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ABSTRACT

Different neural network architectures, hyperparameters and training protocols lead
to different performances as a function of time. Human experts routinely inspect
the resulting learning curves to quickly terminate runs with poor hyperparameter
settings and thereby considerably speed up manual hyperparameter optimization.
Exploiting the same information in automatic Bayesian hyperparameter optimiza-
tion requires a probabilistic model of learning curves across hyperparameter set-
tings. Here, we study the use of Bayesian neural networks for this purpose and
improve their performance by a specialized learning curve layer.

1 INTRODUCTION

Deep learning has celebrated many successes, but its performance relies crucially on good hyper-
parameter settings. Bayesian optimization (e.g, Brochu et al. (2010); Snoek et al. (2012); Shahriari
et al. (2016)) is a powerful method for optimizing the hyperparameters of such deep neural networks
(DNNs). However, its traditional treatment of DNN performance as a black box poses fundamental
limitations for large and computationally expensive data sets, for which training a single model
can take weeks. Human experts go beyond this blackbox notion in their manual tuning and exploit
cheaper signals about which hyperparameter settings work well: they estimate overall performance
based on runs using subsets of the data and based on initial short runs to weed out bad parameter
settings; armed with these tricks, human experts can often outperform Bayesian optimization.

Recent extensions of Bayesian optimization and mulit-armed bandits therefore also drop the limiting
blackbox assumption and exploit the performance of short runs Swersky et al. (2014a); Domhan et al.
(2015); Li et al. (2016), performance on small subsets of the data Klein et al. (2016), and performance
on other, related data sets Swersky et al. (2013); Feurer et al. (2015).

While traditional solutions for scalable Bayesian optimization include approximate Gaussian process
models (e.g., Hutter et al.; Swersky et al. (2014a)) and random forests Hutter et al. (2011), a recent
trend is to exploit the flexible model class of neural networks for this purpose Snoek et al. (2015);
Springenberg et al. (2016). In this paper, we study this model class for the prediction of learning
curves. Our contributions in this paper are:

1. We study how well Bayesian neural networks can fit learning curves for various architectures
and hyperparameter settings, and how reliable their uncertainty estimates are.

2. Building on the parametric learning curve models of Domhan et al. (2015), we develop a
specialized neural network architecture with a learning curve layer that improves learning
curve predictions.

3. We compare two different stochastic gradient based Markov Chain Monte Carlo (MCMC)
methods – stochastic gradient Langevin dynamics (SGLD (Welling and Teh, 2011)) and
stochastic gradient Hamiltonian MCMC (SGHMC (Chen et al., 2014)) – for standard
Bayesian neural networks and our specialized architecture and show that SGHMC yields
better uncertainty estimates.

4. We evaluate predictive quality for both completely new learning curves and for extrapolating
partially-observed curves, showing better performance than the parametric function approach
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by Domhan et al. (2015) if learning curves at stages were learning curves have not fully
converged.

Figure 1: Example learning curves of random hyperparameter configurations of 4 different iterative
machine learning methods: convolutional neural network, fully connected neural network, variational
auto-encoder, and logistic regression. Although different configurations can lead to different learning
curves, they usually share some characteristics for a certain algorithm and dataset, but vary across
methods.

2 PROBABILISTIC PREDICTION OF LEARNING CURVE

In this Section, we describe a general framework to model learning curves of iterative machine
learning methods. We first describe the approach by Domhan et al. (2015) which we will dub
LC-Extrapolation from here on. Afterwards, we discuss a more general joint model between time
steps and hyperparameter values that can exploit similarities between hyperparameter configurations
and predict for unobserved learning curves. We also give some insights about the observation noise
of the evaluation of hyperparameter configuration and how we can adapt our model to capture this
noise.

2.1 LEARNING CURVE PREDICTION WITH BASIS FUNCTION

An intuitive model for learning curves proposed by Domhan et al. (2015) uses a set of k different
parametric functions φi(θi, t) ∈ {φ1(θ1, t), ...φk(θk, t)} to extrapolate learning curves (y1, . . . , yn)
from the first n time steps. Each parametric function φi depends on a time step t ∈ [1, T ] and on a
parameter vector θi. The individual functions are combined into a single model by a weighted linear
combination

f̂(t,Θ,w) =

k∑

i=1

wiφi(t,θi) , (1)

where Θ = (θ1, . . . ,θk) denotes the combined vector of all parameters θ1, . . . ,θk, and w =
(w1, . . . , wk) is the concateneted vector of the respective weights of each function. Assuming
observational noise around the true but unknown value f(t|θ,w), i.e. yt ∼ N (f(t|θ,w), σ2),
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Domhan et al. (2015) define a prior for all parameters P (Θ,w, σ2) and use MCMC to obtain S
samples, (Θ1,w1, σ

2
1), . . . , (ΘS ,wS , σ

2
S) from the posterior

P (Θ,w, σ2) ∝ P (y1, . . . , yn|Θ,w, σ2)P (Θ,w, σ2) (2)

using the likelihood

P (y1, . . . , yn|Θ,w, σ2) =

n∏

t=1

N (yt; f̂(t,Θ,w), σ2) . (3)

These samples then yield probabilistic extrapolations of the learning curve for future time steps m,
with mean and variance predictions

ŷm = E[ym|y1, . . . yn] ≈
1

S

S∑

s=1

f̂(m,Θs,ws) , and

var(ŷm) ≈ 1

S

S∑

s=1

(f̂(m,Θs,ws)− ŷm)2 +

S∑

s=1

σ2
s .

(4)

For our experiments, we use the original implementation by Domhan et al. (2015) with one mod-
ification: the original code included a term in the likelihood that enforced the prediction at t = T
to be strictly smaller than the last value of that particular curve. This biases the estimation to never
overestimated the error at the asymptote. We found that in some of our benchmarks, this led to
instabilities, especially with very noisy learning curves. Removing it cured that problem, and we did
not observe any performance degradation on any of the other benchmarks.

The ability to include arbitrary parametric functions make this model very flexible, and Domhan et al.
(2015) used it successfully to terminate evaluations of poorly-performing hyperparameters early for
various different architectures of neural networks (thereby speeding up Bayesian optimization by a
factor of two). However, the model’s major disadvantage is that it does not use previously evaluated
hyperparameters at all and therefore can only make useful predictions after observing a substantial
initial fraction of the learning curve.

2.2 LEARNING CURVE PREDICTION WITH BAYESIAN NEURAL NETWORKS

In practice, similar hyperparameter configurations often lead to similar learning curves, and modelling
this dependence would allow predicting learning curves for new configurations without the need
to observe their initial performance. Swersky et al. (2014a) followed this approach based on an
approximate Gaussian process model. Their Freeze-Thaw method showed promising results for
finding good hyperparameters of iterative machine learning algorithms using learning curve prediction
to allocate most resources for well-performing configurations during the optimization. The method
introduces a special covariance function corresponding to exponentially decaying functions to model
the learning curves. This results in a analytically tractable model, but using different function
accounting for cases where the learning curves do not converge exponentially is not trivial.

Here, we formulate the problem using Bayesian neural networks. We aim to model the validation loss
f(x, t) of a configuration x ∈ X ⊂ Rd at time step t ∈ [1, T ] based on noisy observations y(x, t) ∼
N (f(x, t), σ2). For each configuration x trained for Tx time steps, we obtain Tx data points for our
model; denoting the combined data by D = {(x1, t1, y11)), (x1, t2, y12), . . . , (xn, tT , ynT )} we can
then write the joint probability of the data and the model parameters as

P (D,W ) = P (W )P (σ2)

|D|∏

i=1

N (yi|f̂(xi, ti,W ), σ2) . (5)

It is intractable to compute the posterior weight distribution p(W |D), but we can use MCMC to
sample it, in particular stochastic gradient MCMC methods, such as SGLD (Welling and Teh, 2011)
or SGHMC (Chen et al., 2014). Given M samples W 1, . . . ,WM , we can then obtain the mean and
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variance of the predictive distribution as

µ(ŷ(x, t)|D) = 1

M

M∑

i=1

ŷ(x, t;W i) , and

σ2(ŷ(x, t)|D) = 1

M

M∑

i=1

(
ŷ(x, t;W i)− µ(ŷ(x, t)|D)

)2
(6)

, respectively. This is similar to Eqs. 4 and exactly the model that Springenberg et al. (2016) used for
(blackbox) Bayesian optimization with Bayesian neural networks; the only difference is in the input
to the model: here, there is a data point for every time step of the curve, whereas Springenberg et al.
(2016) only used a single data point per curve (for its final time step).

2.3 HETEROSCEDASTIC NOISE OF HYPERPARAMETER CONFIGURATION

In the model described above we assume homoscedastic noise across hyperparameter configurations.
To evaluate how realistic this assumption is we sampled 40 configurations of a fully connected
network (see Section 3.1 for a more detailed description how the data was generated and Table
2 for the list of hyperparameters) and evaluated each configuration R = 10 times with different
pseudorandom number seeds. Figure 4 (left) shows on the vertical axis the noise σ2(x, t) =
1
R

∑
r=1R(y(x, t)− µ(x, t))2 and on the horizontal axis the rank of each configuration based on

their mean performance µ(x, t) = 1
R

∑R
r=1 y(x, t). Figure 4 (right) shows that the signal to noise

ratio SNR = µ
σ is almost constant across configurations.

Maybe not surprisingly, the noise seems to correlate with the asymptotic performance of a configura-
tion. More interesting is that the noise between different configurations varies on different orders of
magnitudes and is thus heteroscedastic. We can incorporate this observation by making the noise
dependent on the input data to allow to predict different noise levels for different hyperparameters.

2.4 NEW BASIS FUNCTION LAYER FOR LEARNING CURVE PREDICTION WITH BAYESIAN
NEURAL NETWORKS

x1 x2 x3 x4 xd· · ·
hidden layer(s)

ŷ∞ φ1 . . . φk

basis
function
layer

θ1 · · · θkt

w1 · · ·wk

ŷ = ŷ∞ +
∑k

i=0 wiφi σ2

Figure 2: Our neural network architecture to
model learning curves. A common hidden layer
is used to simultaneously model ŷ(x, T ), the
parameters of the basis functions, their respective
weights, and the noise.

We now combine Bayesian neural networks with
the parametric functions to incorporate more
knowledge about learning curves into the net-
work itself. Instead of obtaining the parameters
Θ and w by sampling from the posterior, we use
a Bayesian neural network to learn several map-
pings simultaneously:

1. ŷ∞: X → R, the asymptotic value of the
learning curve

2. Θ: X → RK , the parameters of a para-
metric function model (see Figure 3 for
some example curves from our basis
functions)

3. w: X → Rk, the corresponding weights
for each function in the model

4. σ2: X → R+, the observational noise
for this hyperparameter configuration

With these quantities, we can compute the likeli-
hood in (3) which allows training the network. A
schematic of this is shown in Fig. 2. For training,
we will use the same MCMC methods, namely
SGLD and SGHMC described above.
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Figure 3: Example functions generated with our k = 5 basis functions (formulas for which are given
in Appendix B). For each function, we drew 50 different parameters θi uniformly at random in the
output domain of the hidden layer(s) of our model. This illustrates the type of functions used to
model the learning curves.

Figure 4: On the left we plot the noise estimated of 40 different configurations on the FCNet
benchmark sorted by their mean performance at t = T . The color indicates the time step t, darker
meaning a larger value. On the right we show the signal to noise ratio for the same configurations.

3 EXPERIMENTS

We now empirically evaluate the predictive performance of Bayesian neural networks, with and
without our special learning curve layer. For both networks we used a 3-layer architecture with tanh
activations and 50 units per layer. We also evaluate two different sampling methods for both types
of networks: stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian
MCMC (SGHMC), following the approach of Springenberg et al. (2016) to automatically adapt the
noise estimate and the preconditoning of the gradients.

3.1 DATASETS

For our empirical evaluation we generated the following four datasets of learning curves, in each case
sampling hyperparameter configurations at random from the hyperparameter spaces detailed in Table
2 in the appendix:

• CNN: We sampled 256 configurations of 5 different hyperparameters of a 3-layer convo-
lutional neural network (CNN) and trained each of them for 40 epochs on the CIFAR10
(Krizhevsky, 2009) benchmark.

• FCNet: We sampled 4096 configurations of 10 hyperparameters of a 2-layer feed forward
neural network (FCNet) on MNIST (LeCun et al., 2001), with batch normalization, dropout
and ReLU activation functions, annealing the learning rate over time according to a power
function. We trained the neural network for 100 epochs.

• LR: We sampled 1024 configurations of the 4 hyperparameters of logistic regression (LR)
and also trained it for 100 epochs on MNIST.

• VAE: We sampled 1024 configuration of the 4 hyperparameters of a variational auto-
encoder (VAE) (Kingma and Welling, 2014). We trained the VAE on MNIST, optimizing
the approximation of the lower bound for 300 epochs.
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Figure 5: Qualitative comparison of the different models. The left panel shows learning on the CNN
benchmark. All models observed the validation error of the first 4 epochs of the true learning curve
(black). We plot the mean predictions and a one σ confidence interval around it. On the right, the
posterior distributions over the value at 40 epochs is plotted.

3.2 PREDICTING ASYMPTOTIC VALUES OF PARTIALLY OBSERVED CURVES

We first study the problem of predicting the asymptotic values of partially-observed learning curves
tackled by Domhan et al. (2015). The method by Domhan et al. (2015) (which we dub LC-
Extrapolation) works on one individual learning curve at a time and does not allow to model
performance across hyperparameter configurations. Thus, we trained it separately on single partial
learning curves. Our Bayesian neural network models, on the other hand, can use training data from
different hyperparameter configurations. Here, for a simple comparison, we used training data with
the same number of epochs for every partial learning curve.1

Figure 5 (left) visualizes the extrapolation task, showing a learning curve from the CNN dataset
and the prediction of the various models trained only using the first 12 of 40 epochs of the learning
curve(s). Figure 5 (right) shows the corresponding predictive distributions obtained with all models.

For a more quantitative evaluation we used all models to predict the asymptotic value of all learning
curves, evaluating predictions based on observing between 10% and 90% of the learning curves.
Figure 6 shows the mean squared error between true and predicted asymptotic value as a function of
how much of the learning curves has been observed. We notice several patterns. Firstly, throughout,
our specialized network architecture performed better than the standard Bayesian neural networks.
Secondly, throughout, SGHMC outperformed SGLD. Finally, comparing LC-Extrapolation and the
Bayesian neural network (BNN) approach, we notice that BNNs work better when only short parts
of the learning curve have been observed, but that LC-Extrapolation in some cases works better for
almost completely-observed learning curves. Specifically, this is the case for the datasets FCNet
and VAE, for which most learning curves had already converged after about a third of the maximum
number of epochs (compare Figure 1). In those cases, LC-Extrapolation can basically just predict
the last observed performance value, which yields very strong performance. Our BNN approach, on
the other hand, was trained on many configurations and needs to generalize across these, yielding
somewhat worse performance for this (arguably easy) task.2

3.3 PREDICTING UNOBSERVED LEARNING CURVES

As mentioned before, training a joint model across hyperparameters and time steps allows us to make
predictions for completely unobserved learning curves of new configurations. To estimate how well
Bayesian neural networks perform in this task, we used the datasets from Section 3.1 and split all of
them into 16 folds, allowing us to perform cross-validation of the predictive performance. For each

1We note that when used inside Bayesian optimization, we would have access to a mix of fully-converged and
partially-converged learning curves as training data, and could therefore expect better extrapolation performance.

2In the future, we aim to improve our BNN architecture for this case of partially-observed learning curves by
also giving the network access to the partial learning curve it should extrapolate.
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Figure 6: Assessment of the predictive quality based on partially observed learning curves. The
panels on the left show the mean squared error of the prediction after the final epoch (y-axis) after
observing a fraction of all learning curves (x-axis).

7



Under review as a conference paper at ICLR 2017

Figure 7: On the horizontal axis we plot the true value and on the vertical axis the predicted values.
Each point is colored by its log-likelihood (the brighter the higher). Our learning curve BNN trained
with SGHMC leads to the best mean predictions and assigns the highest likelihood to the test points.

Method CNN FCNet LR VAE
MSE ·102 ALL MSE·102 ALL MSE·102 ALL MSE ·104 ALL

SGLD 1.8± 0.9 0.60± 0.25 4.5± 0.6 0.13± 0.05 1.1± 0.3 0.77± 0.08 4.7± 1.7 2.16± 0.07
SGLD-LC 1.4± 0.9 1.09± 0.22 3.3± 0.7 0.54± 0.06 1.3± 0.7 0.94± 0.09 3.1± 1.1 1.55± 0.01
SGHMC 0.8± 0.6 0.96± 0.15 1.9± 0.3 0.50± 0.04 0.5± 0.2 1.08± 0.05 3.6± 1.5 2.34± 0.07
SGHMC-LC 0.7± 0.6 1.15± 0.34 2.0± 0.3 0.80± 0.05 0.5± 0.2 1.17± 0.08 1.9± 1.1 1.39± 0.65

Table 1: In each column we report the mean squared error (MSE) and the average log-likelihood
(ALL) of the 16 fold CV learning curve prediction for a neural network without learning curve
prediction layer (SGLD and SGHMC) and with our new layer (SGLD-LC and SGHMC-LC).

fold we trained all models on the full learning curves in the training set and let them predict for the
held-out learning curves.

Table 1 shows the mean squared error and the average log-likelihood (both computed for all points
in each learning curve) across the 16 folds. We make two observations: firstly, both neural network
architectures lead to a reasonable mean squared error and average log-likelihood, for both SGLD and
SGHMC. Except on the VAE dataset our learning curve layer seems to improve mean squared error
and average log likelihood. Secondly, SGHMC performed better than SGLD, with the latter resulting
in predictions with too small variances. Figure 7 visualizes the results for our CNN dataset in more
detail, showing that true and predicted errors correlate quite closely.

4 CONCLUSION

We studied Bayesian neural networks for modelling the learning curves of iterative machine learning
methods, such as stochastic gradient descent for convolutional neural networks. Based on the
parametric learning curve models of Domhan et al. (2015), we also developed a specialized neural
network architecture with a learning curve layer that improves learning curve predictions. In future
work, we aim to study recurrent neural networks for predicting learning curves and will extend
Bayesian optimization methods with Bayesian neural networks Springenberg et al. (2016) based on
our learning curve models.
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A EXPERIMENTAL SETUP – DETAILS

Name Range log scale

CNN

batch size [32, 512] -
number of units layer 1 [4, 10] X
number of units layer 2 [4, 10] X
number of units layer 3 [4, 10] X
learning rate [10−6, 10−0] X

FCNet

inital learning rate [10−6, 100] X
L2 regularization [10−8, 10−1] X
batch size [32, 512] -
γ [−3,−1] -
κ [0, 1] -
momentum [0.3, 0.999] -
number units 1 [5, 12] X
number units 2 [5, 12] X
dropout rate layer 1 [0.0, 0.99] -
dropout rate layer 2 [0.0, 0.99] -

LR

learning rate [10−6, 100] X
L2 [0.0, 1.0] X
batch size [20, 2000] -
dropout rate on inputs [0.0, 0.75] -

VAE

L [1, 3] -
number of hidden units [32, 2048] -
batch size [16, 512] -
z dimension [2, 200] -

Table 2: Hyperparameter configuration space of the four different iterative methods. For the FCNet
we decayed the learning rate by a αdecay = (1 + γ ∗ t)−κ and also sampled different values for γ
and κ.

B DESCRIPTION OF THE BASIS FUNCTIONS

To reduce complexity, we just used a subset of basis function from Domhan et al. (2015) which we
found to be sufficient for learning curve prediction. We slightly changed these function such that their
parameters are between [0, 1].

Name Formula
vapor pressure θ(t, a, b, c) = exp(−a− b/10− c/10 log(t))− exp(−a− b/10)

pow θ(t, a, b) = a(tb − 1)
log power θ(t, a, b, c) = 2a 1

1+exp(−cb/10) − 1
1+( t

exp(b/10)
)c

exponential θ(t, a, b) = b(− exp(−10at) + exp(−10a))
hill-3 θ(t, a, b, c) = a( 1

(c/t)b+1
− 1

cb+1
)

Table 3: The formulas of our 5 basis functions.
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