
GPT3.int8(): 8-bit Matrix Multiplication
for Transformers at Scale

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models have been widely adopted but require significant GPU1

memory for inference and finetuning. We develop methods for Int8 matrix multi-2

plication for transformer multi-layer perceptron (MLP) and attention projection3

layers, which cut the required memory for inference by half while retaining full4

precision performance. With our method, a 16/32-bit checkpoint can be loaded,5

converted to Int8, and used immediately without performance degradation – no6

post-quantization training is required. The key challenge, which we empirically7

show for the first time, is that existing quantization methods perform poorly at scale8

due to emergent outlier feature dimensions. We find that standard quantization9

techniques for matrix multiplication fail beyond 1.3B parameters. To overcome this10

barrier, we develop vector-wise quantization, which keeps separate normalization11

constants for each inner product in the matrix multiplication. Additionally, we iden-12

tify layer and input invariant feature dimensions in the hidden states, which heavily13

influence attention and disrupt quantization methods starting at 13B parameters.14

To scale to 13B, we develop a new mixed-precision matrix decomposition scheme,15

which allows scaling without performance degradation to at least 13B parameters.16

This result makes large transformers more accessible, for example, by enabling17

inference with GPT-J and T5-11B on a single free cloud GPU, GPT-NeoX-20B on18

a single gaming-grade GPU, and OPT-30B on a single data-center-grade GPU. We19

open source our software.20

Large pretrained language models are widely adopted in NLP (Vaswani et al., 2017; Radford et al.,21

2019; Zhang et al., 2022) but require significant memory for inference and finetuning. To improve22

accessibility, 8-bit quantization methods for transformers have been developed (Chen et al., 2020;23

Lin et al., 2020; Zafrir et al., 2019; Shen et al., 2020). While these methods significantly reduce the24

memory footprint, they can also degrade performance, usually require post-quantization training,25

and have only been studied for small models with less than 350M parameters. Currently, no 8-bit26

quantization methods exist that make multi-billion parameter transformer models more accessible on27

common accelerators such as GPUs and TPUs.28

For such large-scale transformers, the multi-layer perceptron and attention projection layers make up29

more than 95% of weights; nearly the entire model is in these large matrices, which must be multiplied30

during inference. GPUs support Int8 tensor cores, which can accelerate these multiplications while31

halving the memory compared to 16-bit representations. However, these gains can be challenging32

to achieve in practice since Int8 data types provide poor quantization performance for hidden states33

and weights, which are usually normally distributed (Dettmers, 2016). As such, we require new34

high-precision quantization techniques to avoid performance degradation.35

In this paper, we present the first multi-billion-scale Int8 quantization methods for transformers that36

do not incur any performance degradation. Our methods make it possible to load a 13B parameter37

transformer with 16/32-bit weights, convert the multi-layer perceptron and attention projection layers38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

0-1-1

230

-1-1452 -1

2

0

3

-1

0

0

-2

-2

2

X

W

FP16

FP16

12

37

-17

-63

-83

Outliers

Regular values

16-bit Decomposition

(1) Find vector-wise constants: C_w & C_x

(2) Quantize

(3) Int8 Matmul

(1) Decompose outliers

8-bit Vector-wise Quantization

+

Out
FP16

0-1

23

-1

-1

0

2 -1 -1

0

-1

0

-2

2

W

 1

3

2

1 2 C_w

C_x

FP16 FP16

X-

-

X * (127/C_x) = X

W * (127/C_w) = W
FP16 Int8

FP16 Int8

X W = Out
Int8 Int8 Int32

 Out * (C_x C_w)
Int32

FP16127*127
= Out

+

45

12

37

-17

-63

-83

2 0

3 -2
X

W

F16
F16

(2) FP16 Matmul

X W = Out
FP16 FP16 FP16

(4) Dequantize

Figure 1: Schematic of Vector-wise 8-bit matrix multiplication with mixed precision decomposition.
Given 16-bit floating-point inputs Xf16and weights Wf16, the outliers are decomposed first sub-
matrices of outliers with the corresponding weights which are matrix multiplied in a 16-bit. All
other values are matrix multiplied in 8-bit. The 8-bit multiplication is done by finding the row and
column-wise absolute maximum of Cx and Cw. Then matrix multiplication is performed in 8-bit.
Afterwards the Int32 outputs are dequantization by the outer product of the normalization constants
C⊗Cw. Finally, both results are accumulated in 16-bit floating point outputs.

to 8-bit and use the resulting model immediately for inference without any performance degradation.39

We achieve this result by solving two key challenges: the need for higher quantization precision at40

moderate scales and the need to explicitly represent the sparse but systematic outliers that destroy41

quantization when they emerge at scales of 6.7B parameters and beyond.42

We develop the high precision quantization method vector-wise quantization to retain performance43

at moderate scales. Consider two matrices X ∈ Rs×h and W ∈ Rh×o (e.g. within a Transformer).44

Although they are typically stored in 16-bit floating representations, Xf16 and Wf16, we aim to45

convert them to Int8 to save memory on GPUs and to perform fast Int8 matrix multiplication with46

Int32 accumulation Xi8Wi8 = Oi32. To recover the 16-bit floating-point representation for the next47

layer, we convert the Int32 output, Oi32 back to Of16 before we perform the next operation.48

Unlike other quantization techniques that use a single quantization normalization constant for the49

weight matrix Wf16, vector-wise quantization keeps a quantization normalization constant cxf16
50

2

for each row of Xf16 and cwf16
each column of Wf16. Dequantization to 16/32-bit floats is done51

by denormalization through the outer product of these constants vectors Of16 =
Oi32

cXf16
⊗ c

Wf16

52

which can be implemented without additional overhead through operator fusion. In conjuction with53

zeropoint quantization, vector-wise quantization allows near lossless inference of transformer models54

with up to 6.7B parameters.55

To scale beyond 6.7B parameters without performance degradation, it is critical to understand the56

emergence of extreme outliers in the feature dimensions of the hidden states during inference. To this57

end, we provide the first descriptive analysis of emergence at scale as observed in feature space. We58

show that outliers with magnitudes up to 20x larger than the mean maximum feature magnitude first59

emerge in attention projections inputs and then spread to other layers as we scale transformers to60

6B parameters. At 6.7B scale and beyond, these outliers occur in almost all other layers and 75% of61

all sequence dimensions in the same feature dimension across the entire transformer. They are also62

critical for effective attention, as they decrease top-1 attention softmax probability mass by more than63

20% despite only making up about 0.1% of all input features.64

To handle these outliers, we develop mixed-precision matrix decomposition where we perform 16-bit65

matrix multiplication for outlier dimensions and 8-bit matrix multiplication for other dimensions.66

We show that we can use 13B parameter 8-bit transformers without any performance degradation by67

combining mixed-precision matrix decomposition and vector-wise quantization. We open source our68

software.69

1 Background70

1.1 8-bit Data Types and Quantization71

8-bit Transformers at Scale: Where is the memory and compute? Work on 8-bit transformers72

at scale requires a slightly different perspective than previous quantization work that focused on73

convolutional networks (CNNs) or sub-billion parameter transformers. Rather than focusing on74

mobile devices and integer-only accelerators, the main goal of developing 8-bit transformers at scale75

is to make large transformers accessible so that fewer or cheaper accelerators, such as GPUs, are76

required to run them. These goals can take two forms: (1) reduce the memory footprint of such77

models and (2) reduce the runtime of these models on GPUs. In this work, we focus on reducing the78

memory footprint, although we hope our methods will be helpful for creating custom kernels in the79

future that also achieve significant runtime gains.80

For the case of inference, almost the entire memory footprint of inference comes from transformer81

MLP and attention projection layers. For example, for a 13B parameter model, more than 97% of82

parameters come from these layers. These layers also make up most of the compute with MLP83

layers using 40-60%, and attention projections about 25% of runtime, with the rest used by attention84

(Ilharco et al., 2020). For this reason, we focus solely on efficient large matrix multiplication, the85

key computation for the MLP, and attention projection layers. While we do not focus on accelerated86

inference, we provide more details in the Appendix, where we do show preliminary results where87

our method accelerates inference for large models due to the overhead of multiplying huge matrices88

within the models. Future work could focus on achieving such gains for models of all sizes.89

Absolute maximum vs. zeropoint quantization To quantize floating-point inputs into the Int890

range, we need to scale the inputs in the range [−128, 127]. The range [−127, 127] is usually chosen91

for practical purposes instead. The most common way to scale the inputs into this range is to perform92

absolute maximum (absmax) or zeropoint quantization, as defined in the following two paragraphs.93

For symmetric distributions, like the normal distribution, absmax and zeropoint quantization have the94

same quantization precision. However, zeropoint quantization is superior to absmax quantization95

in the case of asymmetric distributions such as tensor outputs from ReLU non-linearities because it96

scales any input distribution to the full [−127, 127] range. The downside of zeropoint quantization97

is that it needs a special instruction that combines 8-bit multiplication with 16-bit addition of the98

zeropoint offset to run efficiently.1 This can make zeropoint quantization slow on devices such as99

CPUs, TPUs, and GPUs that do not support this instruction (Jacob et al., 2017).100

1https://www.felixcloutier.com/x86/pmaddubsw

3

https://www.felixcloutier.com/x86/pmaddubsw

Absmax quantization scales inputs into the range [−127, 127] by dividing by the absolute maximum101

of the entire tensor and multiplying by 127. This is equivalent of the diving by the infinity norm and102

multiplying by 127. As such, for an FP16 input matrix Xf16 ∈ Rs×h Int8 absmax quantization is103

given by:104

Xi8 =

⌊
127 ·Xf16

max
ij

(|Xf16ij |)

⌉
=

⌊
127

∥Xf16∥∞
Xf16

⌉
=

⌊
sxf16

Xf16

⌉
,

where ⌊⌉ indicates rounding to the nearest integer.105

Zeropoint quantization shifts the distribution into the full range [−127, 127] by scaling with the106

normalized dynamic range ndx and then shifting by the zeropoint zpx. With this affine transformation,107

any input tensors will use all bits of the data type, thus reducing the quantization error for asymmetric108

distributions. It is an essential detail that for zeropoint quantization, the zeropoint falls onto an exact109

integer to represent padding constants and other 0-valued entries such as ReLU outputs with full110

precision. Zeropoint quantization is given by the following equations:111

ndxf16
=

2 · 127
max
ij

(Xij
f16)−min

ij
(Xij

f16)
(1)

112

zpxi16
=

⌊
Xf16 ·min

ij
(Xij

f16)
⌉

(2)
113

Xi8 =
⌊
ndxf16

Xf16

⌉
(3)

To use zeropoint quantization in an operation we feed both the tensor Xi8 and the zeropoint zpxi16
114

into a special instruction which adds zpxi16
to each element of Xi8 before performing a 16-bit integer115

operation. For example, to multiply two zeropoint quantized numbers Ai8 and Bi8 along with their116

zeropoints zpai16 and zpbi16 we calculate:117

Ci32 = multiplyi16(Azpai16
, Bzpbi16

) = (Ai8 + zpai16
)(Bi8 + zpbi16) (4)

where unrolling is required if the special instruction multiplyi16 is not available such as on GPUs or118

TPUs:119

Ci32 = Ai8Bi8 +Ai8zpbi16 +Bi8zpai16
+ zpai16

zpbi16 , (5)
where Ai8Bi8 is computed with Int8 precision while the rest is computed in Int16/32 precision. As120

such, zeropoint quantization can be slow if the multiplyi16 instruction is not available. In both cases,121

the outputs are accumulated as a 32-bit integer Ci32. To dequantize Ci32, we divide by the scaling122

constants ndaf16
and ndbf16

.123

1.2 Int8 Matrix Multiplication with 16-bit Float Inputs and Outputs124

Given hidden states Xf16 ∈ Rs×h and weight matrix Wf16 ∈ Rh×o with sequence dimension s,125

hidden dimension h, and output dimension o we perform 8-bit matrix multiplication with 16-bit126

inputs and outputs as follows:127

Xf16Wf16 = Cf16 ≈ 1

cxf16
cwf16

Ci32 = Sf16 ·Ci32

≈ Sf16 ·Ai8Bi8 = Sf16 ·Q(Af16) Q(Bf16),

(6)

Where Q(·) is either absmax or zeropoint quantization and cxf16
and cwf16

are the respective scaling128

constants sx and sw for absmax or ndx ande ndw for zeropoint quantization.129

2 Int8 Matrix Multiplication at Scale130

The main challenge with quantization methods that use a single scaling constant per tensor is that a131

single outlier can reduce the quantization precision of all other values. As such, it is desirable to have132

multiple scaling constants per tensor, such as block-wise constants (Dettmers et al., 2022), so that133

the effect of that outliers is confined to each block. We develop vector-wise quantization to improve134

upon row-wise quantization(Khudia et al., 2021), as described in more detail below.135

4

Furthermore, if we have an outlier in each row of the input matrix or each column in the weight matrix,136

additional quantization techniques are required for high-precision quantization. For this purpose, we137

develop mixed-precision matrix decomposition, where a small number of entries (≈0.1%) can be138

represented in higher precision and computed efficiently. However, most entries are still represented139

in low-precision, thus retaining roughly 50% memory reductions compared to 16-bit representations.140

Both methods, vector-wise quantization and mixed-precision matrix decomposition, are depicted in141

Figure 1.142

2.1 Vector-wise Quantization143

To maximize the number of scaling constants for matrix multiplication, we want to define blocks of144

constants in a way such that we can dequantize the matrix multiplication output by simple scaling145

by a tensor without additional operations to recover the dequantized matrix multiplication output,146

for example, as is required for zeropoint quantization if 16-bit multiplication with 8-bit inputs is147

unavailable.148

One way to achieve this is to view matrix multiplication as a sequence of independent inner products.149

Given the hidden states Xf16 ∈ Rb×h and weight matrix Wf16 ∈ Rh×o, we can assign a different150

scaling constant cxf16
to each row of Xf16 and cw to each column of Wf16. To dequantize, we151

denormalize each inner product result by 1/(cxf16
cwf16

). For the whole matrix multiplication this is152

equivalent to denormalization by the outer product cxf16
⊗ cwf16

, where cx ∈ Rs and cw ∈ Ro. As153

such the full equation for matrix multiplication with row and column constants is given by:154

Cf16 ≈ 1

cxf16 ⊗ cwf16
Ci32 = S ·Ci32 = S ·Ai8Bi8 = S ·Q(Af16) Q(Bf16), (7)

which we term vector-wise quantization for matrix multiplication.155

2.2 Mixed-precision Matrix Decomposition156

In our analysis, we demonstrate that a significant problem for billion-scale 8-bit transformers is that157

they have outliers 20x larger than the average outlier in almost every row (sequence dimension),158

which makes even our best quantization technique – vector-wise quantization – ineffective. At the159

same time, transformer performance degrades significantly even for small errors of these large outliers.160

As such, we require high precision matrix multiplication for these outliers. Luckily, we see that161

these outliers are incredibly sparse in practice, allowing us to develop new matrix decomposition162

techniques.163

We find that given input matrix Xf16 ∈ Rs×h, these outliers occur systematically for almost all164

sequence dimensions s but are limited to specific hidden dimensions h. As such, we propose165

mixed-precision matrix decomposition for matrix multiplication where we separate outlier hidden166

dimensions into the set O = {i|i ∈ Z, 0 ≤ i ≤ h}, which contains all dimensions of h which have167

at least one outlier with a magnitude larger than the threshold α. In our work, we use α = 6.0.168

Using Einstein notation where all indices are superscripts, given the weight matrix Wf16 ∈ Rh×o,169

mixed-precision matrix decomposition for matrix multiplication is defined as follows:170

Cf16 ≈
∑
h∈O

Xh
f16W

h
f16 + Sf16 ·

∑
h̸∈O

Xh
i8W

h
i8 (8)

where Sf16 is the denormalization term for the Int8 quantized inputs and weight matrices Xi8 and171

Wi8. Since |O| ≤ 7 for transformers up to 13B parameters, this decomposition operation only172

consumes about 0.1% additional memory.173

2.3 Experimental Setup174

We measure the robustness of quantization methods as we scale the size of several publicly available175

pretrained language models up to 13B parameters. The key question is not how well a quantization176

method performs for a particular model but the trend of how such a method performs as we scale the177

model size.178

As such, we use dense autoregressive transformers pretrained in fairseq (Ott et al., 2019) ranging179

between 125M and 13B parameters. These transformers have been pretrained on Books (Zhu et al.,180

5

Table 1: C4 validation perplexities of different quantization methods for different transformer sizes
ranging from 125M to 13B parameters. We see that common absmax, absmax row-wise, zeropoint,
as well as vector-wise quantization methods lead to significant performance degradation, particularly
at the 13B mark where 8-bit 13B perplexity is worse than 8-bit 6.7B perplexity. On the other hand,
vector-wise quantization with mixed-precision decomposition is able to recover almost baseline
perplexity for all model sizes. Looking at the trends, we see that as we scale the model size, the
quantization error improves if we use vector-wise quantization in conjunction with mixed-precision
matrix decomposition while all other methods degrade in performance. Zeropoint quantization is no
longer advantageous when used with mixed-precision matrix decomposition.

Parameters 125M 1.3B 2.7B 6.7B 13B
32-bit Float 25.65 15.91 14.43 13.30 12.45

Int8 Absmax 87.76 16.55 15.11 14.59 19.08
Int8 Absmax Row-wise 30.93 17.08 15.24 14.13 16.49
Int8 Zeropoint 56.66 16.24 14.76 13.49 13.94

Int8 Absmax Vector-wise 35.84 16.82 14.98 14.13 16.48
Int8 Zeropoint Vector-wise 25.72 15.94 14.36 13.38 13.47

Int8 Absmax Row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Int8 Absmax Vector-wise + decomposition 25.83 15.93 14.44 13.24 12.45
Int8 Zeropoint Vector-wise + decomposition 25.69 15.92 14.43 13.24 12.45

2015), English Wikipedia, CC-News (Nagel, 2016), OpenWebText (Gokaslan and Cohen, 2019),181

CC-Stories (Trinh and Le, 2018), and English CC100 (Wenzek et al., 2020). For more information182

on how these pretrained models are trained, see Artetxe et al. (2021).183

To evaluate the degradation after Int8 quantization, we evaluate the perplexity of the 8-bit transformer184

on validation data of the C4 corpus (Raffel et al., 2019) which is a subset of the Common Crawl185

corpus.2 We use NVIDIA A40 GPUs for this evaluation.186

3 Main Results187

The main results on the 125M to 13B Int8 models evaluated on the C4 corpus can be seen in188

Table 1. Existing quantization techniques such as absmax, row-wise, and zeropoint quantization see189

considerable performance degradation that grows with scale. Using these methods with the 13B190

parameter model is worse than the 6.7B model. While vector-wise quantization improves the scaling191

trend, 13B performance is still worse than 6.7B. If we add mixed-precision decomposition, we can192

recover the full-precision performance for the larger models. Zeropoint quantization has almost no193

advantage over absmax quantization when used with mixed-precision decomposition. However, since194

zeropoint quantization can be slow on devices that do not support the required instructions, absmax195

quantization has an inference speed advantage at similar predictive performance when used with196

mixed-precision matrix decomposition.197

4 Analysis: Emergent Outliers in Transformers at Scale198

We developed mixed-precision matrix decomposition after gaining insights into how extreme outliers199

emerge in particular feature dimensions in the hidden states of transformers as we scale. These200

insights were critical to developing a simple method with a low computational overhead that preserves201

predictive performance. The data from the following outlier analysis explains the performance202

degradation of previous quantization methods, which we saw empirically in our experiments.203

Quantitative Setup Given a transformer with L layers and hidden state Xl ∈ Rs×h, l = 0...L204

where s is the sequence dimension or sequence length and h the hidden dimension, we define a feature205

to be a particular dimension h in any of the hidden states Xl. Since a transformer has thousands of206

feature dimensions and dozens of layers, and each feature is activated differently for different inputs,207

2https://commoncrawl.org/

6

https://commoncrawl.org/

Table 2: Summary statistics of outliers with a magnitude of at least 6 that occur in at least 20% of
all layers and at least 5% of all sequence dimensions. We can see that the lower the C4 validation
perplexity, the more outliers are present. Outliers are usually one-sided, and their quartiles with
maximum range show that the outlier magnitude is 3-20x larger than the largest magnitude of other
feature dimensions, which usually have a range of [-3.5, 3.5]. With increasing scale, outliers become
more and more common in all layers of the transformer, and they occur in almost all sequence
dimensions. A phase transition occurs at 6.7B parameters when the same outlier occurs in all layers
in the same feature dimension for about 75% of all sequence dimensions (SDim). Despite only
making up about 0.1% of all features, the outliers are essential for large softmax probabilities. The
mean top-1 softmax probability shrinks by about 20% if outliers are removed. Because the outliers
have mostly asymmetric distributions across the sequence dimension s, these outlier dimensions
disrupt symmetric absmax quantization and favor asymmetric zeropoint quantization. This explains
the results in our validation perplexity analysis. These observations appear to be universal as they
occur for models trained in different software frameworks (fairseq, OpenAI, Tensorflow-mesh) and
they occur in different inference frameworks (fairseq, Hugging Face Transformers). These outliers
also appear robust to slight variations of the transformer architecture (rotary embeddings, embedding
norm, residual scaling, different initializations).

Outliers Frequency Top-1 softmax p

Model PPL↓ Params Count 1-sided Layers SDims Quartiles w/ Outlier No Outlier
GPT2 33.5 117M 1 1 25% 6% (-8, -7, -6) 45% 19%
GPT2 26.0 345M 2 1 29% 18% (6, 7, 8) 45% 19%
FSEQ 25.7 125M 2 2 25% 22% (-40, -23, -11) 32% 24%
GPT2 22.6 762M 2 0 31% 16% (-9, -6, 9) 41% 18%
GPT2 21.0 1.5B 2 1 41% 35% (-11, -9, -7) 41% 25%
FSEQ 15.9 1.3B 4 3 64% 47% (-33, -21, -11) 39% 15%
FSEQ 14.4 2.7B 5 5 52% 18% (-25, -16, -9) 45% 13%
GPT-J 13.8 6.0B 6 6 62% 28% (-21, -17, -14) 55% 10%
FSEQ 13.3 6.7B 6 6 100% 75% (-44, -40, -35) 35% 13%
FSEQ 12.5 13B 7 6 100% 73% (-63, -58, -45) 37% 16%

aggregation of all descriptive feature statistics would be incomprehensible. As such, we limit our208

analysis to a subset of these features.209

We limit the number of features by only aggregating the statistics of features that breach certain210

thresholds – this makes these features accessible to analysis. To set these thresholds, we first observe211

rough general patterns.212

The main patterns that we find are as follows: As we increase the scale of our models, we find that213

outliers in the feature dimension h has increasingly large magnitudes, which occur in more layers214

l and in more sequence dimensions s as we scale. On the other hand, outliers do not occur in the215

second MLP layer and are scattered in complex patterns in the attention inputs, which are difficult to216

analyze. As such, we limit our analysis to the hidden input states Xl of the first MLP layer and the217

attention key-query-value and output projection layers.218

From these observations, we set the following thresholds for features: We track dimensions hi, 0 ≤219

i ≤ h, which have at least one outlier with a magnitude of α ≥ 6 and we only collect statistics if220

these outliers occur in the same hidden dimension hi in at least 20% of transformer layers 0...L and221

appear in at least 5% of all sequence dimensions s across all hidden states Xl.222

To make sure that the observed phenomena are not due to bugs in software, we evaluate transformers223

that were trained in three different software frameworks: GPT-2 models use OpenAI software, FSEQ224

models use fairseq(Ott et al., 2019), and GPT-J uses Tensorflow-Mesh (Shazeer et al., 2018). We also225

perform our analysis in two different inference software frameworks: fairseq (Ott et al., 2019) and226

Hugging Face Transformers (Wolf et al., 2019).227

To demonstrate that the outlier features are essential for attention, we remove the outliers before228

feeding the hidden states Xl into the attention projection layers and then compare the largest softmax229

probability for each sequence dimension with the softmax probability if we do not remove the outliers.230

7

Quantitative Results Our quantitative results are summarized in Table 2. We can see that the231

number of hidden state outlier feature dimensions in hi increases from 1 in 125M parameter trans-232

formers to 7 in 13B models – roughly proportional to the C4 validation perplexity. We also see233

that the frequency that the same outlier dimension hi is active in all hidden states across layers Xi
l234

increases from 25% for 125M models to 100% in 6.7B/13B models. This means, the same outlier235

feature dimension hi, say, dimension i = 888 for h = 1024, has large outliers in all hidden states Xi
l236

of the key-query-value, attention output and first MLP projection layers. For all data in C4 validation237

data, 6% of all sequence dimensions s have outliers in the same feature dimension hi for the 125M238

parameter model, which increases to 73-75% of all sequence dimensions for the 6.7B/13B models.239

This means at the 6.7B scale, and beyond, if we have, say, a sequence length of s = 2048 and 10240

transformer blocks, we have roughly 2048× 10× 0.75 = 15360 outliers per sequence for the entire241

model for each of the attention key-query-value projection, first MLP and attention output projection242

layers, so in total L× 15360 = 3× 10× 15360 = 46080 outliers per sequence on average across243

the C4 validation set.244

If the outliers are removed, the mean top-1 softmax probability across all sequences is reduced from245

about 45% to about 15% even though the outlier dimensions hi make up only 0.1% of all input246

feature dimensions h. This indicates that even minor quantization errors of the dimensions hi might247

significantly affect overall model performance.248

Interpretation of Quantization Performance Our analysis shows that these outliers are ubiquitous,249

and one can expect that quantization methods that cannot handle these large magnitude outliers well250

will significantly degrade model performance as they accumulate large errors throughout the network.251

Furthermore, since these outliers occur in each sequence dimension for large models, row-wise and252

vector-wise quantization do not have a significant advantage over absmax quantization since these253

methods have a normalization constant for each sequence si for each hidden state Xl 75% of which254

have outliers in large models.255

From the quartiles, we can also see that most outliers have one-sided asymmetric distributions,256

meaning they do not cross zero and have either solely positive or negative values. This makes257

zeropoint quantization particularly effective for these outliers as zeropoint quantization scales these258

outliers into the full [−127, 127] range. This explains the strong performance in our quantization259

scaling benchmark in Table 1. However, at the 13B scale, even zeropoint quantization fails due to260

accumulated quantization errors.261

If we perform mixed-precision matrix decomposition, the advantage of zeropoint quantization disap-262

pears for large models indicating that the remaining decomposed features are essentially symmetric263

for these models. However, vector-wise quantization still has an advantage over row-wise quantiza-264

tion, indicating that the enhanced quantization precision of the model weights is needed to retain full265

precision predictive performance.266

5 Related work267

We can separate the related work into general low-bitwidth quantization methods, 8-bit methods for268

CNNs, and transformers.269

Low-bitwidth and Convolutional Network Quantization While our work studies quantization270

techniques surrounding the Int8 data type, other common data types are fixed point or floating point271

8-bit data types (FP8). These data types usually have a sign bit and different exponent and fraction272

bit combinations. For example, a common variant of this data type has 5 bits for the exponent and273

2 bits for the fraction (Wang et al., 2018; Sun et al., 2019; Cambier et al., 2020; Mellempudi et al.,274

2019) and uses either no scaling constants or zeropoint scaling. These data types have large errors275

for large magnitude values since they have only 2 bits for the fraction but provide high accuracy for276

small magnitude values.277

(Jin et al., 2022) provides an excellent analysis of when certain fixed point exponent/fraction bit278

widths are optimal for inputs with a particular standard deviation. We believe the insights provided279

by their work are critical for developing robust FP8 transformers.280

Work that uses less than 8-bits for data types is usually for convolutional networks (CNNs) to reduce281

their memory footprint and increase inference speed for mobile devices while minimizing model282

8

degradation. Methods for different bit-widths have been studied: 1-bit methods (Courbariaux and283

Bengio, 2016; Rastegari et al., 2016; Courbariaux et al., 2015), 2 to 3-bit (Zhu et al., 2017; Choi284

et al., 2019), 4-bits (Li et al., 2019), more bits (Courbariaux et al., 2014), or a variable amount of285

bits (Gong et al., 2019). For additional related work, please see the survey of Qin et al. (2020).286

While we believe that lower than 8-bit width with some performance degradation is possible for287

billion-scale transformers, we focus on 8-bit transformers that do not degrade performance and that288

can be accelerated through Int8 tensor cores.289

Quantization of Transformers A prime target for quantization of transformers has been290

BERT(Devlin et al., 2018) and RoBERTa(Liu et al., 2019) models. Versions of 8-bit BERT/RoBERTa291

include Q8BERT(Zafrir et al., 2019), QBERT(Shen et al., 2020), product quantization with quantiza-292

tion noise (Fan et al., 2020), TernaryBERT (Zhang et al., 2020), and BinaryBERT (Bai et al., 2021).293

All these models require quantization-aware training to make the BERT model usable in low-precision,294

while with our methods, the model can be used directly without performance degradation.295

The only other work that we are aware of that quantizes transformers other than BERT is Chen296

et al. (2020) which uses quantization-aware training with zeropoint quantization in the forward pass297

and zeropoint-row-wise quantization in the backward pass. We compare with both zeropoint and298

row-wise quantization in our evaluations and do not require quantization-aware training.299

6 Discussion and Limitations300

We have demonstrated for the first time that multi-billion parameter transformers can be quantized to301

Int8 and used immediately for inference without performance degradation. We achieve this by using302

our insights from analyzing emergent outliers in hidden state feature dimensions at scale to develop303

mixed-precision matrix decomposition to isolate outliers in a separate 16-bit matrix multiplication.304

Furthermore, to recover full precision performance, we develop vector-wise quantization.305

The main limitation of our work is that our analysis is solely on the Int8 data type, and we do not306

study 8-bit floating-point (FP8) data types. Since current GPUs and TPUs do not support this data307

type, we believe this is best left for future work. However, we also believe many insights won in our308

work for Int8 data types directly translate to FP8 data types.309

Another limitation is that we only study models up to the size of 13B parameters. While we quantize310

a 13B model to Int8 without performance degradation, additional emergent properties might disrupt311

our quantization methods at larger scales.312

A third limitation is that we do not use batched Int8 matrix multiplication for the attention layers. An313

initial exploration of this problem indicated that a solution required additional quantization methods314

beyond those we developed here, and we leave this for future work.315

A fourth limitation is that we focus on inference but do not study training or finetuning. We provide316

an initial analysis of Int8 training at scale in the appendix. Int8 training requires complex trade-offs317

between quantization precision, training speed, and engineering complexity, which we again leave to318

future work.319

7 Broader Impacts320

The main impact of our work is enabling access to large models that previously could not fit into321

GPU memory. This enables research and applications which were not possible before due to limited322

GPU memory. Additionally, resource-rich organizations with many GPUs can now serve the same323

number of models on fewer GPUs.324

In particular, we believe that the public release of large pretrained models, for example, the recent325

Open Pretrained Transformers (OPT)(Zhang et al., 2022), along with our new Int8 inference for zero-326

and few-shot prompting, will enable new research for academic institutions that was not possible327

before due to resource constraints.328

9

References329

Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M., Shleifer, S., Lin, X. V., Du, J., Iyer, S.,330

Pasunuru, R., et al. (2021). Efficient large scale language modeling with mixtures of experts. arXiv331

preprint arXiv:2112.10684.332

Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu, Q., Lyu, M. R., and King, I. (2021).333

Binarybert: Pushing the limit of bert quantization. ArXiv, abs/2012.15701.334

Cambier, L., Bhiwandiwalla, A., Gong, T., Elibol, O. H., Nekuii, M., and Tang, H. (2020). Shifted335

and squeezed 8-bit floating point format for low-precision training of deep neural networks. In 8th336

International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April337

26-30, 2020. OpenReview.net.338

Chen, J., Gai, Y., Yao, Z., Mahoney, M. W., and Gonzalez, J. E. (2020). A statistical framework339

for low-bitwidth training of deep neural networks. Advances in Neural Information Processing340

Systems, 33:883–894.341

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan, K., Wang, Z., and Chuang, P. (2019).342

Accurate and efficient 2-bit quantized neural networks. In Talwalkar, A., Smith, V., and Zaharia,343

M., editors, Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA,344

March 31 - April 2, 2019. mlsys.org.345

Courbariaux, M. and Bengio, Y. (2016). Binarynet: Training deep neural networks with weights and346

activations constrained to +1 or -1. CoRR, abs/1602.02830.347

Courbariaux, M., Bengio, Y., and David, J. (2015). Binaryconnect: Training deep neural networks348

with binary weights during propagations. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,349

M., and Garnett, R., editors, Advances in Neural Information Processing Systems 28: Annual350

Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,351

Quebec, Canada, pages 3123–3131.352

Courbariaux, M., Bengio, Y., and David, J.-P. (2014). Training deep neural networks with low353

precision multiplications. arXiv preprint arXiv:1412.7024.354

Dettmers, T. (2016). 8-bit approximations for parallelism in deep learning. International Conference355

on Learning Representations (ICLR).356

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L. (2022). 8-bit optimizers via block-wise357

quantization. 9th International Conference on Learning Representations, ICLR.358

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional359

transformers for language understanding. arXiv preprint arXiv:1810.04805.360

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., and Joulin, A. (2020). Training361

with quantization noise for extreme model compression. arXiv preprint arXiv:2004.07320.362

Gokaslan, A. and Cohen, V. (2019). Openwebtext corpus. urlhttp://Skylion007. github.363

io/OpenWebTextCorpus.364

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and Yan, J. (2019). Differentiable soft365

quantization: Bridging full-precision and low-bit neural networks. In 2019 IEEE/CVF International366

Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,367

2019, pages 4851–4860. IEEE.368

Ilharco, G., Ilharco, C., Turc, I., Dettmers, T., Ferreira, F., and Lee, K. (2020). High performance nat-369

ural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural370

Language Processing: Tutorial Abstracts, pages 24–27, Online. Association for Computational371

Linguistics.372

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and Kalenichenko, D.373

(2017). Quantization and training of neural networks for efficient integer-arithmetic-only inference.374

arxiv e-prints, art. arXiv preprint arXiv:1712.05877.375

10

Jin, Q., Ren, J., Zhuang, R., Hanumante, S., Li, Z., Chen, Z., Wang, Y., Yang, K., and Tulyakov,376

S. (2022). F8net: Fixed-point 8-bit only multiplication for network quantization. arXiv preprint377

arXiv:2202.05239.378

Khudia, D., Huang, J., Basu, P., Deng, S., Liu, H., Park, J., and Smelyanskiy, M. (2021). Fbgemm: En-379

abling high-performance low-precision deep learning inference. arXiv preprint arXiv:2101.05615.380

Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., and Fan, R. (2019). Fully quantized network for object381

detection. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long382

Beach, CA, USA, June 16-20, 2019, pages 2810–2819. Computer Vision Foundation / IEEE.383

Lin, Y., Li, Y., Liu, T., Xiao, T., Liu, T., and Zhu, J. (2020). Towards fully 8-bit integer inference for384

the transformer model. arXiv preprint arXiv:2009.08034.385

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and386

Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint387

arXiv:1907.11692.388

Mellempudi, N., Srinivasan, S., Das, D., and Kaul, B. (2019). Mixed precision training with 8-bit389

floating point. CoRR, abs/1905.12334.390

Nagel, S. (2016). Cc-news.391

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. (2019).392

fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038.393

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary neural networks: A survey.394

CoRR, abs/2004.03333.395

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are396

unsupervised multitask learners. OpenAI blog, 1(8):9.397

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.398

(2019). Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv399

preprint arXiv:1910.10683.400

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet classification401

using binary convolutional neural networks. In Leibe, B., Matas, J., Sebe, N., and Welling, M.,402

editors, Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,403

October 11-14, 2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science,404

pages 525–542. Springer.405

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A., Koanantakool, P., Hawkins, P., Lee, H.,406

Hong, M., Young, C., et al. (2018). Mesh-tensorflow: Deep learning for supercomputers. Advances407

in neural information processing systems, 31.408

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M. W., and Keutzer, K. (2020).409

Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI410

Conference on Artificial Intelligence, volume 34, pages 8815–8821.411

Sun, X., Choi, J., Chen, C., Wang, N., Venkataramani, S., Srinivasan, V., Cui, X., Zhang, W., and412

Gopalakrishnan, K. (2019). Hybrid 8-bit floating point (HFP8) training and inference for deep413

neural networks. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,414

E. B., and Garnett, R., editors, Advances in Neural Information Processing Systems 32: Annual415

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,416

Vancouver, BC, Canada, pages 4901–4910.417

Trinh, T. H. and Le, Q. V. (2018). A simple method for commonsense reasoning. arXiv preprint418

arXiv:1806.02847.419

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and420

Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.421

11

Wang, N., Choi, J., Brand, D., Chen, C., and Gopalakrishnan, K. (2018). Training deep neural422

networks with 8-bit floating point numbers. In Bengio, S., Wallach, H. M., Larochelle, H., Grauman,423

K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems424

31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December425

3-8, 2018, Montréal, Canada, pages 7686–7695.426

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V., Guzmán, F., Joulin, A., and Grave, E.427

(2020). CCNet: Extracting high quality monolingual datasets from web crawl data. In Proceedings428

of the 12th Language Resources and Evaluation Conference, pages 4003–4012, Marseille, France.429

European Language Resources Association.430

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,431

R., Funtowicz, M., et al. (2019). Huggingface’s transformers: State-of-the-art natural language432

processing. arXiv preprint arXiv:1910.03771.433

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M. (2019). Q8bert: Quantized 8bit bert. In 2019434

Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition435

(EMC2-NIPS), pages 36–39. IEEE.436

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X.,437

Lin, X. V., et al. (2022). Opt: Open pre-trained transformer language models. arXiv preprint438

arXiv:2205.01068.439

Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X., and Liu, Q. (2020). Ternarybert:440

Distillation-aware ultra-low bit bert. In EMNLP.441

Zhu, C., Han, S., Mao, H., and Dally, W. J. (2017). Trained ternary quantization. In 5th Interna-442

tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,443

Conference Track Proceedings. OpenReview.net.444

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S. (2015).445

Aligning books and movies: Towards story-like visual explanations by watching movies and446

reading books. In Proceedings of the IEEE international conference on computer vision, pages447

19–27.448

Checklist449

The checklist follows the references. Please read the checklist guidelines carefully for information on450

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or451

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing452

the appropriate section of your paper or providing a brief inline description. For example:453

• Did you include the license to the code and datasets? [Yes] See Section ??.454

• Did you include the license to the code and datasets? [No] The code and the data are455

proprietary.456

• Did you include the license to the code and datasets? [N/A]457

Please do not modify the questions and only use the provided macros for your answers. Note that the458

Checklist section does not count towards the page limit. In your paper, please delete this instructions459

block and only keep the Checklist section heading above along with the questions/answers below.460

1. For all authors...461

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s462

contributions and scope? [Yes]463

(b) Did you describe the limitations of your work? [Yes] See the limitation section464

(c) Did you discuss any potential negative societal impacts of your work?[Yes] See the465

Broader Impacts section466

(d) Have you read the ethics review guidelines and ensured that your paper conforms to467

them?[Yes] Yes, we believe our work conforms to these guidelines.468

12

2. If you are including theoretical results...469

(a) Did you state the full set of assumptions of all theoretical results? [N/A]470

(b) Did you include complete proofs of all theoretical results? [N/A]471

3. If you ran experiments...472

(a) Did you include the code, data, and instructions needed to reproduce the main experi-473

mental results (either in the supplemental material or as a URL)? [Yes] We will include474

our code in the supplemental material.475

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they476

were chosen)?[Yes] See the experimental setup section477

(c) Did you report error bars (e.g., with respect to the random seed after running experi-478

ments multiple times)? [No] Our experiments are deterministic for each model. Instead479

of running the same model multiple times, we run multiple models at different scales.480

We are unable to compute error bars for these experiments.481

(d) Did you include the total amount of compute and the type of resources used (e.g., type482

of GPUs, internal cluster, or cloud provider)? [Yes] See the exper2imental setup section483

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...484

(a) If your work uses existing assets, did you cite the creators? [Yes] See experimental485

setup section486

(b) Did you mention the license of the assets? [No] The license is permissible for all the487

assets that we use. The individual licenses can easily be looked up.488

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]489

We only use existing datasets.490

(d) Did you discuss whether and how consent was obtained from people whose data you’re491

using/curating? [N/A]492

(e) Did you discuss whether the data you are using/curating contains personally identifiable493

information or offensive content? [N/A]494

5. If you used crowdsourcing or conducted research with human subjects...495

(a) Did you include the full text of instructions given to participants and screenshots, if496

applicable? [N/A]497

(b) Did you describe any potential participant risks, with links to Institutional Review498

Board (IRB) approvals, if applicable? [N/A]499

(c) Did you include the estimated hourly wage paid to participants and the total amount500

spent on participant compensation? [N/A]501

13

	Background
	8-bit Data Types and Quantization
	Int8 Matrix Multiplication with 16-bit Float Inputs and Outputs

	Int8 Matrix Multiplication at Scale
	Vector-wise Quantization
	Mixed-precision Matrix Decomposition
	Experimental Setup

	Main Results
	Analysis: Emergent Outliers in Transformers at Scale
	Related work
	Discussion and Limitations
	Broader Impacts

