound (Kolchinsky & Tracey, 2017; Kolchinsky et al., 2017) and I(Y ;T ) was
computed using the lower bound I(Y ;T ) ≥ H(Y )− Ep̂θ(Y,T ) [− log qθ(Y |T )] (see Eq. (4)).

The neural network was trained using the Adam algorithm (Kingma & Ba, 2014) with a mini-batch
size of 128 and a learning rate of 10−4. Unlike the implementation in (Kolchinsky et al., 2017), the
same mini-batch was used to estimate the gradients of both Iθ(X;T ) and the cross-entropy term.
Training was run for 200 epochs. At the beginning of each epoch, the order of training examples was
randomized. To eliminate the effect of the local minima, for each possible value of β, we carried out
20 runs and then selected the run that achieved the best value of the objective function. TensorFlow
code is available at anonymized .

Results for the MNIST dataset are shown in Fig. 4 and Fig. A5, computed for a range of β values.
Fig. A5 shows results for both training and testing datasets, though the main text focuses exclusively
on training data. It can be seen that while the solutions found by IB Lagrangian jump discontinuously
from the “fully clustered” solution (I(T ;X) = I(T ;Y ) = H(Y )) to the trivial solution (I(T ;X) =
I(T ;Y ) = 0), solutions found by the squared-IB functional explore the trade-off in a continuous
manner. See figure captions for details.
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B DETERMINISTIC INFORMATION BOTTLENECK

Here we show that our analysis also applies to a recently-proposed (Strouse & Schwab, 2017) variant
of IB called deterministic IB (dIB). dIB replaces the standard IB compression cost, I(X;T ), with the
entropy of the bottleneck variable, H(T ). This can be interpreted as operationalizing compression
costs via a source-coding, rather than a channel-coding, scenario.

Formally, in dIB one is given random variables X and Y . One then identifies bottleneck variables
T that obey the Markov condition Y −X − T and maximize the dIB Lagrangian,

Lβ

dIB(T ) := I(Y ;T )− βH(T ) (11)

for β ∈ [0, 1], which can be considered as a relaxation of the constrained optimization problem

FdIB(r) := max
T∈∆

I(Y ;T ) s.t. H(T ) ≤ r . (12)

To guarantee that the compression cost is well-defined, T is typically assumed to be discrete-
valued (Strouse & Schwab, 2017). We call FdIB the dIB curve.

Before proceeding, we note that the inequality constraint in the definition of FdIB(r) can be replaced
by an equality constraint,

FdIB(r) := max
T∈∆

I(Y ;T ) s.t. H(T ) = r (13)

We do so by showing that FdIB(r) is monotonically increasing in r. Consider any T which maxi-
mizes I(Y ;T ) subject to the constraint H(T ) = r. By definition, the Markov condition Y −X −T
must hold. Now imagine some random variableD which obeys the Markov condition Y−X−T−D,
and define a new bottleneck variable T ′ := (T,D) (i.e., the joint outcome of T and D). We have

I(Y ;T ′) = I(Y ;T,D) = I(Y ;T ) + I(Y ;D|T ) = I(Y ;T ) ,

where we’ve used the chain rule for mutual information. At the same time, D can always be chosen
so that H(T ′) = H(T,D) = r′ for any r′ ≥ r. Thus, we have shown that there are always random
variables T ′ that achieve at least I(Y ;T ′) = maxT :H(T )=r I(I;T ) and have H(T ′) > r, meaning
that FdIB(r) is monotonically increasing in r. This means the inequality constraint in Eq. (12) can
be replaced with an equality constraint.

As we will see, unlike the standard IB curve, FdIB is not necessarily concave. Since FdIB can be de-
fined using equality constraints, one can rewrite maximization ofLβ

dIB as maxT I(Y ;T )−βH(T ) =
maxr FdIB(r) − βr, the Legendre-Fenchel transform of −FdIB(r). By properties of the Legendre-
Fenchel transform, this means that optimizers of Lβ

dIB must lie on the concave envelope of FdIB,
which we indicate as F ∗dIB.

B.1 THE DIB CURVE WHEN Y IS A DETERMINISTIC FUNCTION OF X

As in standard IB, for a discrete-valued Y we have the inequality

I(Y ;T ) ≤ H(Y ) . (14)

However, instead of the standard IB inequality I(Y ;T ) ≤ I(X;T ), we now employ

I(Y ;T ) ≤ H(T ) , (15)

which makes use of the assumption that T is discrete-valued. The dIB curve will have the same
bounds as those shown for the standard IB curve (Fig. 1), except that H(T ) replaces I(X;T ) on the
horizontal axis.

Now consider the case where Y is a deterministic function of X , i.e., Y = f(X). It is easy to check
that Tcopy := f(X) = Y achieves equality for both Eqs. (14) and (15), and thus lies on the dIB
curve. Since FdIB is monotonically increasing, the dIB curve is flat and achieves I(Y ;T ) = H(Y )
for all H(T ) ≥ H(Y ).

We now consider the increasing part of the curve, H(T ) ∈ [0, H(Y )]. We call any T which is
a deterministic function of Y (that is, any T = g(Y ) = g(f(X)), where g is any deterministic
function) a “hard-clustering” of Y . Any hard-clustering of Y has H(T ) ≤ H(Y ). At the same
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time, any hard-clustering of Y has H(T |Y ) = 0, thus I(Y ;T ) = H(T ) − H(T |Y ) = H(T ),
achieving the bound of Eq. (15). Thus, any hard-clustering of Y lies on the increasing part of the
dIB curve. (Note that any hard-clustering of Y will also be a deterministic function of X , thus have
H(T |X) = 0 and I(X;T ) = H(T )−H(T |X) = H(T ) = I(Y ;T ), and will therefore also fall on
the increasing part of the standard IB curve.)

0 H(Y)H(T)
0

H(Y)

I(Y
;T

)

I(Y; T) H(T)
I(Y; T) H(Y)
dIB curve for Y = f(X)

Figure A6: A schematic of the
dIB curve. Dashed line is the bound
I(Y ;T ) ≤ H(T ), dotted line is
I(Y ;T ) ≤ H(Y ). When Y is a deter-
ministic function ofX , the dIB curve sat-
urate the second bound always. Further-
more, it also saturates the first bound for
any T that is a deterministic function of
Y . The qualitative shape of the resulting
dIB curve is shown as thick gray line.

At the same time, the dIB curve cannot be composed en-
tirely of hard-clustering, since — under the assumption
that Y is discrete-valued — there can only be a countable
number of T ’s that are hard-clusterings of Y . Thus, the
dIB curve must also contain bottleneck variables that are
not deterministic functions of Y , thus haveH(T |Y ) > 0
and I(Y ;T ) < H(T ), and do not achieve the bound
of Eq. (15). Geometrically-speaking, when Y is a de-
terministic function of X , the dIB curve must have a
“step-like” structure overH(T ) ∈ [0, H(Y )], rather than
increasing smoothly like the standard IB curve. These
results are shown schematically in Fig. A6, where blue
dots indicate hard clusters of Y .

As mentioned, optimizers of Lβ

dIB must lie on the con-
cave envelope of FdIB, indicated by F ∗dIB. Clearly, the
step-like dIB curve that occurs when Y is a deterministic
function of X is not concave, and only hard-clusterings
of Y lie on its concave envelope for H(T ) ∈ [0, H(Y )].
In the analysis below, we will generally concern our-
selves with optimizers which are hard-clusterings.

B.2 THE THREE PATHOLOGIES

We now briefly consider the three pathologies discussed
in the main text, in the context of deterministic IB. As
usual, we assume that Y is a deterministic function of X .

Issue 1: dIB Curve cannot be explored using the dIB Lagrangian

In analogy to the analysis done in Section 4, we use the inequalities Eqs. (14) and (15) to bound the
dIB Lagrangian as

Lβ

dIB(T ) = I(Y ;T )− βH(T ) ≤ (1− β)I(Y ;T ) ≤ (1− β)H(Y ) .

Now consider the bottleneck variable Tcopy, for which Lβ

dIB(Tcopy) = (1−β)H(Y ). Therefore, Tcopy
(or any one-to-one transformation of Tcopy) will maximize Lβ

dIB for all β ∈ [0, 1]. It is also straight-
forward to show that when β = 0, all bottleneck variables residing on the flat part of the dIB curve
will simultaneously optimize the dIB Lagrangian. Similarly, one can show that all hard-clusterings
of Y , which achieve the bound of Eq. (15), will simultaneously optimize the dIB Lagrangian for
β = 1. As before, this means that different points on the dIB curve do not generally correspond to
optima of Lβ

dIB for different values of β. Thus, there is no one-to-one map between points on the
dIB curve and optimizers of the dIB Lagrangian for different β.

As in Section 4, we propose to resolve this pathology by maximizing an alternative objective func-
tion, which we call the squared-dIB functional,

Lβ

sq-dIB(T ) := I(Y ;T )− βH(T )
2
. (16)

We first demonstrate that any optimizer of the dIB Lagrangian must also be an optimizer of the
squared-dIB functional. Consider that maximization of Lβ

dIB can be written as maxT I(Y ;T ) −
βH(T ) = maxr F

∗
dIB(r) − r. Then, for the point 〈r, F ∗dIB(r)〉 on the dIB curve to maximize Lβ

dIB,
it must have β ∈ ∂rF ∗dIB(r), where ∂r indicates the superderivative with regard to r. At the same
time, for the point 〈r, F ∗dIB(r)〉 to maximize Lβ

sq-dIB, it must satisfy 0 ∈ ∂r
[
F ∗dIB(r)− βr2

]
, or after

rearranging,

2rβ ∈ ∂rF ∗dIB(r) . (17)
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Figure A7: Success of squared-dIB functional. Colored lines indicate manifolds which have the
same value of the dIB Lagrangian (left) and the squared-dIB functional (right) for different values
of β, the stars indicate achievable (H(T ), I(Y ;T )) that maximize each function. For the dIB curve
when Y = f(X), different β values recover different solutions only for the squared-dIB functional.

It is easy to see that if β ∈ ∂rF ∗dIB(r) is satisfied, then Eq. (17) is also satisfied under the transfor-
mation β 7→ β

2r . Thus, any optimizer of Lβ

dIB will also optimize Lβ

sq-dIB, given β 7→ β
2r .

We now show that different hard-clusterings of Y will optimize the squared-dIB functional for dif-
ferent values of β, meaning that we can explore the envelope of the dIB curve by optimizing Lβ

sq-dIB
while varying β. Formally, we show that for any given β > 0, the point

〈H(T ), I(Y ;T )〉 =

〈
1

2β
,

1

2β

〉
(18)

on the dIB curve will be a unique maximizer of Lβ

sq-dIB for the corresponding β. Consider the value
of Lβ

sq-dIB for any T satisfying Eq. (18),

Lβ

sq-dIB(T ) =
1

2β
− β

(
1

2β

)2

=
1

2β
− 1

4β
=

1

4β

Now consider the value of of Lβ

sq-dIB for any other T ′ on the dIB curve, which has H(T ′) 6= 1
2β ,

Lβ

sq-dIB(T ′) = I(Y ;T ′)− βH(T ′)2

= I(Y ;T ′)− β

((
H(T ′)− 1

2β

)2

+
H(T ′)

β
− 1

4β2

)
(a)
< (I(Y ;T ′)−H(T ′)) +

1

4β
(b)

≤ 1

4β
= Lβ

sq-dIB(T ) .

Inequality (a) comes from the assumption that H(T ′) 6= 1
2β , thus (H(T ′)− 1/(2β))

2
> 0, while

inequality (b) comes from the bound I(Y ;T ′) ≤ H(T ′). We have shown that Lβ

sq-dIB(T ′) <
Lβ

sq-dIB(T ), meaning that any point on the dIB curve satisfying Eq. (18) for a given β, assuming
it exists, will be the unique maximizer of Lβ

sq-dIB. The situation is diagrammed visually in Fig. A7.

Issue 2: All points on dIB curve have “uninteresting” solutions

The family of bottleneck variables Tα defined in Eq. (5), i.e., the mixture of two “trivial” solutions,
are no longer optimal from the point of view of dIB. However, as mentioned above, any T that is a
hard-clustering of Y achieves the bound of Eq. (15), and is thus on the dIB curve.

However, given a hard-clustering of Y , there is no reason for the clusters to obey any intuitions about
semantic or perceptual similarity between grouped-together classes. To use the ImageNet example
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from Section 5, there is no reason for dIB to prefer a coarse-graining with “natural” groups like
{border collie, golden retriever} and {teapot, coffeepot}, rather than a coarse-graining with groups
like {border collie, teapot} and {golden retriever, coffeepot}, assuming those classes are of the same
size. Distinguishing between such different clusterings requires some similarity or distortion mea-
sure between classes, which is not provided by the standard information theoretic measures.

Issue 3: No trade-off among different neural network layers

In Section 6, we showed that for a neural network with many hidden layers and vanishing probability
of error, the activity of the different layers will lie along the flat part of the standard IB curve, where
there is no strict trade-off between compression I(X;T ) and prediction I(Y ;T ). Note that any
bottleneck variable that lies along the flat part of a standard IB curve will have I(X;T ) ≥ H(Y )
and I(Y ;T ) = H(Y ). Using the standard information-theoretic inequality H(T ) ≥ I(X;T ), the
same bottleneck variable must therefore have H(T ) ≥ H(Y ) and I(Y ;T ) = H(Y ), thus also lying
on the flat part of the dIB curve. This shows that for a neural network with many hidden layers and
vanishing probability of error, the activity of the different layers will also lie along the flat part of
the dIB curve, and not demonstrate any strict trade-off between compression H(T ) and prediction
I(Y ;T ).

17


	Introduction
	Supervised Classification and IB
	The IB curve when Y is a deterministic function of X
	Issue 1: IB Curve cannot be explored using the IB Lagrangian
	Issue 2: All points on IB curve have ``uninteresting'' solutions
	Issue 3: No trade-off among different neural network layers
	A real-world example: MNIST
	Conclusion
	Details of MNIST experiments
	Deterministic Information Bottleneck
	The dIB curve when Y is a deterministic function of X
	The three pathologies


