
Under review as a conference paper at ICLR 2021

MARS: MARKOV MOLECULAR SAMPLING FOR
MULTI-OBJECTIVE DRUG DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Searching for novel molecules with desired chemical properties is crucial in drug
discovery. Existing work focuses on developing deep generative models to gen-
erate either sequences or chemical molecular graphs. However, it remains a great
challenge to find novel and diverse compounds satisfying many properties. In this
paper, we propose MARS, a method for multi-objective drug molecule discovery.
MARS is based on the idea of generating the chemical candidates by iterative edit-
ing fragments of molecular graphs. To search for the best candidates, it employs an
annealing scheme together with Markov chain Monte Carlo sampling (MCMC) on
molecules. To further improve sample efficiency, MARS is equipped with a graph
neural network (GNN) as the proposal for candidate edits on molecules, while the
GNN is trained on-the-fly utilizing the sample paths in MCMC. Our experiments
show that MARS achieves state-of-the-art performance in various multi-objective
settings where molecular bio-activity, drug-likeness, and synthesizability are si-
multaneously considered. In the most challenging setting where four objectives
– bio-activities to two different targets, drug-likeness and synthesizability – are
simultaneously considered, our method outperforms the state-of-the-art signifi-
cantly in a comprehensive evaluation.

1 INTRODUCTION

Drug discovery aims to find chemical compounds with certain target properties, such as high drug-
likeness (QED) (Bickerton et al., 2012). The same problem is referred to as molecular design,
molecular generation, or molecular search. The size of drug-like chemical space is enormous, ap-
proximate 1033 for realistic drugs that could ever be synthesized (Polishchuk et al., 2013). Therefore
it is very challenging to search for a high-quality molecule from such a vast space — enumeration
would take almost forever. Finding the right candidates targeting specific proteins for a particular
disease even further complicates the problem.

Instead of enumerating and search from the immense chemical space, recent work utilizes deep
generative models to directly generate candidate molecules (Schwalbe-Koda & Gómez-Bombarelli,
2020; Guo & Zhao, 2020). However, most prior work focuses on generating molecules concerning a
single property such as drug-likeness (QED) or octanol-water partition coefficient (logP) (Jin et al.,
2018; You et al., 2018; Popova et al., 2019; Shi et al., 2020; Zang & Wang, 2020). While in prac-
tical settings, typical drug discovery requires consideration of multiple properties jointly (Nicolaou
et al., 2012). For example, to find drug-like molecules with high synthesizability and sufficient bio-
logical activity against the target protein. Naturally, multi-objective molecule design is much more
challenging than the single-objective scenario (Jin et al., 2020).

This paper studies the problem of multi-objective molecule design for drug discovery. An ideal solu-
tion should be efficient and meet the following criteria. C1: It should satisfy multiple properties with
high scores; C2: It should produce diverse and novel molecules; C3: It does not rely on either expert
annotated or wet experimental data collected from a biochemistry lab (since it requires tremendous
effort). Existing molecule generation approaches do not meet all these criteria. These methods
belong to three categories: generating candidates from a learned continuous latent space (Gómez-
Bombarelli et al., 2018; Jin et al., 2018), through reinforcement learning (You et al., 2018), and using
an encoder-decoder translation approach (Jin et al., 2019b). Current state-of-the-art multi-objective
molecular generation is a rationale-based method (Jin et al., 2020). In this approach, the authors
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propose to build molecules by composing multiple extracted rationales, and the model can generate
compounds that are simultaneously active to multiple biological targets. However, such an approach
will result in quite complex molecules when we have too many objectives. This is because different
objectives correspond to different rationales, and including all these rationales could lead to large
molecules, which may be less drug-like and hard to be synthesized practically.

In this paper, we propose MArkov moleculaR Sampling (MARS), a simple yet flexible method for
drug discovery. The basic idea is to start from an initial molecule and keep generating candidate
molecules by modifying fragments of molecular graph from the prior step. It meets all the criteria
C1-3. We formulate the molecular design as an iterative editing procedure with its total objective
includes multiple property scores (C1). MARS employs the annealed Markov chain Monte Carlo
sampling to search for optimal chemical compounds, which allows for exploration of chemicals with
novel and different fragments (C2). The proposal to modify molecular fragments is carefully de-
signed using Graph Neural Networks (GNNs). We used message passing neural networks (MPNNs)
in practice (Gilmer et al., 2017), but other GNNs can fit the framework as well. Furthermore, MARS
utilizes the sample paths generated on-the-fly to train the proposal network adaptively. Therefore it
does not rely on external annotated data (C3). With such an adaptive learnable proposal, it keeps
improving the generation quality throughout the process.

We evaluate our proposed method and several other baselines on a variety of multi-objective gen-
eration settings. Experiments show that MARS achieves state-of-the-art performance on five out of
six tasks in terms of a comprehensive evaluation consisting of the success rate, novelty, and diver-
sity of the generated molecules. Notably, in the most challenging setting where four objectives –
bio-activities to two different targets, drug-likeness and synthesizability – are simultaneously con-
sidered, our method outperforms the state-of-the-art significantly in a comprehensive evaluation.

Our contributions are as follows:
• We present a generic formulation of molecular design using Markov sampling, which can

easily accommodate multiple objectives.
• We develop an adaptive fragment-editing proposal based on GNN that is learnable on the

fly with only samples self-generated and efficient in exploring the chemical space.
• Experiments verifies our proposed MARS framework can find novel and diverse bioactive

molecules that are both drug-like and highly synthesizable.

2 RELATED WORK

Molecular generation. Recent years have witnessed the great success of applying deep generative
models and molecular graph representation learning in drug discovery (Schwalbe-Koda & Gómez-
Bombarelli, 2020; Guo & Zhao, 2020). In the sense of property optimization, existing approaches
can be roughly divided into three categories. The first one lying in these approaches optimize molec-
ular properties in the continuous latent space with continuous optimization algorithms like Bayesian
optimization (BO) (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Winter et al., 2019). These
methods rely heavily on the quality of latent representations, which imposes huge challenges to the
encoders when there are multiple properties to consider. Unlike the first one, other work (Cao &
Kipf, 2018; Popova et al., 2018; You et al., 2018; Popova et al., 2019; Shi et al., 2020) proposes to
employ reinforcement learning (RL) to optimize desired objectives directly in the explicit chemical
space. However, the models are usually hard to train due to the high variance of RL. To alleviate
this, the translation-based approaches sidestep RL by training models with pre-constructed molec-
ular pairs (Jin et al., 2019b;a). Although simple, such methods require many high-quality labeled
data, making them impractical in scenarios where the data is limited.

In addition to these, some methods are proposed recently to address the multi-objective molecule
generation problem. For example, Li et al. (2018) proposes to use a conditional generative model to
incorporate several objectives flexibly, while Lim et al. (2020) leverages molecular scaffolds to con-
trol the properties of generated molecules better. Among them, the current state-of-the-art approach
is a rationale-based method proposed by Jin et al. (2020). In this method, the authors propose to
build molecules by assembling extracted rationales. Despite its great success in generating com-
pounds simultaneously active to multiple biological targets, the combination of rationales might
hinder the synthesizability and drug-likeness of produced molecules, as they tend to be large as the
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number of objectives grows. In contrast, our MARS framework turns the generation problem into a
sampling procedure, which serves as an alternative way compared with deep generative models, and
can efficiently discover bio-active molecules that are both drug-like and highly synthesizable.

Heuristic search. Apart from the generative approaches, there is another branch of methods that
heuristically explore the molecular space, and is also widely used in molecular property optimiza-
tion. Among them, the most prevailing ones are evolutionary algorithms (EAs) and genetic algo-
rithms (GAs) (Nicolaou et al., 2012; Devi et al., 2015; Jensen, 2019; Ahn et al., 2020). In Nigam
et al. (2020), the authors propose to augment GA by adding an adversarial loss into the fitness eval-
uation to increase the diversity, and the augmented GA outperforms all other generative models in
optimizing logP. Though flexible and straightforward, most GA and EA methods require domain ex-
perts to design molecular mutation and crossover rules and might suffer from low search efficiency.
Different from these work, MARS is built upon the general MCMC sampling framework in which
tons of mathematical tools can be applied, and we also introduce an adaptive proposal based on
molecular graph editing actions to improve the sampling efficiency.

3 PROPOSED MARS APPROACH

In this section, we present the MArkov moleculaR Sampling method (MARS) for multi-objective
molecular design. We define a Markov chain on the explicit chemical space and design a kernel to
navigation through high probable candidates with acceptance and rejection.

3.1 SAMPLING FROM THE MOLECULAR SPACE

Our proposed MARS framework aims at sampling molecules with desired properties from the chem-
ical space. Specifically, given K properties of interest, the desired molecular distribution can be
formulated as a combination of all objectives:

π(x) = s1(x) ◦ s2(x) ◦ s3(x) ◦ · · · ◦ sK(x)︸ ︷︷ ︸
desired properties

(1)

where x is a molecule in the molecular space X , π(x) is an unnormalized molecular distribution that
describes the desired properties, and sk(x) is a scoring function for the k-th property and the “◦”
operator stands for a combination of scores (e.g., summation or multiplication). In practical drug
discovery, these terms could be related to the biological activity, drug-likeness, and synthesizability
of molecules (Nicolaou et al., 2012), and we can flexibly define them according to our applications.
However, as the number of objectives grows, the combined distribution π(x) will become more
complex and intractable, which makes the sampling non-trivial.

In MARS, we propose to sample molecules from the desired distribution based on Markov chain
Monte Carlo (MCMC) methods (Andrieu et al., 2003). Given a desired molecular distribution π(x)
as the unnormalized target distribution, we define a Markov chain on the explicit chemical space X
(i.e., each state of the Markov chain is a particular molecule) and introduce a proposal distribution
q(x′ | x) to perform state transitions.

Specifically, as shown in Figure 1, the sampling procedure of MARS starts from an initial molecule
x(0) ∈ X . At each time step t, a molecule candidate x′ ∈ X will be sampled from the proposal
distribution q(x′ | x(t−1)), where x(t−1) denotes the molecule at time step t− 1. Then the proposed
candidate x′ could be either accepted x(t) = x′ or rejected x(t) = x(t−1) according to an acceptance
rate A(x(t−1), x′) ∈ [0, 1] controlled by the target distribution π(x). By repeating this process, a
sequence of molecules {x(t)}∞t=0 can be generated, and the sequence will converge to the target
distribution π(x) if the proposal distribution and the acceptance mechanism are specified properly.

For the acceptance rate, it can be generally represented as follow:

A(x, x′) = min

{
1,
πα(x′)q(x|x′)
πα(x)q(x′|x)

}
(2)

where α is a coefficient that varies in different instantiations of MCMC algorithms. Here
to find molecules that globally maximize the target distribution, we employ an annealing
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Figure 1: The general architecture of MARS. During the sampling process: (a) starting from an arbitrary initial
molecule x(0) from the molecular space X , (b) we sample a candidate molecule x′ ∈ X from the proposal
distribution q(x′ | x(t−1)) at each step based on the molecule from the last step x(t−1), (c/d) and then the
candidate x′ is either accepted or rejected according to an acceptance rateA(x(t−1), x′) ∈ [0, 1]. By repeating
this process, we can generate a sequence of molecules {x(t)}∞t=0.

scheme (Laarhoven & Aarts, 1987) where α = 1/T and T is a temperature controlled by a
cooling schedule. In addition to this, other instantiations such as Metropolis-Hastings (MH) al-
gorithm (Metropolis et al., 1953) where α = 1 are also feasible under our general framework.

As for the proposal distribution q(x′ | x), it will greatly influence the sampling performance and
should be designed elaborately. In general, it is crucial that the proposal distribution q(x′ | x)
and the target distribution π(x′) are as close as possible to ensure high sampling efficiency. So we
propose using a proposal distribution qθ(x′ | x) with learnable parameters to capture the desired
molecular properties and develop a strategy to train the proposal throughout the sampling process
adaptively. The details will be described in the next section.

3.2 ADAPTIVE MOLECULAR GRAPH EDITING PROPOSAL

In this section we will examine in detail our proposed adaptive proposal distribution qθ(x′ | x).
In MARS, the proposal distribution is represented with molecular graph editing actions and can be
parameterized with MPNNs. To sample molecules with desired properties effectively and efficiently,
we also design a strategy to train the networks during sampling in an adaptive manner.

Molecular graph editing actions. To transform a molecule x into another molecule x′, we consider
two sets of graph editing actions, i.e., fragment adding and deleting. These actions are inspired by
fragment-based drug design (FBDD) methodology, whose success in drug discovery has been proved
in past decades (Kumar et al., 2012). In MARS, we define fragments as connected components in
molecules separated by single bonds. To reduce the complexity of editing actions, we only consider
fragments with a single attachment position. Moreover, we also define a fragment vocabulary that
contains finite many fragments, and only fragments in the vocabulary are allowed to be added onto
a molecule. Examples for fragment adding and deleting actions are shown in Figure 2.

Specifically, given a molecule x with n atoms and m bonds, we choose to add or delete a fragment
onto or from this molecule randomly with probability 1

2 for each set of actions. For the adding
action, suppose we have a probability distribution over atoms padd(u) and a probability distribution
over fragments in the vocabulary pfrag(k). Here u ∈ [n] is an indicator of atoms in x and k ∈ [V ] is
an indicator of fragments in the vocabulary of size V . We can compute the proposal distribution as
follows:

q(x′|x) = 1

2
· padd(u) · pfrag(k) (3)

where x′ is the molecule obtained by adding the k-th fragment onto the atom u in molecule x.
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Figure 2: Left: Examples of molecular fragments and a fragment vocabulary. Red dashed lines represents
cuttable bonds to extract fragments. Right: Examples of molecular graph editing actions.

As for the deleting action, suppose we have a probability distribution over bonds1 pdel(b) where
b ∈ [2m] is an indicator of bonds in x. We can compute the proposal distribution as follow:

q(x′|x) = 1

2
· pdel(b) (4)

where x′ is the molecule obtained by removing bond b and the attached fragment from molecule x.

Parameterizing with MPNNs. To better model the molecular graph editing actions, we propose
to use MPNNs to suggest the probability distributions (padd, pfrag, pdel) = Mθ(x) where Mθ is a
MPNN model specified by parameters θ, which has been proven powerful to predict chemical prop-
erties with molecular graphs (Gilmer et al., 2017). Particularly, given a molecule x, we input the cor-
responding molecular graph into MPNN to obtain the node hidden representations {hnode

u ∈ Rd}nu=1
where d is the dimension of the hidden space. Then we can compute probability distributions as
follow:

hedge
b = Concat(hnode

v ,hnode
w ) ∈ R2d (5)

hgraph = MaxPooling({hnode
u }) ∈ Rd (6)

padd = Softmax({MLPnode(h
node
u ))}) (7)

pfrag = Softmax(MLPgraph(h
graph)) (8)

pdel = Softmax({MLPedge(h
edge
b ))}) (9)

where v, w are atoms connected with bond b, {hedge
b }2mb=1 are edge hidden representations, hgraph is

the graph embedding (Hu et al., 2020) , and MLPnode,MLPgraph,MLPedge are multi-layer peceptrons
(MLPs) used in the prediction.

Adaptive training. To capture the desired properties as well as to improve the sampling per-
formance and efficiency, we can train the editing model to increase the probability of suggesting
high-quality candidate molecules. Here we propose to train the model on-the-fly during the sam-
pling process in an adaptive manner where the training data is collected from the sampling paths.
By doing so, we can bypass the difficulty of lacking training instances that satisfy all property con-
straints. Particularly, we collect molecule candidates that improve our desired objectives, and train
the modelMθ in a maximum likelihood estimation (MLE) manner (i.e. to maximize the probability
of producing the collected candidates). So overall, the whole MARS sampling process could be
described as Algorithm 1.

Discussion on training and convergence. Compared with standard MCMC algorithms, MARS
still falls in the Metropolis-Hastings algorithm with an annealing scheme and an adaptive proposal,
which results in inhomogeneous transition kernels. The convergence of annealed MCMC is dis-
cussed in Andrieu et al. (2003), and it could be guaranteed by elaborately choosing a temperature

1Molecular bonds are treated as directed ones to specify the fragments to drop from molecules.
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Algorithm 1: MARS.

1 Set initial molecules {x(0)i }
N
i=1 and initialize the molecular graph editing modelMθ;

2 Create an empty editing model training dataset D = {};
3 for t = 1, 2, . . . do
4 for i = 1, 2, . . . , N do
5 Compute probability distributions (padd, pfrag, pdel) =Mθ(x

(t−1)
i ) as Equations 7-9;

6 Sample a candidate molecule x′ from the proposal distribution q(x′ | x(t−1)
i ) defined with

probability distributions padd, pfrag, pdel as Equations 3-4;
7 if u < A(x(t−1)

i , x′) where u ∼ U[0,1] then
8 Accept the candidate molecule x(t)i = x′;
9 else

10 Refuse the candidate molecule x(t)i = x(t−1);
11 end
12 if The candidate improves the objectives, i.e. π(x′) > π(x

(t−1)
i ) then

13 Adding the editing record (x
(t−1)
i , x′) into the dataset D;

14 end
15 end
16 Update the molecular editing modelMθ with the current dataset D in a MLE manner;
17 end

cooling schedule. The convergence of inhomogeneity is discussed in Rosenthal (2011). According
to the diminishing adaptation condition, we can ensure the convergence of inhomogeneous MCMC
by making the difference of proposals in consecutive iterations diminish to zero. This is easily satis-
fied in MARS by using an optimizer (e.g., Adam) whose learning rate will shrink to zero eventually.
By combining these two results, it yields the convergence of inhomogeneous annealed MCMC.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Biological objectives. Following Jin et al. (2020), we consider the following two properties as the
biological activity objectives, where the predictive model for each property is a random forest that
takes Morgan fingerprint features (Rogers & Hahn, 2010) as input, and the positive threshold is set
as δ = 0.5 (Jin et al., 2020; Li et al., 2018).

• GSK3β: Inhibition against glycogen synthase kinase-3β.
• JNK3: Inhibition against c-Jun N-terminal kinase-3.

Multi-objective generation. To evaluate the effectiveness of the proposed method for multi-
objective drug design, we also consider the following more challenging objective combinations:

• GSK3β+JNK3: Jointly inhibiting GSK3β and JNK3. The combination may provide po-
tential benefits for the treatment of Alzheimer’s disease reported by Li et al. (2018).

• GSK3β/JNK3+QED+SA: Inhibiting GSK3β or JNK3 while being drug-like and synthet-
ically accessible. Following Jin et al. (2020), we adopt QED (Bickerton et al., 2012) and
synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009) to quantify the last two proper-
ties. In particular, we require QED ≥ 0.6 and SA ≥ 0.67. 2

• GSK3β+JNK3+QED+SA: Jointly inhibiting GSK3β and JNK3 while being drug-like and
synthetically accessible, which are quantified by QED and SA respectively.

Baselines. We compare MARS with the following baselines for molecular property optimization.
GCPN (You et al., 2018) leverages RL to generate molecules atom by atom, and the adversarial loss
is incorporated in the objective to generate more realistic molecules. JT-VAE (Jin et al., 2018) is a
VAE-based approach that firstly generates junction trees and then assembles them into molecules. It

2We rescale SA score into [0, 1] such that molecules with higher scores are more synthetically accessible,
and 0.67 is the rescaled threshold corresponding to the one reported in Jin et al. (2020).
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performs Bayesian optimization (BO) to guide molecules towards desired properties. RationaleRL
(Jin et al., 2020) is a state-of-the-art approach for multi-property optimization, which generates
molecules from combined rationales. GA+D (Nigam et al., 2020) is a heuristic search method that
applies the genetic algorithm (GA) to find molecules with high property scores. To increase the
diversity of generated molecules, an adversarial loss is incorporated in the fitness evaluation.

Evaluation metrics. Following Jin et al. (2020), we generate N = 5000 molecules for each
approach and compare the proposed method with the baselines on the following evaluation met-
rics: Success rate (SR) is the percentage of generated molecules that are evaluated as positive
on all given objectives; Novelty (Nov) is the percentage of generated molecules with similarity
less than 0.4 compared to the nearest neighbor xSNN in the training set (Olivecrona et al., 2017):
Nov = 1

n

∑
x∈G 1[sim(x, xSNN) < 0.4]; Diversity (Div) measures the diversity of generated

molecules, which can be calculated based on pairwise Tanimoto similarity over Morgan finger-
prints sim(x, x′) as Div = 2

n(n−1)
∑
x 6=x′∈G 1 − sim(x, x′); Product (Prod) is the product of the

above three metrics, which is a more comprehensive evaluation of the proposed method. Intuitively,
it can present the percentage of generated molecules that are simultaneously bio-active, novel and
diverse, which are essential criteria to be considered in building a suitable drug candidate library in
early-stage drug discovery (Huggins et al., 2011).

Implementation details. For the fragment vocabulary, we extract the top 1000 frequently appear-
ing fragments that contain no more than 10 heavy atoms from the ChEMBL database (Gaulton et al.,
2017) by enumerating single bonds to break. As for the sampling process, the unnormalized target
distribution is set as π(x) =

∑
k sk(x) where sk(x) is a scoring function for the above-mentioned

properties of interests, the temperature is set as T = 0.95bt/5c and we sample N = 5000 molecules
at one time. And sampling paths are all starting with an identical molecule “C-C”, which is also
adopted by previous graph generation methods for organic molecules (You et al., 2018). For the
MPNN model, it has 6 layers, and the node embedding size is d = 64. Moreover, for the model
training, we use an Adam optimizer (Kingma & Ba, 2015) to update the model parameters with an
initial learning rate set as 3 × 10−4, the maximum dataset size is limited as |D| ≤ 50, 000, and at
each step, we update the model for no more than 25 times.

4.2 MAIN RESULTS AND ANALYSIS

The quantitative results are summarized in Table 1 and Table 2. From these tables, we observe that
MARS outperforms all the baselines on five out of six tasks in terms of the Prod score. Further-
more, on the most challenging multi-objective optimization task, i.e., GSK3β+JNK3+QED+SA, it
significantly surpasses the best baseline with a 100% improvement for the Prod score.

Table 1: Comparison of different methods on molecular generation with only bio-activity objectives. Results of
GA+D are obtained by running its open-source code. Results of other baselines are taken from Jin et al. (2020).

Method GSK3β JNK3 GSK3β + JNK3
SR Nov Div Prod SR Nov Div Prod SR Nov Div Prod

GCPN 42.4% 11.6% 0.904 0.04 32.3% 4.4% 0.884 0.01 3.5% 8.0% 0.874 0.00
JT-VAE 32.2% 11.8% 0.901 0.03 23.5% 2.9% 0.882 0.01 3.3% 7.9% 0.883 0.00
RationaleRL 100% 53.4% 0.888 0.47 100% 46.2% 0.862 0.40 100% 97.3% 0.824 0.80
GA+D 84.6% 100% 0.714 0.60 52.8 % 98.3% 0.726 0.38 84.7% 100% 0.424 0.36

MARS 97.8% 82.1% 0.828 0.66 98.1% 85.4% 0.774 0.65 99.2% 89.6% 0.734 0.65

Table 2: Comparison of different methods on molecular generation with bio-activity, QED, and SA objectives.
Results of all baselines are obtained by running their open-source codes.

Method GSK3β + QED + SA JNK3 + QED + SA GSK3β + JNK3 + QED + SA
SR Nov Div Prod SR Nov Div Prod SR Nov Div Prod

GCPN 0.0% 0.0% 0.000 0.00 0.0% 0.0% 0.000 0.00 0.0% 0.0% 0.000 0.00
JT-VAE 9.6% 95.8% 0.68 0.06 21.8% 100% 0.600 0.13 5.4% 100% 0.277 0.02
RationaleRL 69.9% 40.2% 0.893 0.25 62.3% 37.6% 0.865 0.20 75.0% 55.5% 0.706 0.29
GA+D 89.1% 100% 0.682 0.61 85.7 % 99.8% 0.504 0.43 85.7% 100% 0.363 0.31

MARS 99.8% 89.9% 0.809 0.73 88.2% 83.8% 0.739 0.55 91.3% 91.1% 0.741 0.62

Comparing all these methods, the GA+D baseline is most similar to our MARS in terms of the
high novelty and Prod score, as both methods focus on molecular space exploration. However, the
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diversity score of GA+D drops a lot when optimizing multiple properties simultaneously, as GAs
are likely to get trapped in regions of local optima (Paszkowicz, 2009). RationaleRL is a very strong
baseline that performs better than MARS in the GSK3β+JNK3 setting. Nevertheless, when taking
the drug-likeness and synthetic accessibility into consideration, their performance falls short of ours
and fails to generate novel molecules. The performance of GCPN and JT-VAE remains relatively
low in most settings, as they are not tailored for multi-objective property optimization.

Visualization. We also use t-SNE (van der Maaten & Hinton, 2008) to visualize the dis-
tribution of generated positive molecules with the positive ones in the training set under the
GSK3β+JNK3+QED+SA setting. In the visualization, we use the ECFP6 fingerprints as suggested
in Li et al. (2018). As shown by Figure 3, most molecules generated by GA+D fall into two
massive clusters, which aligns their low diversity. As for RationaleRL, the generated molecules also
tend to be clustered, with each cluster standing for a specific combination of rationales. By contrast,
the molecules generated by MARS are evenly distributed in the space with a range of novel regions
covered, which justifies our high novelty and diversity scores. We further visualize some molecules
generated by MARS with high property scores in Figure 4, indicating its ability to generate highly
synthesizable drug-like molecules that jointly inhibit GSK3β and JNK3.

Generated by RationaleRL
Positive Samples

(a)

Generated by GA+D
Positive Samples

(b)

Generated by MARS
Positive Samples

(c)

Figure 3: t-SNE visualization of generated molecules (gray) from different models and positive molecules in
the training set (blue): (a) RationaleRL; (b) GA+D; (c) The proposed MARS.
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Figure 4: Samples generated by MARS in the GSK3β+JNK3+QED+SA setting. The numbers in brackets are
GSK3β, JNK3, QED, and SA scores of each molecule respectively.

Running time. In the GSK3β+JNK3+QED+SA setting, MARS takes roughly T = 500 sampling
steps and 16 hours in total to converge. The sampling curves are shown in Figure 5. For other
baselines, RationaleRL takes 5.7 hours to fine-tune the model, and GA+D takes 278 steps and 2.2h
to achieve its best performance. However, one thing should be noted, both RationaleRL and GA+D
are greatly accelerated by adopting parallel computation, which is not implemented in MARS yet.
We believe MARS will have comparable computation efficiency if the conversions of molecules to
graphs and molecular evaluations are computed parallelly. In addition, comparing to the conven-
tional drug discovery process, which usually takes months to years, the time we spent on molecular
generation models is ignorable (at most several hours). And in molecular generation, it is more im-
portant to well explore the chemical space – find novel and diverse bio-active molecules (Huggins
et al., 2011).

4.3 ABLATION STUDY

To justify the contributions of the designed proposal and acceptance strategy, we compare them with
some naive ones and summarize the results of different combinations in Table 3. For acceptance
strategies, Annealed stands for annealed MCMC where the acceptance rate is computed as Equa-
tion 2 given α = 1/T , AlwaysAC stands for always accepting the candidate, i.e., A(x, x′) ≡ 1,
and HillClimb stands for accepting the candidate only when the overall score is improved, i.e.,
A(x, x′) = sign[s(x′) > s(x)]. For proposal strategies, Random stands for random proposal
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Figure 5: MARS sampling curves of the GSK3β+JNK3+QED+SA setting: (a) evaluation metric values along
sampling time steps; (b) success rate of objectives along sampling time steps.

where we randomly select atoms, bonds, and fragments to edit, and Adaptive stands for the adaptive
fragment-based graph editing model trained during the sampling process as described in Section 3.2.

Table 3: Results of different acceptance strategies and proposal strategies for molecular sampling.

AC Strategy Proposal GSK3β + JNK3 GSK3β + JNK3 + QED + SA
SR Nov Div Prod SR Nov Div Prod

Annealed Random 40.9% 94.9% 0.828 0.32 25.5% 80.4% 0.793 0.16
AlwaysAC Adaptive 49.1% 88.4% 0.742 0.32 10.1% 94.6% 0.716 0.07
HillClimb Adaptive 53.7% 96.1% 0.814 0.42 51.4% 86.6% 0.777 0.35
Annealed Adaptive 99.2% 89.6% 0.734 0.65 91.3% 91.1% 0.741 0.62

The results in Table 3 indicate that proposals will influence the performance of MARS dramatically
(the first and the last row), especially when the number of objectives increases. The proposed adap-
tive proposal not only outperforms the random proposal but also converges 4.6x faster in practice.
By comparing the last three rows, we find the Annealed strategy outperforms the other two strate-
gies by a large margin on both settings, as samples from such strategy are more likely to jump out of
local optimums. Another interesting observation is that even with the naive AlwaysAC or heuristic
HillClimb strategy, the MARS achieves comparable or even better performance compared to GA+D
and RationaleRL in some settings, e.g., HillClimb on GSK3β+JNK3+QED+SA optimization, which
again proves the effectiveness of the proposed proposal.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a simple yet flexible Markov Molecular Sampling framework (MARS)
for multi-objective drug discovery. MARS includes a trainable proposal to modify chemical graph
fragments, which is parameterized by a MPNN. Our experiments verify that MARS outperforms
prior approaches on five out of six molecule generation tasks, and it is capable of finding novel
and diverse bioactive molecules that are both drug-like and highly synthesizable. Future work can
include further study of parameterization and training strategy of the molecular-editing proposal.
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Appendix
A PROPERTY SCORE DISTRIBUTIONS OF SAMPLED MOLECULES

The property score distributions of sampled N = 5000 molecules of the GSK3β+JNK3+QED+SA
setting are shown in Figure 6.

(a) GSK3b score distribution (b) JNK3 score distribution

(c) QED score distribution (d) SA score distribution

Figure 6: Property score distributions of sampled N = 5000 molecules. The dashed red lines stand for success
thresholds, and the green arrows stand for the initial scores of the initial molecule “C-C”.

B EXAMPLES OF SAMPLED MOLECULES

We also provide some examples of sampled molecules from the GSK3β+JNK3+QED+SA setting.
The numbers under molecule graphs are GSK3β, JNK3, QED, and SA scores respectively.
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Figure 7: 40 sampled molecules with highest average property scores.
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Figure 8: 40 sampled molecules with highest GSK3β scores.
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Figure 9: 40 sampled molecules with highest JNK3 scores.
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Figure 10: 40 sampled molecules with highest QED scores.
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Figure 11: 40 sampled molecules with highest SA scores.
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