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ABSTRACT

While great strides have been made in using deep learning algorithms to solve
supervised learning tasks, the problem of unsupervised learning — leveraging un-
labeled examples to learn about the structure of a domain — remains a difficult
unsolved challenge. Here, we explore prediction of future frames in a video se-
quence as an unsupervised learning rule for learning about the structure of the
visual world. We describe a predictive neural network (“PredNet”) architecture
that is inspired by the concept of “predictive coding” from the neuroscience lit-
erature. These networks learn to predict future frames in a video sequence, with
each layer in the network making local predictions and only forwarding deviations
from those predictions to subsequent network layers. We show that these networks
are able to robustly learn to predict the movement of synthetic (rendered) objects,
and that in doing so, the networks learn internal representations that are useful
for decoding latent object parameters (e.g. pose) that support object recognition
with fewer training views. We also show that these networks can scale to com-
plex natural image streams (car-mounted camera videos), capturing key aspects
of both egocentric movement and the movement of objects in the visual scene.
Furthermore, the representation learned in this setting is useful for estimating the
steering angle. These results suggest that prediction represents a powerful frame-
work for unsupervised learning, allowing for implicit learning of object and scene
structure.

1 INTRODUCTION

Many of the most successful current deep learning architectures for vision rely on supervised learn-
ing from large sets of labeled training images. While the performance of these networks is un-
doubtedly impressive, reliance on such large numbers of training examples limits the utility of deep
learning in many domains where such datasets are not available. Furthermore, the need for large
numbers of labeled examples stands at odds with human visual learning, where a few or one view
is often all that is needed to enable robust recognition of that object across a wide range of different
views, lightings and contexts. The development of a representation that facilitates such abilities,
especially in an unsupervised way, is a largely unsolved problem.

In addition, while computer vision models are typically trained using static images, in the real world,
visual objects are rarely experienced as disjoint snapshots. Instead, the visual world is alive with
movement, driven both by self-motion of the viewer and the movement of objects within the scene.
Many have suggested that temporal experience with objects as they move and undergo transforma-
tions can serve as an important signal for learning about the structure of objects (Földiák, 1991;
Wiskott & Sejnowski, 2002; George & Hawkins, 2005; Agrawal et al., 2015; Goroshin et al., 2015a;
Lotter et al., 2015; Mathieu et al., 2015; Mohabi et al., 2009; Palm, 2012; Ranzato et al., 2014; Sri-
vastava et al., 2015; Wang & Gupta, 2015; O’Reilly et al., 2014; Softky, 1996; Whitney et al., 2016).
For instance, Wiskott and Sejnowski proposed “slow feature analysis” as a framework for exploiting
temporal structure in video streams (Wiskott & Sejnowski, 2002). Their approach attempts to build

Code and video examples can be found at: https://coxlab.github.io/prednet/

1

https://coxlab.github.io/prednet/


Under review as a conference paper at ICLR 2017

feature representations that extract slowly-varying parameters, such as object identity, from param-
eters that produce fast changes in the image, such as movement of the object. While approaches
that rely on temporal coherence have arguably not yet yielded representations as powerful as those
learned by supervised methods, they nonetheless point to the potential of learning useful represen-
tations from video (Goroshin et al., 2015a; Maltoni & Lomonaco, 2015; Mohabi et al., 2009; Wang
& Gupta, 2015; Sun et al., 2014).

Here, we explore another potential principle for exploiting video for unsupervised learning: predic-
tion of future image frames (Goroshin et al., 2015b; Srivastava et al., 2015; Mathieu et al., 2015;
Palm, 2012; Patraucean et al., 2015; O’Reilly et al., 2014; Softky, 1996; Finn et al., 2016; Von-
drick et al., 2016). A key insight here is that in order to be able to predict how the visual world
will change over time, an agent must have at least some implicit model of the object structure and
the possible transformations objects can undergo. To this end, we have designed a neural network
architecture, which we informally call a “PredNet,” that attempts to continually predict the appear-
ance of future video frames, using a deep, recurrent convolutional network with both bottom-up
and top-down connections. Our work here builds on previous work in next-frame video prediction
(Ranzato et al., 2014; Srivastava et al., 2015; Mathieu et al., 2015; Lotter et al., 2015; Michalski
et al., 2014; Finn et al., 2016; Xue et al., 2016; Vondrick et al., 2016; Oh et al., 2015), but we take
particular inspiration from the concept of “predictive coding” from the neuroscience literature (Rao
& Ballard, 1999; Friston, 2005; Egner et al., 2010; Bastos et al., 2012; Chalasani & Principe, 2013;
Summerfield et al., 2006; Spratling, 2012; Kanai et al., 2015; O’Reilly et al., 2014; Clark, 2013; Rao
& Sejnowski, 2000; Lee & Mumford, 2003). Predictive coding posits that the brain is continually
making predictions of incoming sensory stimuli (Rao & Ballard, 1999; Friston, 2005; George &
Hawkins, 2005). Top-down (and perhaps lateral) connections convey these predictions, which are
compared against actual observations to generate an error signal. The error signal is then propagated
back up the hierarchy, eventually leading to an update of predictions.

We demonstrate the effectiveness of our model for both synthetic sequences, where we have access
to the underlying generative model and can investigate what the model learns, as well as natural
videos. Consistent with the idea that prediction requires knowledge of object structure, we find that
these networks successfully learn internal representations that are well-suited to subsequent recogni-
tion and decoding of latent object parameters (e.g. identity, view, rotation speed, etc.). We also find
that our architecture can scale effectively to natural image sequences, by training the architecture
using car-mounted camera videos from the KITTI dataset (Geiger et al., 2013). The network is able
to successfully learn to predict both the movement of the camera and the movement of objects in
the camera’s view. Again supporting the notion of prediction as an unsupervised learning rule, the
model’s learned representation in this setting supports decoding of the current steering angle, which
we demonstrate on a dataset released by Comma.ai (Biasini et al., 2016; Santana & Hotz, 2016).

2 THE PREDNET MODEL

The PredNet architecture is diagrammed in Figure 1. The network is made up a series of repeating
stacked modules that attempt to make local predictions of the input to the module, which is then
subtracted from the actual input and passed along to the next layer. Briefly, each module of the
network consists of four basic parts: an input convolutional layer (Al), a recurrent representation
layer (Rl), a prediction layer (Âl), and an error representation (El). The representation layer, Rl, is
a recurrent convolutional network that generates a prediction, Âl, of what the layer input, Al, will
be on the next frame. The network takes the difference between Al and Âl and outputs an error
representation, El, which is split into separate rectified positive and negative error populations. The
error, El, is then passed forward through a convolutional layer to become the input to the next layer
(Al+1). The recurrent prediction layerRl receives a copy of the error signalEl, along with top-down
input from the representation layer of the next level of the network (Rl+1). The organization of the
network is such that on the first time step of operation, the “right” side of the network (Al’s andEl’s)
is equivalent to a standard deep convolutional network. Meanwhile, the “left” side of the network
(the Rl’s) is equivalent to a generative deconvolutional network with local recurrence at each stage.
The architecture described here is inspired by that originally proposed by (Rao & Ballard, 1999), but
is formulated in a modern deep learning framework and trained end-to-end using gradient descent,
with a loss function implicitly embedded in the network as the firing rates of the error neurons.
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Figure 1: Predictive Coding Network (PredNet). Left: Illustration of information flow within two
layers. Each layer consists of representation neurons (Rl), which output a layer-specific prediction at
each time step (Âl), which is compared against a target (Al) (Bengio, 2014) to produce an error term
(El), which is then propagated laterally and vertically in the network. Right: Module operations for
case of video sequences.

While the architecture is general with respect to the kinds of data it models, here we focus on image
sequence (video) data. Consider a sequence of images, xt. The target for the lowest layer is set
to the the actual sequence itself, i.e. At0 = xt ∀t. The targets for higher layers, Atl for l > 0, are
computed by a convolution over the error units from the layer below, Etl−1, followed by rectified
linear unit (ReLU) activation and max-pooling. For the representation neurons, we specifically
use convolutional LSTM units (Hochreiter & Schmidhuber, 1997; Shi et al., 2015). In our setting,
the Rtl hidden state is updated according to Rt−1

l , Et−1
l , as well as Rtl+1, which is first spatially

upsampled (nearest-neighbor), due to the pooling present in the feedforward path. The predictions,
Âtl are made through a convolution of the Rtl stack followed by a ReLU non-linearity. For the
lowest layer, Âtl is also passed through a saturating non-linearity set at the maximum pixel value:
SatLU(x; pmax) := min(pmax, x). Finally, the error response, Etl , is calculated from the difference
between Âtl and Atl and is split into ReLU-activated positive and negative prediction errors, which
are concatenated along the feature dimension. As discussed in (Rao & Ballard, 1999), although not
explicit in their model, the separate error populations are analogous to the existence of on-center,
off-surround and off-center, on-surround neurons early in the visual system.

The full set of update rules are listed in Equations (1) to (4). The model is trained to minimize the
(weighted) sum of the activity of the error units. With error units consisting of subtraction followed
by ReLU activation, this is equivalent to an L1 error. Although not explored here, other error unit
implementations, potentially even probabilistic or adversarial (Goodfellow et al., 2014), could also
be used.

Atl =

{
xt if l = 0

MAXPOOL(RELU(CONV(Etl−1))) l > 0
(1)

Âtl = RELU(CONV(Rtl)) (2)

Etl = [RELU(Atl − Âtl); RELU(Âtl −Atl)] (3)

Rtl = CONVLSTM(Et−1
l , Rt−1

l ,UPSAMPLE(Rtl+1)) (4)

The order in which each unit in the model is updated must also be specified, and our implementa-
tion is described in Algorithm 1. Updating of states occurs through two passes: a top-down pass
where the Rtl states are computed and then a forward pass to calculate the predictions, errors, and
higher level targets. A last detail of note is that Rl and El are initialized to zero, which, due to the
convolutional nature of the network, means that the initial prediction is spatially uniform.
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Algorithm 1 Calculation of PredNet states
Require: xt

1: At0 ← xt
2: E0

l , R
0
l ← 0

3: for t = 1 to T do
4: for l = L to 0 do . Update Rtl states
5: if l = L then
6: RtL = CONVLSTM(Et−1

L , Rt−1
L )

7: else
8: Rtl = CONVLSTM(Et−1

l , Rt−1
l ,UPSAMPLE(Rtl+1))

9: for l = 0 to L do . Update Âtl , A
t
l , E

t
l states

10: if l = 0 then
11: Ât0 = SATLU(RELU(CONV(Rt0)))
12: else
13: Âtl = RELU(CONV(Rtl ))
14: Etl = [RELU(Atl − Âtl); RELU(Âtl −Alt)]
15: if l < L then
16: Atl+1 = MAXPOOL(CONV(Elt))

3 EXPERIMENTS

3.1 RENDERED IMAGE SEQUENCES

To gain an understanding of the representations learned in the proposed framework, we first trained
PredNets using synthetic images, for which we have access to the underlying generative stimulus
model and all latent parameters. We created sequences of rendered faces rotating with two degrees
of freedom, along the “pan” (out-of-plane) and “roll” (in-plane) axes. The faces started at a random
orientation and rotated at a random constant velocity for a total of 10 frames. A different face was
sampled for each sequence. Images were 64x64 pixels in size and grayscale, with values normalized
between 0 and 1. We used 16K sequences for training and 800 for both validation and testing.

Actual

Predicted

time →

Actual

Predicted

Actual

Predicted

Figure 2: PredNet predictions for sequences of rendered faces rotating with two degrees of freedom.
Faces shown were not seen during training.
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Predictions generated by a PredNet model are shown in Figure 2. The model was trained to predict
one time step ahead and, as the goal was prediction itself, the loss was taken as the sum of the firing
rates of the error neurons in the lowest layer at time steps 2-10. A random hyperparameter search
was performed over four and five layer models with the top model, the model shown, chosen with
respect to performance on the validation set. This model consists of 5 layers with 3x3 filter sizes for
all convolutions, max-pooling of stride 2, and the number of channels per layer, for both Al and Rl
units, of (1, 32, 64, 128, 256). Model weights were optimized using the Adam algorithm (Kingma
& Ba, 2014).

As illustrated in Figure 2, the PredNet model is able to accumulate information over time to make
accurate predictions of future frames. Since the representation neurons are initialized to zero, the
prediction at the first time step is uniform. On the second time step, with no motion information
yet, the prediction is a blurry reconstruction of the first time step. After further iterations, the model
adapts to the underlying dynamics to generate predictions that closely match the incoming frame.

Quantitative evaluation of generative models is a difficult, unsolved problem (Theis et al., 2016), but
here we report prediction error in terms of mean-squared error (MSE) and the Structural Similarity
Index Measure (SSIM) (Wang et al., 2004). SSIM is designed to be more correlated with perceptual
judgments, and ranges from −1 and 1, with a larger score indicating greater similarity. We compare
the PredNet to the trivial solution of copying the last frame, as well as a control model that shares
the overall architecture and training scheme of the PredNet, but that sends forward the layer-wise
activations (Al) rather than the errors (El). This model thus takes the form of a more traditional
encoder-decoder pair, with a CNN encoder that has lateral skip connections to a convolutional LSTM
decoder. The performance of all models on the rotating faces dataset is summarized in Table 1,
where the scores were calculated as an average over all predictions after the first frame. The PredNet
outperformed the baselines on both measures.

Table 1: Evaluation of next-frame predictions
on Rotating Faces Dataset.

MSE SSIM

PredNet 0.0152 0.937
CNN-LSTM Enc.-Dec. 0.0180 0.907
Copy Last Frame 0.125 0.631

Synthetic sequences were chosen as the initial
training set in order to better understand what is
learned in different layers of the model, specif-
ically with respect to the underlying generative
model (Kulkarni et al., 2015). The rotating faces
were generated using the FaceGen software pack-
age (Singular Inversions, Inc.), which internally
generates 3D face meshes by a principal compo-
nent analysis in “face space”, derived from a cor-
pus of 3D face scans. Thus, the latent parameters
of the image sequences used here consist of the initial pan and roll angles, the pan and roll velocities,
and the principal component (PC) values, which control the “identity” of the face. To understand
the information contained in the model, we decoded the latent parameters from the representation
neurons (Rl) in each layer, using a ridge regression. The Rl states were taken at the earliest possible
informative time steps, which, in the our notation, are the second and third steps, respectively, for
the static and dynamic parameters. The regression was trained using 4K sequences with 500 for
validation and 1K for testing. For a baseline comparison of the information implicitly embedded
in the network architecture, we compare to the decoding accuracies of an untrained network with
random initial weights. Note that in this randomly initialized case, we still expect above-chance de-
coding performance, given past theoretical and empirical work with random networks (Pinto et al.,
2009; Jarrett et al., 2009; Saxe et al., 2010).

Latent variable decoding accuracies of the pan and roll velocities, pan initial angle, and first PC are
shown in the left panel of Figure 3. Generally, the accuracies increase as the layer depth increases,
and the model appears to learn a representation of rotation speeds particularly well. For instance,
the pan rotation speed (αpan) could not be decoded from the initial weights, but the trained model
had a r2 of over 0.85 in both of the last two layers.

Beyond predicting pixels, the goal is to learn a useful representation that generalizes well to other
tasks. We thus tested the model in an orthogonal task: face classification from single, static images.
We created a dataset of 25 previously unseen faces at 7 pan angles, equally spaced between [−π2 ,

π
2 ],

and 8 roll angles, equally spaced between [0, 2π). There were therefore 7·8 = 56 orientations, which
were tested in a cross-validated fashion. A linear SVM to decode face identity was fit on a model’s
representation of a random subset of orientations and then tested on the remaining angles. For each
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Figure 3: Information contained in PredNet representation for rotating faces sequences. Left: De-
coding of latent variables using a ridge regression (αpan: pan (out-of-frame) angular velocity, θpan:
pan angle, PC-1: first principal component of face, αroll: roll (in-frame) angular velocity). Right:
Orientation-invariant classification of static faces.

size of the SVM training set, ranging from 1-40 orientations per face, 50 different random splits
were generated, with results averaged over the splits.

For the static face classification task, we compare the PredNet to a standard autoencoder and a vari-
ant of the Ladder Network (Valpola, 2015; Rasmus et al., 2015). Both models were constructed
to have the same number of layers and channel sizes as the PredNet, as well as a similar alternat-
ing convolution/max-pooling, then upsampling/convolution scheme. As both networks are autoen-
coders, they were trained with a reconstruction loss, with a dataset consisting of all of the individual
frames from the sequences used to train the PredNet. For the Ladder Network, which is a denoising
autoencoder with lateral skip connections, one must also choose a noise parameter, as well as the
relative weights of each layer in the total cost. We tested noise levels ranging from 0 and 0.5 in
increments of 0.1, with a loss that was either evenly distributed across layers or solely concentrated
at the pixel layer. Shown is the model that performed best for classification, which consisted of
0.4 noise and only pixel weighting. Lastly, as in our architecture, the Ladder Network has lateral
and top-down streams that are combined by a combinator function. Inspired by (Pezeshki et al.,
2015), where a learnable MLP improved results, and to be consistent in comparing to the PredNet,
we used a purely convolutional combinator. Given the distributed representation in both networks,
we decoded from a concatenation of the feature representations at all layers, except the pixel layer,
and trace-normalized by the number of units in each layer. For the PredNet, the representation units
were used and features were extracted after processing one input frame.

Face classification accuracies using the representations learned by a PredNet, standard autoencoder,
and Ladder Network are shown in the right panel of Figure 3. The PredNet compares favorably to
the other models at all levels of the training set, suggesting it learns a representation that is relatively
tolerant to object transformations. Thus, predictive training with the PredNet model can be a viable
alternative to other models trained with a more traditional reconstructive or denoising loss.

3.2 NATURAL IMAGE SEQUENCES

We next sought to test the PredNet architecture on complex, real-world sequences. As a testbed, we
chose car-mounted camera videos, since these videos span across a wide range of settings and are
characterized by rich temporal dynamics, including both self-motion of the vehicle and the motion
of other objects in the scene (Agrawal et al., 2015). Models were trained using the raw videos from
the KITTI dataset (Geiger et al., 2013), which was captured by a roof-mounted camera on a car
driving around an urban environment in Germany. Sequences of 10 frames were sampled from the
“City”, “Residential”, and “Road” categories, with 57 recording sessions used for training and 4
used for validation. Frames were center-cropped and downsampled to 128x160 pixels. In total, the
training set consisted of roughly 41K frames.

6



Under review as a conference paper at ICLR 2017

A random hyperparameter search, with model selection based on the validation set, resulted in a 4
layer model with 3x3 convolutions and layer channel sizes of (3, 48, 96, 192). Models were again
trained with Adam (Kingma & Ba, 2014) using a loss computed only on the activity of the lowest
error layer. Adam parameters were initially set to their default values (α = 0.001, β1 = 0.9, β2 =
0.999) with the learning rate, α, decreasing by a factor of 10 halfway through training. To assess that
the network had indeed learned a robust representation, we tested on the Caltech Pedestrian dataset
(Dollár et al., 2009), which consists of videos from a dashboard-mounted camera on a vehicle driving
around Los Angeles. Testing sequences were made to match the frame rate of the KITTI dataset and
again cropped to 128x160 pixels. Quantitative evaluation was performed on the entire Caltech test
partition, split into sequences of 10 frames.
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Figure 4: PredNet predictions for car-cam videos. The first rows contain ground truth and the second
rows contain predictions. The sequence below the red line was temporally scrambled. The model
was trained on the KITTI dataset and sequences shown are from the Caltech Pedestrian dataset.
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Sample PredNet predictions for the Caltech Pedestrian dataset are shown in Figure 4, and example
videos can be found at https://coxlab.github.io/prednet/. The model is able to make
fairly accurate predictions in a wide range of scenarios. In the top sequence of Fig. 4, a car is
passing in the opposite direction, and the model, while not perfect, is able to predict its trajectory,
as well as fill in the ground it leaves behind. Similarly in Sequence 3, the model is able to predict
the motion of a vehicle completing a left turn. Sequences 2 and 5 illustrate that the PredNet can
judge its own movement, as it predicts the appearance of shadows and a stationary vehicle as they
approach. The model makes reasonable predictions even in difficult scenarios, such as when the
camera-mounted vehicle is turning. In Sequence 4, the model predicts the position of a tree, as
the vehicle turns onto a road. The turning sequences also further illustrate the model’s ability to
“fill-in”, as it is able to extrapolate sky and tree textures as unseen regions come into view. As an
additional control, we show a sequence at the bottom of Fig. 4, where the input has been temporally
scrambled. In this case, the model generates blurry frames, which mostly just resemble the previous
frame. Finally, although the PredNet shown here was trained to predict one frame ahead, it is also
possible to predict multiple frames into the future, by feeding back predictions into the inputs and
recursively iterating. We explore this form of extrapolation in the Appendix 5.2.

Table 2: Evaluation of Next-Frame Predictions on
CalTech Pedestrian Dataset.

MSE SSIM

PredNet 3.13 × 10−3 0.884
CNN-LSTM Enc.-Dec. 3.67× 10−3 0.865
Copy Last Frame 7.95× 10−3 0.762

Quantitatively, the PredNet again outper-
formed the CNN-LSTM Encoder-Decoder.
To ensure that the difference in performance
was not simply because of the choice of hy-
perparameters, we trained models with four
other sets of hyperparameters, which were
sampled from the initial random search over
the number of layers, filter sizes, and num-
ber of filters per layer. For each of the four
additional sets, the PredNet had the best
performance, with an average error reduction of 14.7% and 14.9% for MSE and SSIM, respec-
tively, compared to the CNN-LSTM Encoder-Decoder. More details, as well as a more thorough
ablation study investigating models on the continuum between the PredNet and the CNN-LSTM
Encoder-Decoder can be found in the Appendix 5.1. Briefly, the elementwise subtraction operation
in the PredNet seems to be beneficial, and the nonlinearity of positive/negative splitting also adds
modest improvements.

To test the usefulness of the representations learned by the PredNet in the car-cam setting, we used
the internal representation in the PredNet to estimate the car’s steering angle (Bojarski et al., 2016;
Biasini et al., 2016). We used a dataset released by Comma.ai (Biasini et al., 2016) consisting of
11 videos totaling about 7 hours of mostly highway driving. Given the relatively small number of
clips compared to the average duration of each clip, we used 5% of each video for validation and
testing, chosen as a random continuous chunk, and discarded the 10 frames before and after the
chosen segments from the training set. Since the Comma.ai data has a different aspect ratio and
resolution than the KITTI data, we trained networks from scratch, using frames of size 96x192.
The networks were first trained for next-frame prediction on the training set, using sequences of 10
frames at 10Hz and the same hyperparameters as before. A linear readout was then fit on the learned
representation to decode steering angle. We again concatenate the Rl representation at all layers,
but first spatially average pool lower layers to match the spatial size of the upper layer, in order to
reduce dimensionality. For the readout, we train a fully-connected layer with MSE loss and use the
representation on the 10th time step.

For comparisons against the PredNet on the steering angle task, we again train a CNN-LSTM
Encoder-Decoder, as well as an autoencoder. The CNN-LSTM Encoder-Decoder was trained in
the same fashion as the PredNet. The autoencoder was trained on single frame reconstruction with
appropriately matching hyperparameters. Fully-connected readouts were fit on each models’ repre-
sentation. We also compare the PredNet to two end-to-end trained supervised models. For the first
model, we use the default model in the posted Comma.ai code (Biasini et al., 2016), which is a five
layer CNN. For the second model, we use a ResNet50 (He et al., 2015) trained from scratch with
default parameters (except using the Adam optimizer (Kingma & Ba, 2014), which was used with
all models).

Steering angle estimation results are shown in Figure 5. For the models whose representation was
trained in an unsupervised fashion, we train the fully-connected readout using different numbers of
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labeled training examples, ranging from 1K to 25K, with results averaged over 10 random training
splits. For the supervised models, we train using every frame in the training set, totaling ~396K
examples. For all models, the final weights were chosen at the minimum validation error during
training. As shown in Figure 5, the PredNet had the best performance among all tested models.
With 25K labeled training examples, the readout fit on the PredNet representation had a MSE (in
degrees2) of 2.14, compared to 4.18 for the Comma.ai model and 4.08 for the ResNet50. Although
the Comma.ai model was likely designed to be trained with more data (and probably not a final
production architecture) and the ResNet would certainly benefit from more labeled examples, these
results suggest that a representation learned through prediction, and particularly with the PredNet
model, is useful for other tasks, such as steering angle estimation.

Figure 5: Steering angle estimation accuracy on the Comma.ai dataset (Biasini et al., 2016). Left:
Example steering angle curve with model estimations for a segment in the test set. Blue: Decoding
using fully-connected readout on PredNet representation trained with 25K labeled training exam-
ples. PredNet representation was trained for next-frame prediction on Comma.ai training set. Red:
Default Comma.ai CNN model (Biasini et al., 2016) trained with 396K labeled training examples.
Right: Mean-squared error of steering angle estimation of various models.

4 DISCUSSION

Above, we have demonstrated a predictive coding inspired architecture that is able to predict future
frames in both synthetic and natural image sequences. Importantly, we have shown that learning to
predict how an object or scene will move in a future frame confers advantages in decoding latent
parameters (such as viewing angle) that give rise to an object’s appearance, and can improve recog-
nition performance. More generally, we argue that prediction can serve as a powerful unsupervised
learning signal, since accurately predicting future frames requires at least an implicit model of the
objects that make up the scene and how they are allowed to move. Developing a deeper understand-
ing of the nature of the representations learned by the networks, and extending the architecture, by,
for instance, allowing sampling, are important future directions.
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Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. CoRR,
2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, 2015.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Kevin Jarrett, Koray Kavukcuoglu, MarcAurelio Ranzato, and Yann LeCun. What is the best multi-
stage architecture for object recognition? In ICCV. 2009.

Ryota Kanai, Yutaka Komura, Stewart Shipp, and Karl Friston. Cerebral hierarchies : predictive
processing , precision and the pulvinar. Philos Trans R Soc Lond B Biol Sci, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014.

Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. Deep convolutional
inverse graphics network. CoRR, 2015.

10

https://github.com/commaai/research
http://keras.io/


Under review as a conference paper at ICLR 2017

Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. J Opt Soc
Am A Opt Image Sci Vis, 2003.

William Lotter, Gabriel Kreiman, and David Cox. Unsupervised learning of visual structure using
predictive generative networks. CoRR, 2015.

Davide Maltoni and Vincenzo Lomonaco. Semi-supervised tuning from temporal coherence. CoRR,
2015.
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5 APPENDIX

5.1 ADDITIONAL CONTROL MODELS

Table 3 contains results for additional variations of the PredNet and CNN-LSTM Encoder-Decoder
evaluated on the Caltech Pedestrian Dataset after being trained on KITTI. In addition to mean-
squared error (MSE) and the Structural Similarity Index Measure (SSIM), we include calculations
of the Peak Signal-To-Noise Ratio (PSNR). For each model, we evaluate it with the original set of
hyperparameters (controlling the number of layers, filter sizes, and number of filters per layer), as
well as with the four additional sets of hyperparameters that were randomly sampled from the initial
random search (see main text for more details). Below is an explanation of the additional control
models:

• PredNet (no E split): PredNet model except the error responses (El) are simply linear
(Âl −Al) instead of being split into positive and negative rectifications.

• CNN-LSTM Enc.-Dec. (2x Al filts): CNN-LSTM Encoder-Decoder model (Al’s are
passed instead of El’s) except the number of filters in Al is doubled. This controls for
the total number of filters in the model compared to the PredNet, since the PredNet has fil-
ters to produce Âl at each layer, which is integrated into the model’s feedforward response.

• CNN-LSTM Enc.-Dec. (except pass E0): CNN-LSTM Encoder-Decoder model except
the error is passed at the lowest layer. All remaining layers pass the activations Al. With
training loss taken at only the lowest layer, this variation allows us to determine if the
“prediction” subtraction operation in upper layers, which is essentially unconstrained and
learnable, aids in the model’s performance.

• CNN-LSTM Enc.-Dec. (+/- split): CNN-LSTM Encoder-Decoder model except the ac-
tivations Al are split into positive and negative populations before being passed to other
layers in the network. This isolates the effect of the additional nonlinearity introduced by
this procedure.

Table 3: Quantitative evaluation of additional controls for next-frame prediction in CalTech Pedes-
trian Dataset after training on KITTI. First number indicates score with original hyperparameters.
Number in parenthesis indicates score averaged over total of five different hyperparameters.

MSE (x 10−3) PSNR SSIM
PredNet 3.13 (3.33) 25.8 (25.5) 0.884 (0.878)
PredNet (no El split) 3.20 (3.37) 25.6 (25.4) 0.883 (0.878)
CNN-LSTM Enc.-Dec. 3.67 (3.91) 25.0 (24.6) 0.865 (0.856)
CNN-LSTM Enc.-Dec. (2x Al filts) 3.82 (3.97) 24.8 (24.6) 0.857 (0.853)
CNN-LSTM Enc.-Dec. (except pass E0) 3.41 (3.61) 25.4 (25.1) 0.873 (0.866)
CNN-LSTM Enc.-Dec. (+/- split) 3.71 (3.84) 24.9 (24.7) 0.861 (0.857)
Copy Last Frame 7.95 20.0 0.762

Equalizing the number of filters in the CNN-LSTM Encoder-Decoder (2x Al filts) cannot account
for its performance difference with the PredNet, and actually leads to overfitting and a decrease in
performance. Passing the error at the lowest layer (E0) in the CNN-LSTM Enc.-Dec. improves
performance, but still does not match the PredNet, where errors are passed at all layers. Finally,
splitting the activationsAl into positive and negative populations in the CNN-LSTM Enc.-Dec. does
not help, but the PredNet with linear error activation (“no El split”) performs slightly worse than
the original split version. Together, these results suggest that the PredNet’s learnable error passing
operation can lead to improvements in next-frame prediction performance.

5.2 MULTIPLE TIME STEP PREDICTION

While the models presented here were originally trained to predict one frame ahead, they can be
made to predict multiple frames by treating predictions as actual input and recursively iterating.
Examples of this process with is shown in Figure 6. Although the next frame predictions are rea-
sonably accurate, the model naturally breaks down when extrapolating many frames into the future.

13



Under review as a conference paper at ICLR 2017

Actual

Orig.
Model

Fine-
Tuned

Actual

Orig.
Model

Fine-
Tuned

Actual

Orig.
Model

Fine-
Tuned

𝑡 + 1 Predictions Extrapolations

𝑡 + 2 𝑡 + 3 𝑡 + 4 𝑡 + 5last seen frame

Figure 6: Extrapolation sequences generated by feeding PredNet predictions back into model. The
images to the left of the orange line are normal t + 1 predictions, whereas the images on the right
were generated by recursively using the predictions as input. The first row contains the ground truth
sequences. The second row shows the generated frames of the original model, trained to solely
predict one time step ahead. The third row contains the sequences of the original model fine-tuned
to perform the extrapolation task.

This is not surprising since the predictions will unavoidably have different statistics than the natural
images for which the model was trained to handle, and these deviations accumulate (Bengio et al.,
2015). If we additionally train the model to process its own predictions, the model is better able to
extrapolate. The third row for every sequence shows the output of the original PredNet fine-tuned
for extrapolation. Starting from the trained weights, the model was trained with a loss over 15 time
steps, where the actual frame was inputted for the first 10 and then the model’s predictions were
used as input to the network for the last 5. Despite eventual blurriness (which might be expected
to some extent due to uncertainty), the model captures some key structure in its extrapolations after
the tenth time step. For instance, in the first sequence, the model estimates the general shape of an
upcoming shadow, despite minimal information in the last seen frame. In the second sequence, the
model is able to extrapolate the motion of a car moving to the right.
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