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ABSTRACT

Vision Transformers have achieved impressive performance in video classifica-
tion, while suffering from the quadratic complexity caused by the Softmax at-
tention mechanism. Some studies alleviate the computational costs by reducing
the number of tokens attended in attention calculation, but the complexity is still
quadratic. Another promising way is to replace Softmax attention with linear at-
tention, which owns linear complexity but presents a clear performance drop. We
find that such a drop in linear attention results from the lack of attention concen-
tration to critical features. Therefore, we propose a feature fixation module to
reweight feature importance of the query and key prior to computing linear atten-
tion. Specifically, we regard the query, key, and value as latent representations
of the input token, and learn the feature fixation ratio by aggregating QKV infor-
mation. This is beneficial for measuring the feature importance comprehensively.
Furthermore, we improve the feature fixation by neighborhood association, which
leverages additional guidance from spatial and temporal neighbouring tokens. Our
proposed method significantly improves the linear attention baseline, and achieves
state-of-the-art performance among linear video Transformers on three popular
video classification benchmarks. Our performance is even comparable to some
quadratic Transformers with fewer parameters and higher efficiency.

1 INTRODUCTION

Vision Transformers [19, 83, 46, 79, 15] have been successfually applied in video processing. Re-
cent video Transformers [54, 4, 7, 6, 20] have achieved remarkable performance on challenging
video classification benchmarks, e.g., Something-Something V2 [25] and Kinectics-400 [10]. How-
ever, they always suffer from quadratic computational complexity, which is caused by the Softmax
operation in the attention module [74, 90]. The quadratic complexity severely constrains the appli-
cation of video Transformers, since the task of video processing always requires to handle a huge
amount of input tokens, considering both the spatial and temporal dimensions.

Most of the existing efficient designs in video Transformers attempt to reduce the number of tokens
attended in attention calculation. For example, [4, 6] factorize spatial and temporal tokens with
different encoders or multi-head self-attention modules, to only deal with a subset of input tokens.
[7] calculates the attention only from the target frame, i.e., space-only. [54] restricts tokens to a
spatial neighbourhood that can reflect dynamic motions implicitly. Despite reducing the computa-
tional costs, they still have the inherent quadratic complexity, which prohibits them from scaling up
to longer input, e.g., more video frames or larger resolution [6, 54].

Another practical way, widely used in the Natural Language Processing (NLP) community, is to
decompose Softmax with certain kernel functions and linearize the attention via the associate prop-
erty of matrix multiplication [57, 34, 14]. Recent linear video Transformers [54, 90] achieve higher
efficiency, but present a clear performance drop compared to Softmax attention. We find that the
degraded performance is mainly attributed to the lack of attention concentration to critical features
in linear attention. Such an observation is consistent with the concurrent works in NLP [57, 82].

Accordingly, we propose to concentrate linear attention on discriminative features through feature
fixation. To this end, we reweight the feature importance of the query and key prior to computing
linear attention. Inspired by the idea of classic Gaussian pyramids [50, 42] and modern contrastive
learning [61, 69], we regard the query, key, and value as latent representations of the input token.
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Figure 1: Video classification performance. We report Top-1 accuracy and GFLOPs, of state-of-
the-art linear video Transformers on (a) SSv2 and (b) K400 datasets. Our model achieves the best
accuracy among its counterparts.

The latent space projection will not destroy the image structure, i.e., salient features are expected to
be discriminative across all spaces [68]. Therefore, we aggregate QKV information when generating
the feature fixation ratio, which is beneficial for measuring the feature importance comprehensively.

Meanwhile, the salient feature activations are usually locally accumulative [11, 64]. In the con-
tinuous video, critical information contained in the target token could be shared by its spatial and
temporal neighbour tokens. We hence propose to use neighbourhood association as extra guidance
for feature fixation. Specifically, we reconstruct each key and value vectors (they are responsible for
information exchange between tokens [29, 7]) by sequentially mixing key/value features of nearby
tokens in the spatial and temporal domain. This is efficiently realized by employing the feature
shift technique [81, 88]. Experimental results demonstrate the effectiveness of feature fixation and
neighbourhood association in improving the classification accuracy.

Our primary contributions are summarized as follows: 1) We discover that the performance drop
of linear attention results from not concentrating attention distribution to discriminative features in
linear video Transformers. 2) We develop a novel linear video Transformer with feature fixation to
concentrate salient attention. It is further enhanced by neighbourhood association, which leverages
the information from nearby tokens for better measuring the feature importance. Our method is sim-
ple and effective, and can also be seamlessly applied to other linear attention variants and improve
their performance. 3) Our model achieves state-of-the-art results among linear video Transformers
on popular video recognition benchmarks (see Fig. 1), and its performance is even comparable to
some Softmax-based quadratic Transformers with fewer parameters and higher efficiency.

2 RELATED WORK

Video Recognition by CNNs. CNN-based video networks are normally built upon 2D image clas-
sification models. To aggregate temporal information, current works either fuse the features of each
video frame [77, 44], or build spatial-temporal relations through 3D convolutions [28, 59, 70] or
RNNs [18, 39, 41]. Although the latter ones have achieved state-of-the-art performance, they suffer
from being significantly more computationally and memory-intensive. Several techniques have been
proposed to enhance efficiency, e.g., temporal shift [44, 48], adaptive frame sampling [36, 3, 85, 84],
and spatial/temporal factorization [71, 32, 72, 21].

Video Transformers. Vision Transformers [19, 83, 46, 79, 15] have achieved a great success in
computer vision tasks. It is straightforward to extend the idea of vision Transformers to video pro-
cessing, considering both the spatial and temporal dependencies. However, the full spatial-temporal
attention is computationally expensive, and hence several video Transformers try to reduce the costs
via factorization. TimeSformer [6] exploits five types of factorization, and empirically finds that
the divided attention, where spatial and temporal features are separately processed, leads to the
best accuracy. A similar conclusion is drawn in ViViT [4], which separates spatial and temporal
features with different encoders or multi-head self attention (MHSA) modules. [7] introduces a
local temporal window where features at the same spatial position are mixed. Some other meth-
ods have also explored dimension reduction [24, 33], token selection [75, 2], local-global attention
stratification [43], deformable attention [74], temporal down-sampling [62, 89], locality strengthen-
ing [47, 23], hierarchical learning [87, 86], multi-scale fusion [20, 26, 80], and so on.
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Efficient Transformers. The concept of efficient Transformers was originally introduced in
NLP, aiming to reduce the quadratic time and space complexity caused by the Transformer atten-
tion [38, 66, 34, 35, 78]. The mainstream methods use either patterns or kernels [67]. Pattern-based
approaches [58, 45, 5, 12] sparsify the Softmax attention matrix with predefined patterns, e.g., com-
puting attention at fixed intervals [5] or along every axis of the input [30]. Though benefiting from
the sparsity, they still suffer from the quadratic complexity to the input length. By contrast, kernel
methods [34, 56, 14, 13, 57] reduce the complexity to linear by reformulating the attention with
proper functions. As suggested by [57], these functions should be decomposable and non-negative.

3 PROBLEM FORMULATION

In this section, we first formulate the video Transformer and analyze their quadratic complexity in
Section 3.1. Linear attention is introduced in Section 3.2 and its fundamental shortcoming in the
performance drop is discussed in Section 3.3.

3.1 VIDEO TRANSFORMER

A video clip can be denoted as V ∈ RT×H×W×C , containing T frames with a resolution of H ×W
and a channel number of C. The video Transformer maps each H × W frame to a sequence of S
tokens, and hence has N = T ×S tokens in total. The embedding dimension of a token is D. These
tokens are further projected into the query Q ∈ RN×D, key K ∈ RN×D, and value V ∈ RN×D.
The self-attention is defined as1

Y = δ(QKT)V, (1)

where δ(·) is a similarity function, e.g., Softmax in standard Transformers [73, 19]. As shown, QKT

has a shape of N ×N . Therefore, the use of Softmax will lead to quadratic complexity with respect
to the input length, i.e., O(N2). This is computationally expensive especially for a long sequence
of high-resolution videos. Existing efficient designs in video Transformers [4, 7, 6, 54] mostly
focus on reducing the number of attended tokens when calculating the attention, which, however,
still suffer from the quadratic complexity. Another promising way is to approximate Softmax in a
linear form [54, 90], but it is less comparable in accuracy than quadratic Transformers and always
time-consuming in practical use due to the sampling operation.

3.2 LINEAR ATTENTION

To reduce the complexity close to linear O(N), linear Transformers [34, 56, 14, 13, 57, 78, 63]
decompose the similarity function δ(·) to a kernel function ρ(·), where δ(QKT) = ρ(Q)ρ(K)T.
The associative property of matrix multiplication allows to multiply ρ(K)T and V first without
affecting the mathematical result, i.e.,

Y = (ρ(Q)ρ(K)T)V = ρ(Q)(ρ(K)TV), (2)

where the shape of (ρ(K)TV) is D × D. By changing the order of matrix multiplication, the
complexity is reduced from O(N2D) to O(ND2). Since we always have N ≫ D in practice,
O(ND2) is approximately equal to O(N), i.e., growing linearly with the sequence length. As
discussed in [57, 8], a simple ReLU [1] is a good candidate for the kernel function, which satisfies
the requirement of being non-negative and easily decomposable. The attended output is formulated
with row-wise normalization, i.e.,

Yi =
ReLU(Qi)

∑N
j=1 ReLU(Kj )

TVj

ReLU(Qi)
∑N

j=1 ReLU(Kj )
T

. (3)

3.3 ACHILLES HEEL OF LINEAR ATTENTION

Despite the lower computational complexity, linear attention always presents a clear performance
drop compared to Softmax [8, 65, 57]. We also observe this drop when applying the linear attention
to video Transformers, as shown in Table 1 and 2. The lack of non-linear attention concentration

1For simplicity, we focus on the single head and ignore the scaling term
√
D that normalizes QKT.
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Figure 2: Attention matrix visualization. The data are extracted from Layer 11 of a validation
example in SSv2, and brighter color indicates larger values. (a) Pure linear attention cannot properly
concentrate on high attention scores like (d) Softmax. (b) After employing separate fixation to query
and key features, the attention becomes more concentrated on salient tokens. (c) With cooperative
feature fixation, the attention is further concentrated and closer to that of Softmax.

in the process of dot-product normalization is considered to be the primary cause [57, 8]. From
Fig. 2(a), we observe that the distribution of linear attention is smoother, i.e., it cannot concentrate
on high attention scores as that in Softmax (Fig. 2(d)). The non-concentration would incur the
existence of noisy/irrelevant information (e.g., a number of attention scores have been unexpectedly
highlighted in Fig. 2(a) compared with Softmax), which aggravates the attention diffusion in turn.
In this work, we propose to concentrate linear attention more appropriately. Specifically, we aim
to inhibit the non-essential parts of Q and K2 and highlight the role of discriminative features to
sharpen the results of linear attention, as discussed in Section 4.

4 METHOD

In this section, we will introduce the idea of feature fixation (Section 4.1 and Section 4.2) and
neighborhood association (Section 4.3). Feature fixation reweights the feature importance of the
query and key, and the cooperative fixation encourages different latent representations of a token to
collectively determine the feature importance. Neighborhood association makes use of the features
of nearby tokens as extra guidance for feature fixation.

4.1 SEPARATE FEATURE FIXATION

To highlight the essential parts of Q and K, their features should be reweighted in a non-linear
manner, i.e., keeping important features almost unchanged (assigning weights closer to 1) while
down-weighting (closer to 0) the non-essential activation. Inspired by the excitation strategy [31]
and context gating mechanism [52] in CNNs, we recalibrate the query and key in the feature di-
mension (see Fig. 3(a)). For simplicity, we denote ρ(Q) and ρ(K)3 as Q̆ and K̆ respectively. The
recalibrated results are

γq = σ(φq(Q̆)), γk = σ(φk(K̆)), Q̂ = γq ⊙ Q̆, K̂ = γk ⊙ K̆, (4)

where φq(·), φk(·): RN×D → RN×D learn a nonlinear interaction between feature channels with
D × D weights, which is beneficial for measuring feature importance [31]. σ(·) is the element-
wise Sigmoid function individually performed on each feature dimension, so that γq, γk ∈ RN×D

are fixation ratios (0-1) of Q and K respectively. ⊙ represents the element-wise multiplication.
Fig. 2(b) shows that after reweighting Q and K separately, the attention becomes more concentrated.
However, it still has an obvious gap with Softmax, i.e., the concentration on the most essential tokens
is not sufficiently sharpened. The separate learning of the fixation ratios of Q and K ignores their
internal connection that is critical to the comprehensive measurement of feature importance.

2This is because the attention matrix is calculated from Q and K. Even though the N ×N matrix does not
exist in linear attention, Q and K still take effect in normalization in Eq. 3.

3We empirically find that directly recalibrating the original Q and K without ReLU activation leads to
OOM in network training.
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Figure 3: Illustration of feature fixation. (a) Separate fixation learns the reweighting ratios of the
query and key individually. (b) Cooperative fixation facilitates the communication between the
query, key, and value, enabling a more comprehensive understanding of feature importance.

4.2 COOPERATIVE FEATURE FIXATION

The feature fixation ratios in Eq. 4 separately come from Q and K, which has the risk of defi-
ciently measuring the feature importance. In fact, the attention mechanism in Transformers nat-
urally projects each input token to three representations, i.e., Q, K, and V. Inspired by modern
contrastive learning [61, 69] and classic Gaussian Pyramid [50, 42], projecting an image to different
latent spaces would not destroy the image structure. For instance, in contrastive learning, an image
is projected to various spaces by random augmentation operations, while the latent features of these
augmented images are expected to share similar properties, both locally and globally [68]. Besides,
take SIFT [50] as an example of Gaussian Pyramid methods. Though an image is processed by
different Gaussian kernels, its salient pixels (i.e., keypoints in SIFT) have a high response across all
the Gaussian spaces.

Therefore, we propose to obtain the feature fixation ratio by facilitating the cooperation among Q,
K, and V. This is motivated by the above insight that the essential features of a token should be
discriminative among all its three latent spaces, and vice versa for unimportant information. To this
end, we adjust Eq. 4 as follows:

γ = σ
(
φ(Q̆, K̆, V̆)

)
, Q̂ = γ ⊙ Q̆, K̂ = γ ⊙ K̆, (5)

where φ(·) supplies a cooperation space of Q, K, V for the purpose of comprehensively estimating
the importance degree of each feature channel. Their cooperation, illustrated in Fig. 3(b), can be
achieved by aggregating their features, e.g., concatenation (used in our implementation) and addi-
tion. Moreover, we keep the fixation ratio identical when reweighting the query and key, which
is in line with our design philosophy that feature importance should be consistent across various
spaces. Fig. 2(d) shows that using our cooperative feature fixation leads to sharper attention con-
centration than separate learning of each fixation ratio. We validate in Section 5 that the enhanced
concentration can yield better accuracy.

4.3 NEIGHBORHOOD ASSOCIATION

The vision features are usually continuous in temporal [11, 40] and spatial [64, 55] neighbourhood.
Analogously, the prediction confidence increases if all the tokens within a local region can reach a
consensus for feature importance. Therefore, it is straightforward to introduce the features of tempo-
ral and spatial neighbour tokens as additional guidance. To enhance the communication within the
neighbourhood, we take advantage of the feature shift technique [81, 29, 7] that is parameter-free.
Considering that each query is attended by key-value pairs from other tokens [29, 7] for informa-
tion exchange, each K and V is reconstructed by sequentially mixing its temporally and spatially
adjacent tokens including itself (namely, temporal shift and spatial shift). The neighbourhood asso-
ciation facilitates the discrimination of feature importance and is proven to be effective in improving
the classification accuracy. Technical details can be found in the supplementary material.

5 EXPERIMENTS

In this section, we conduct extensive experiments to verify the effectiveness of our linear video
Transformer. We start with experimental settings in Section 5.1, e.g., the backbone, datasets, and
training/inference details. Subsequently, we show the competitive performance of our model to
SOTA methods in Section 5.2. The importance of each module and more comprehensive model
analysis are finally discussed in Section 5.3.
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Table 1: Comparison with the state-of-the-art on SSv2. ×T represents the number of input frames.
Our model achieves the best accuracy among linear video Transformers and its performance is also
comparable to Softmax-based Transformers and CNN methods.

Method Top-1 Top-5 ×T # Par. (M) Views GFLOPs

CNN
SlowFast [22] 63.1 87.6 8 53.3 1× 3 106.0
TSM [44] 63.3 88.2 16 42.9 2× 3 62.0
MSNet [37] 64.7 89.4 16 24.6 1× 1 67.0

Softmax

TSformer-HR [6] 62.5 - 16 121.4 1× 3 1703.0
MViT-B [20] 64.7 89.2 16 33.6 1× 3 70.5
ViViT-L [4] 65.4 89.8 32 352.1 4× 3 3992.0
XViT [7] 66.2 90.6 16 92.0 1× 3 850.0
Mformer [54] 66.5 90.1 8 109.0 1× 3 369.5

Linear

Linformer [78] 57.2 84.4 16 53.5 2× 3 294.2
Performer [14] 58.8 85.4 16 51.7 2× 3 250.6
Linear Trans. [34] 60.4 86.7 16 51.7 2× 3 243.3
cosFormer [57] 62.0 87.3 16 51.7 2× 3 250.6
RALA [90] 63.7 - 16 102.0 1× 3 257.6
Oformer [54] 63.8 - 16 102.0 1× 3 257.7
Ours 65.5 90.1 16 52.2 2× 3 257.8

5.1 EXPERIMENTAL SETUP

Backbone. We use the standard ViT architecture [19] as the backbone. Our default model, built on
top of XViT [7] and pretrained on ImageNet-21k [17], has the embedding dimension of 512, patch
size of 16, 12 Transformer layers each with 8 attention heads. We employ the factorized spatial-
temporal approach for calculating attention, which is shown to be effective in [6, 4, 46] owing to the
distinct learning in spatial and temporal dimensions.

Datasets. We evaluate our method on three popular video action recognition datasets. Something-
Something V2 (SSv2) [25], focusing more on temporal modelling, consists of ∼169k training and
∼24.7k validation videos in 174 classes. Kinectics-400 (K400) [10] contains ∼240k videos for train-
ing and ∼20k for validation with 400 human action classes. Kinectics-600 (K600) [9] is extended
from K400 with ∼370k training and ∼28k validation videos containing 600 categories.

Evaluation metrics. When comparing accuracy, we report Top-1 and Top-5 accuracy (%) on SSv2,
K400 and K600, and mean Average Precision (mAP) on Charades. We use GFLOPs for measuring
computational costs as in most video classification works, and also provide the throughput (vps:
videos per second) when available to reveal the actual processing speed.

Training phase. By default, we follow a similar training and augmentation strategy to XViT [7],
e.g., a 16 × 224 × 224 video input, SGD with the momentum as 0.9, and autoaugment [16] for
data augmentation. The base learning rate is 0.035 and scheduled with the cosine policy [49]. We
train the models with 35 epochs (5 for warm-up) and a batch size of 32 on 8 V100 GPUs using
PyTorch [53]. Detailed training configuration is listed in Appendix.

Inference phase. Following previous works [7, 6, 4, 54], we divide test videos into x×y views, i.e.,
x is the number of uniformly-sampled clips in the temporal dimension and y represents the number
of spatial crops, and obtain the final prediction by averaging the scores over all views. The views
corresponding to each dataset are shown in quantitative tables.

5.2 MAIN RESULTS

Methods to compare. We compare our model with six state-of-the-art linear attention variants, i.e.,
Oformer [54], LARA [90], Linformer [78], Performer [14], Linear Trans. [34], and cosFormer [57].
For Oformer and LARA, we report the results from their papers. The remaining four are proposed
in the NLP literature, so we re-implement them in our backbone and train with the same settings as
the proposed linear Transformer. We also compare representative Softmax-based quadratic Trans-
formers and CNN methods for reference only.
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Table 2: Comparison with the state-of-the-art on K400 and K600. Our model achieves the best
accuracy among linear video Transformers and its performance is also comparable to Softmax-based
Transformers and CNN methods.

Method K400 K600
Top-1 Top-5 Views Top-1 Top-5 Views

CNN
I3D [9] 71.1 90.3 - 71.9 90.1 -
X3D-M [21] 76.0 92.3 10× 3 78.8 94.5 10× 3
SlowFast [22] 77.0 92.6 10× 3 79.9 94.5 10× 3

Softmax

TSformer [6] 78.0 93.7 1× 3 79.1 94.4 1× 3
Mformer [54] 79.9 94.2 10× 3 81.6 95.6 10× 3
MViT-B [20] 80.2 94.4 1× 5 83.8 96.3 1× 5
XViT [7] 80.2 94.7 2× 3 84.5 96.3 1× 3
ViViT-L [4] 80.6 94.7 4× 3 83.0 95.7 4× 3

Linear

Linformer [78] 62.6 86.0 4× 3 67.5 88.5 4× 3
Performer [14] 67.0 88.8 4× 3 72.0 91.1 4× 3
Linear Trans. [34] 70.5 90.2 4× 3 74.5 92.3 4× 3
cosFormer [57] 73.0 91.1 4× 3 78.4 92.5 4× 3
RALA [90] 77.5 - 10× 3 - - -
Oformer [54] 77.5 - 10× 3 - - -
Ours 78.0 94.2 4× 3 84.1 96.2 4× 3

SSv2. Quantitative results on SSv2 are reported in Table 1. We achieve the best Top-1 accuracy
among linear models, and surpass the second best, i.e., Oformer [54], by 1.7% with nearly halved
parameters. Remarkably, we outperform several SOTA Softmax-based video Transformers, e.g.,
TSformer [6], ViViT [4], with significantly smaller FLOPs (>6 times). Our performance is also
comparable to XViT [7] and Mformer [54], e.g., our Top-5 (90.1%) is identical to that of Mformer.
CNN methods are generally less competitive although they tend to be faster with lighter networks.

K400 & K600. Our performance on K400 and K600 is consistent with that on SSv2, i.e., outper-
forming linear models and CNN methods to a clear margin, and being comparable to Softmax-based
Transformers. We achieve notably more competitive results on K600, e.g., only having a 0.4% Top-1
gap compared with the best quadratic Transformer XViT [7].

5.3 ABLATION STUDY AND MODEL ANALYSIS

We ablate primary design choices and analyze our model on SSv2 as it is a more challenging dataset
containing fine-grained motion cues [7, 54].

Order of feature fixation and neighbourhood association. From a broad view, we start with
the order of the two primary modules in our model. We find that neighbourhood association first
produces better accuracy than feature fixation first, i.e., 0.82% and 0.42% gain in Top-1 and Top-
5 accuracy respectively. This is reasonable because the shifted features from other tokens can be
further refined by the feature fixation mechanism. In the following, our default setting is always
neighbourhood association prior to feature fixation unless otherwise specified. Our analysis below
also follows the logic, i.e., studying the effect of neighbourhood association first.

Effect of neighbourhood association. Table 3 reports the results of applying spatial and temporal
feature shifts to the baseline model with pure linear attention in Eq. 3. The spatial shift brings a
0.32% gain in Top-1 accuracy while the temporal shift improves the performance by 2.51%. This is
because the SSv2 dataset is generally more dependent on temporal information. The results indicate
the effectiveness of using neighbourhood association to aggregate more features from spatially and
temporally nearby tokens. We provide the ablation on the shift size in the supplementary material.

Effect of feature fixation. In Table 3, we observe that feature fixation improves the baseline by
0.90%. Although the gain is smaller than the temporal shift4, it has its distinctive usefulness, i.e.,
reweighting feature importance of the token itself and the features from other tokens. The combi-
nation of feature fixation and neighbourhood association yields the best accuracy (surpassing the
baseline by 3.87%).

4Feature fixation is performed on the token itself where the acquired information is obviously less than that
from other temporal tokens
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Table 3: Effect of neighbourhood asso-
ciation and feature fixation. “SS”, “TS”,
and “FF” represent spatial shift, tem-
poral shift, and feature fixation respec-
tively. The baseline here is the model
with pure linear attention.

SS TS RW Top-1
× × × 61.67
✓ × × 61.99
× ✓ × 64.18
✓ ✓ × 64.28
× × ✓ 62.57
✓ ✓ ✓ 65.46

Table 4: Ablation on fixation options to different tar-
gets. “Sep.” means the feature fixation ratios are
separately generated. “Coo.” is the abbreviation of
cooperation. “FS” refers to sharing the fixation ra-
tio. The baseline here is the model that only uses the
neighbourhood association.

Targets Sep. Coo. FS Top-1
No fixation × × × 64.28
Q, K ✓ × × 64.46
Q, K × ✓ × 64.61
Q, K × ✓ ✓ 64.78
Q, K, V × ✓ × 65.33
Q, K, V × ✓ ✓ 65.46

Table 5: Effect of kernel func-
tions. The baseline here is our
default full model.

Kernel Top-1
ELU+1 [34] 60.42
Sigmoid 63.26
ReLU (ours) 65.46

Table 6: Effect of attention
types. The baseline here is
our default full model.

Attention Top-1
Joint [6, 4] 58.17
Windowed [7] 61.08
Factorized (ours) 65.46

Table 7: Performance of dif-
ferent model variants.
VariantsTop-1Top-5GFLOPs
S 63.48 88.68 129.1
H 65.67 90.27 530.2
HR 65.85 89.97 573.3
Default 65.46 90.11 257.8

Fixation options. We ablate the design options inherent in feature fixation in more details below, and
the baseline switches to the model that only uses the neighbourhood association. Since the attention
is calculated from Q and K, we start with the setting that Q and K learns to reweight features by
themselves without any cooperation, i.e., Eq. 4. From Table 4, we find that the operation only
contributes a minor performance gain, i.e., 0.18%. After enabling the cooperation between Q and
K, the accuracy is further improved by 0.15% (0.33% better than the baseline). Next, we add V to
the cooperation space, i.e., Eq. 5, and the performance is significantly enhanced by 1.05% compared
to the baseline. It indicates that simultaneously considering QKV is beneficial for discriminating
feature importance more comprehensively and appropriately. Sharing the fixation ratio can trigger
common feature representations like the weight sharing technique [51, 76], and is also proven to be
useful in improving the Top-1 accuracy in both QK and QKV cooperation cases. Moreover, it saves
∼0.1M parameters owing to the shared weights in learning the fixation ratio.

In addition to the channel-wise concatenation in our implementation, we also compare other typical
cooperation manners for QKV feature aggregation, i.e., element-wise addition and multiplication.
Both of them lead to ∼0.5% drop in Top-1 accuracy, so feature concatenation is our best option in
this case with only a minor increase in the parameter scale (∼0.05M).

Kernel function. We study the options of kernel functions in Table 5. Without a kernel function, the
network cannot converge properly. As indicated by [57, 34], the functions should be non-negative
to facilitate the aggregation of more positively-correlated features. We try two other typical non-
negative functions, i.e., ELU+1 [34] and Sigmoid, but their performance is clearly inferior to ReLU.

Attention pattern. By default, we employ the factorized spatial-temporal attention introduced in [6,
4]. Specifically, the attention is first computed spatially (tokens from the same frame) and then
temporally (tokens from different frames at the same spatial location). For comparison, we also
test another two popular attention patterns, i.e., joint attention [6, 4] and windowed attention [7].
As shown in Table 5, our choice of using factorized attention yields the best performance. Joint
attention is less comparable as it takes all tokens into account, inevitably containing more redundant
and noisy features. Windowed attention only aggregates local temporal information, which is less
sufficient than ours that collects tokens from the entire temporal domain.

Model variants. In addition to our default model, we provide three extra variants: 1) S: a shorter
video clip as 8 × 224 × 224; 2) H: a longer video clip as 32 × 224 × 224; and 3) HR: a larger
spatial resolution as 16 × 336 × 336. The results are displayed in Table 7. With longer video
input or a larger spatial resolution, the classification accuracy can be further improved because more
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Table 8: Throughput evaluation measured by videos/second. Our model maintains good efficiency
in various settings of input video frames and their spatial resolution.

# Frames 16 32 64 96
Resolution 224 336 448 224 336 448 224 336 448 224 336 448
Orthoformer [54] 1.79 1.59 1.41 1.71 1.56 1.15 1.53 0.97 OOM 1.25 0.83 OOM
Ours 10.25 8.57 5.40 8.38 4.68 3.22 6.58 3.75 2.81 4.48 2.30 OOM
Softmax 8.23 6.49 4.57 6.15 4.57 2.57 5.27 2.55 OOM 4.27 OOM OOM

temporal or spatial information is included. However, this always comes with a clear increase in
computational costs, e.g., GFLOPs (also see Table 8 for throughput comparison). Our default model
can better balance the accuracy and efficiency. In real-world applications, end-users can use any
variant as per their practical needs.

Efficiency analysis. To measure the actual computational efficiency, we report the throughput
(videos/second) in Table 8. For a fair comparison, the Orthoformer attention [54] (linear) and Soft-
max are incorporated into our backbone as a replacement of the proposed attention. All models
are tested on a 80G A100 GPU card with a batch size of 1, and their throughput is the average of
ten runs. Our model achieves the best efficiency in various settings of input video frames and their
spatial resolution. Remarkably, our good efficiency is maintained even with a larger video input,
e.g., 64 × 448 × 448 and 96 × 336 × 336, where the Orthoformer and Softmax tend to be out of
memory (OOM). Note that the Orthoformer attention presents significantly lower efficiency, which
is also observed in [90] and may be caused by the serial computation in landmark selection. It is
natural that all models are OOM when the input scale is extremely large, e.g., 96× 448× 448. This
can be partially solved by token sparsification [60, 27], and we leave it to the future work.

Table 9: Application to existing models. We
report the Top-1 accuracy. “NA” and “FF”
abbreviates for neighbourhood association and
feature fixation respectively.

Method Baseline +NA +FF +NA+FF
Performer [14] 58.82 61.57 59.97 63.50
Linear Trans. [34] 60.42 62.84 61.87 64.76
cosFormer [57] 61.18 63.23 61.94 64.97
XViT (Softmax) [57] 66.20 - 65.94 65.94

Application to existing models. Lastly, we
study the effect of applying neighbourhood associ-
ation and feature fixation to other linear attention
and Softmax in Table 9. The two modules can
clearly improve the performance of linear atten-
tion, e.g., Performer [14], Linear Trans. [34] and
cosFormer [57], and their combination makes the
three linear Transformers even closer to the SOTA
results. It validates the effectiveness of our method
in the linear setting. Nevertheless, there is no per-
formance gain in the Softmax-based Transformer,
e.g., XViT [7] (neighbourhood association is not added here because XViT already has the feature
shift operation). This is not surprising because it further reveals that our method is specially useful
to linear attention.

6 CONCLUSION

In this paper, we study the linear video Transformer for video classification to reduce the quadratic
computational costs of standard Softmax attention. We analyze the performance drop in linear at-
tention, and find that the lack of attention concentration to salient features is the underlying cause.
To deal with this issue, we propose to use feature fixation to the query and key prior to calculating
the linear attention. To measure feature importance more comprehensively, we facilitate the coop-
eration between QKV by aggregating their features when generating the fixation ratio. Moreover,
motivated by the fact that salient vision features are usually locally accumulative, we apply the fea-
ture shift technique to get additional feature guidance from spatially and temporally nearby tokens.
This, combined with feature fixation, produces state-of-the-art results among linear video Trans-
formers on three popular video classification benchmarks. Our performance is also comparable to
some quadratic Transformers with Softmax attention with fewer parameters and higher efficiency.
Our future work will focus on further accelerating the linear attention model without degrading the
general performance, e.g., token sparsification, network pruning, and so on.
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A APPENDIX

You may include other additional sections here.
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