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Abstract

Previous works have proved that recurrent neural networks (RNNs) are Turing-1

complete. However, in the proofs, it is assumed that the RNNs can have neurons2

with unbounded precision, which is neither practical in implementation nor biolog-3

ically plausible. To remove this assumption, we propose a dynamically growing4

memory module made of neurons of fixed precision. The memory module dynam-5

ically recruits new neurons when more memories are needed, and releases them6

when memories become irrelevant. To illustrate the memory module’s capacity, we7

prove that a 54-neuron bounded-precision RNN with growing memory modules can8

simulate any Turing Machines. Furthermore, we analyze the Turing completeness9

of both unbounded-precision RNNs and bounded-precision RNNs, revisiting and10

extending the theoretical foundation of RNNs.11

1 Introduction12

Symbolic (such as Turing machines) and sub-symbolic processing (such as adaptive neural networks)13

are two competing methods for representing and processing information, each with its pros and cons.14

An ultimate way to combine symbolic and sub-symbolic capabilities is by enabling the running of15

algorithms on a neural substrate, which means a neural network that can simulate a Universal Turing16

Machine. Previous works [1, 2, 3] have shown that this is possible – there exists a recurrent neural17

network (RNN) that can simulate a Universal Turing Machine. However, these proofs assumed18

a couple of neurons with unbounded precision that hold the same number of symbols used when19

processing the Turing machine’s tape. Here we provide another simulation of Turing machines by an20

RNN with bounded-precision neurons only.21

The general idea works as follows: the Turing machine’s tape is stored in a growing memory module22

- a stack of neurons with pushing and popping operations controlled by neurons in the RNN. The23

size of the growing memory module is determined by the usage of the tape – the RNN dynamically24

recruits new neurons when more memory is needed (i.e. for a task that is more memory-intensive) and25

releases them when memories become irrelevant. The neurons in the stack (except the top neuron)26

are not updated in the steps of RNN, saving computational cost for memories that are not in the focus27

of computing and thus do not require changing. The capability of the growing memory module is28

illustrated by the existence of a 54-neuron bounded-precision RNN with growing memory modules29

that can simulate any Turing machines.30

[4, 5] proposed an RNN with a memory bank, called Neural Turing Machine, that is fully differentiable31

and thus can be trained by gradient descent, sharing similarities with previous work [6]. Though32

inspired by Turing Machines, bounded-precision Neural Turing Machines are not Turing-complete33

since it has a fixed-size memory, but can likely be used for training the one we propose here.34

Our proposed growing memory module is inspired by biological memory systems. The process of35

dynamically recruiting new neurons when more memory is necessary is also observed in biological36
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memory systems. Neurogenesis is the process by which new neurons are produced in the central37

nervous system. It is most active during early development, but continuous throughout life. In38

adult vertebrates, neurogenesis is known to occur in the dentate gyrus (DG) of the hippocampal39

formation [7] and the subventricular zone (SVZ) of the lateral ventricles [8]. Since DG is well-known40

in neuroscience for its role in pattern separation for memory encoding [9, 10], this suggests that41

biological memory systems also dynamically recruit new neurons. The rate of neurogenesis in adult42

mice has been shown to be higher if they are exposed to a wider variety of experiences [11]. This43

further suggests a role for self-regulated neurogenesis in scaling up the number of new memories44

that can be encoded and stored during one’s lifetime without catastrophic forgetting of previously45

consolidated memories. Besides the mechanism of recruiting new neurons, the process of storing46

neurons in the growing memory module also shares some similarities with biological memory47

consolidation, a process by which short-term memory is transformed into long-term memory [12, 13].48

Compared to short-term memory, long-term memory is more long-lasting and robust to interference.49

This is similar to the neurons stored in the growing memory module – the values of these neurons50

(except the top neuron in the stack) remain unchanged and cannot be interfered by the RNN, providing51

a mechanism to store information stably.52

Simulation of a Turing machine by an RNN with growing memory modules poses a practical and53

biologically inspired way to combine symbolic and sub-symbolic capabilities. All neurons in the RNN54

and growing memory modules have fixed precision, and the enhanced RNN can thus be implemented55

easily. The number of neurons required in the RNN is constant in the tape’s length, and the time56

complexity of the simulation is linear in the number of steps required for the Turing machine to57

compute the output. And most interestingly, the number of computations required for the simulation58

does not grow with the memory size or the tape’s length since neurons in the growing memory module59

(except the top neuron in the stack) are not updated.60

Besides the design of the growing memory module, this paper also analyzes the Turing complete-61

ness of both unbounded-precision RNN and bounded-precision RNN, revisiting and extending the62

theoretical foundation of RNNs. For unbounded-precision RNNs, we prove that there exists a 40-63

neuron unbounded-precision RNN that is Turing-complete, which is the smallest Turing-complete64

RNN to date. For bounded-precision RNNs, we analyze the relationship between the number of65

neurons and the precision of an RNN when simulating a Turing machine, showing that the number of66

bounded-precision neurons required to simulate a Turing machine is linear in the tape’s length.67

The remainder of the paper is structured as follows. Section 2 describes the preliminary of the paper,68

including the definition of Turing machines and RNNs. Section 3 revisits and extends theories relating69

to simulating a Turing machine with unbounded-precision RNNs, proving the existence of a 40-70

neuron unbounded-precision RNN that is Turing-complete. Section 4 presents the growing memory71

module and proves the existence of a 54-neuron bounded-precision RNN with two growing memory72

modules that is Turing-complete. Section 5 establishes new theories relating to the relationship73

between the number of neurons and the precision of an RNN when simulating a Turing machine.74

Section 6 concludes the paper.75

2 Background and Notation76

A Turing machine is a 7-tupleM = (Q,Σ,Γ, δ, q0, B, F ), whereQ is a finite set of states, Σ is a finite77

set of input symbols, Γ is a finite set of tape symbols (note that Σ ⊂ Γ), δ : Q×Γ→ Q×Γ×{L,R}78

is the transition rule, q0 ∈ Q is the initial starting state, B is the blank symbol (note that B ∈ Γ79

but B /∈ Σ), and F ⊂ Q is the set of final state. We only consider deterministic Turing machines80

in this paper. The instantaneous description of a Turing machine can be represented by a 3-tuple81

(q, tl, tr) ∈ (Q,Γ∗,Γ∗) where q denotes the state, tl and tr denotes the string of symbols in the left82

and right tape respectively. We assume the leftmost symbol is the closest symbol to the read/write83

head for both tl and tr (that is, the left tape is reversed in the representation) and the infinite blank84

symbols are omitted. The set of all possible instantaneous description is denoted as X := (Q,Γ∗,Γ∗).85

The complete dynamic map ofM, denoted as PM : X → X , is defined by: 1. determinate the next86

transition by q′, r′, d = δ(q, r) where r is the leftmost symbol in tl, denoted by tl,1, and q′ is the87

next state; 2. replace r by r′; 3. move tl,1 to the leftmost of tr if d = L and tr,1 to the leftmost of88

tl if d = R (If there are no symbols left in tl or tr, append a blank symbol B to it). The partial89

input-output function ofM, denoted as P∗M : X → X , is defined by applying PM repeatedly until90

q ∈ F , and is undefined if it is not possible to have q ∈ F by applying PM repeatedly.91
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A recurrent neural network (RNN) is a neural network consisting of n neurons. The value of neuron92

i at time t ∈ {1, 2, ...}, denoted as xi(t) ∈ Q (Q is the set of rational numbers), is computed by93

an affine transformation of the values of all neurons in the previous state followed by an activation94

function σ, i.e. xi(t) = σ(
∑n

j=1 wijxj(t) + bi), where wij is the weight and bi is the bias; or in95

vector form:96

x(t) = σ(Wx(t− 1) + b), (1)
where x(t) ∈ Qn, W ∈ Rn×n and b ∈ Rn. This defines a mapping TW,b : Qn → Qn which97

characterizes an RNN. Also, we only consider the saturated-linear function in this paper; that is:98

σ(x) :=


0, if x < 0

x, if 0 ≤ x ≤ 1

1, if x > 1.

(2)

We call a neuron xi(t) to have precision p in base b if for all t > 0, xi(t) can be expressed as99 ∑p
k=1

ak(t)∏k
j=1 bj(t)

for some strings a(t) ∈ {0, 1, ..., b}p and b(t) ∈ {1, ..., b}p.100

For a string a, we use ak to denote the kth symbol in a and aj:k to denote the string ajaj+1...ak. For101

a function f that maps from a set Y to a subset of Y, we denote fn as the nth iterate of f where102

1 ≤ n <∞. For any two vectors x ∈ Rm,y ∈ Rn, we denote x⊕ y ∈ Rm+n as the concatenation103

of the two vectors.104

3 Turing Completeness of Unbounded-Precision RNNs105

To simulate a Turing machineM by an RNN, we first consider how to encode the instantaneous106

description (q, tl, tr) ∈ X by a vector of rational numbers, with which an RNN can be initialized.107

For the state q ∈ Q, we encode it with dlog2 |Q|e binary values, denoted as ρq : Q→ {0, 1}dlog2 |Q|e,108

with each possible combination of binary values representing a specific state.109

For the left tape tl ∈ Γ∗ and the right tape tr ∈ Γ∗, we use fractal encoding to encode them into110

two rational numbers. The fractal encoding we use is similar to [1, 2], but we generalize here111

to an arbitrary number of symbols. Without loss of generosity, assume that the tape symbols are112

Γ = {1, 2, ..., |Γ|}. Then, define the fractal encoding ρt : Γ∗ → Q by:113

ρt(tm) :=

|tm|∑
i=1

2tm,i − 1

(2|Γ|)i

 +
B

(2|Γ|)|tm| · (2|Γ| − 1)
. (3)

Example. Let |Γ| = 4, tl = (2, 3, 4, 2, 3), and B = 1. Then ρt(tl) = 3
8 + 5

82 + 7
83 + 3

84 + 5
85 + 1

86 +114
1
87 + 1

88 + ... = 3
8 + 5

82 + 7
83 + 3

84 + 5
85 + 1

85·7 . Note that the last term in (3) represents the infinite115

blank symbols of a tape.116

The particular choice of this fractal encoding is due to the easy manipulation of the top symbols, and117

the details can be found in Appendix A. The possible values of fractal encoding also have a close118

relationship with the Cantor set [1, 2].119

However, this fractal encoding assumes that neurons can have the same precision as |tm|, the tape’s120

size, in base 2|Γ|. As the tape in a Turing machine has an unbounded length, it means that we121

require neurons with unbounded precision. Note that this is different from infinite precision - at122

any steps of the Turing machine, the precision of ρt(tm) is finite. Still, the tape’s size may be large,123

and it is difficult to compute with the high-precision encoding. We will discuss how to remove this124

unbounded-precision assumption in Section 4.125

Finally, we need to have a specific encoding for the top symbol in each tape: ρr : Γ→ {0, 1}|Γ|−1,126

defined by:127

ρri (s) := 1{s > i}, (4)
where 1 ≤ i ≤ |Γ| − 1. That is, the i coordinate of ρr(s) is one if and only if the symbol s has a128

value larger than i. This fully encodes the symbol s and is used to encode both tl,1 and tr,1.129

Together, define the encoding function ρ : X → Q2|Γ|+dlog2 |Q|e+|Q||Γ|+5 by:130

ρ(q, tl, tr) = ρq(q)⊕ ρt(tl)⊕ ρt(tr)⊕ ρr(tl,1)⊕ ρr(tr,1)⊕ 0, (5)
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where 0 is a zero vector of size |Q||Γ| + 5. Also, let ρ−1 : ρ(X ) → X be the function such that131

ρ−1(ρ(x)) = x for all x ∈ X (note that ρ is injective), and we call ρ−1 the decoder function.132

It should be noted that ρq(q)⊕ρt(tl)⊕ρt(tr) is sufficient to decode the instantaneous description. We133

include ρr(tl,1)⊕ρr(tr,1)⊕0 only because it facilitates the operation of the RNN. For example, some134

neurons that are initialized with the zero values will compute the values required in the intermediate135

steps of updates.136

Given an instantaneous description x ∈ X , we can then initialize neurons in an RNN with values137

ρ(x). Then, it is possible to construct the parameters of RNN such that the update given by the RNN138

on these neurons is the same as the update given by the Turing machine:139

Theorem 1. Given a Turing machineM, there exists an injective function ρ : X → QN and an140

n-neuron unbounded-precision RNN TW,b : Qn → Qn, where n = 2|Γ|+ dlog2 |Q|e+ |Q||Γ|+ 5,141

such that for all instantaneous descriptions x ∈ X ,142

143

ρ−1(T 3
W,b(ρ(x))) = PM(x). (6)

The proof can be found in Appendix A. In other words, for any Turing machineM, there exists an144

RNN such that every three steps of the RNN yield the same result as one step of the Turing Machine.145

This means that we can simulate any Turing machines using an RNN with a linear time. To be146

specific, the partial input-output function of an RNN, denoted as T ∗W,b : QN → QN , is defined by147

applying T 3
W,b repeatedly until q ∈ F (where q is the state that the RNN simulates), and is undefined148

if it is not possible to have q ∈ F by applying T 3
W,b repeatedly. This is similar to the definition of149

P∗M. Based on this definition and Theorem 1, it follows that:150

Corollary 1.1. Given a Turing machineM, there exists an injective function ρ : X → Qn and an151

n-neuron unbounded-precision RNN TW,b : Qn → Qn, where n = 2|Γ|+ dlog2 |Q|e+ |Q||Γ|+ 5,152

such that for all instantaneous descriptions x ∈ X , the following holds: If P∗M(x) is defined, then153

154

ρ−1(T ∗W,b(ρ(x))) = P∗M(x), (7)
155

and if P∗M(x) is not defined, then T ∗W,b(ρ(x)) is also not defined.156

Moreover, if P∗M is defined and computed in T steps byM, then T ∗W,b(ρ(x)) is computed in 3T steps157

by the RNN.158

Corollary 1.1 shares some similarities with the Theorem 1 proposed in [1]. However, our theorem159

states that 3T , instead of 4T plus a linear order of length of the tape, is sufficient to simulate a Turing160

machine. Our theorem also gives a relationship between the number of neurons required for the RNN161

and the size of Q and Γ in the Turing machine. The RNN constructed is also a direct simulation of a162

Turing Machine instead of a two-stack machine with a binary tape.163

[14] proposed a Universal Turing Machine (UTM), a Turing machine with 6 states and 4 symbols164

denoted by U6,4, that can simulate any Turing machines in time O(T 6), where T is the number of165

steps required for the Turing machine (the one to be simulated) to compute the result. As U6,4 is also166

a Turing machine, we can thus apply Corollary 1.1 to simulate U6,4, leading to a Turing-complete167

RNN. Plugging in |Q| = 6 and |Γ| = 4, we obtain the following result:168

Theorem 2. There exists a 40-neuron unbounded-precision RNN that can simulate any Turing169

machines in O(T 6), where T is the number of steps required for the Turing machine to compute the170

result.171

Note that [1] proved that there exists a Turing-complete RNN with 1058 neurons, while [15] proposed172

a Turing-complete RNN with 52 neurons. However, [15] does not have a rigorous proof, and some173

key formulas seem to be missing. As far as we are aware, our proposed 40-neuron RNN is the174

smallest Turing-complete RNN to date.175

4 Turing Completeness of Bounded-Precision RNNs with Growing176

Memories177

In the following, we consider how to remove the assumption of unbounded precision that is required178

in all the results in Section 3. If we assume all neurons to have precision bounded by p in base 2|Γ|,179
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(a) An RNN with a growing memory module (b) Pushing with dynamic pointer

Figure 1: (a) An RNN with a growing memory module. The RNN controls the pushing and popping
of the stack by two neurons k(t) and z(t). (b) Illustration of pushing in growing memory module as a
dynamic pointer. Orange (dark) and gray (light) circles represent non-zero neurons and zero neurons
respectively. i. Before RNN update, k(t− 1) = 0. ii. RNN set k(t) = c where c > 0 is the value to
be pushed. iii. One zero neuron is appended to the sequence since there are no zero neurons left. iv.
Both z and k point to different neurons in the sequence, ready to be read by other neurons in the next
update of RNN.

then the tape can be encoded by d|tm|/pe neurons using fractal encoding, where m ∈ {l, r}. We180

do this by encoding every p symbols in the tape with a single neuron. However, notice that most of181

these neurons do not require updating when simulating a single step of the Turing machine. This182

is similar to how most parts of the tape are not updated during one step of a Turing machine. It is183

thus not efficient to include all these neurons (which may be large in number) in the RNN. Instead,184

we propose a growing memory module that can be equipped to an RNN to manipulate neurons in a185

stack-like mechanism:186

Definition 3. A growing memory module is a stack of non-zero neurons with push and pop operations187

controlled by two neurons in an RNN, denoted as push neuron k(t) and pop neuron z(t), in the188

following way: for every step t after the RNN finished updating the values of neurons, (i) if k(t) > 0,189

then a new neuron of value k(t) is pushed to the stack and k(t) is set to 0; (ii) if z(t) = 0 and the190

stack is not empty, then the top neuron is popped from the stack and z(t) is set to the value of the top191

neuron in the updated stack; (iii) if z(t) = 0 and the stack is empty, then z(t) is set to a default value192

c.193

With this definition, an RNN with a growing memory module is a mapping TW,b : (QN ,Q∗) →194

(QN ,Q∗) where the first element of the tuple corresponds to values of neurons in the RNN and the195

second element of the tuple corresponds to the stack of the growing memory module. We can also196

equip an RNN with multiple growing memory modules, with each module having its own push and197

pop neurons controlled by the RNN. For example, an RNN with two growing memory modules198

defines a mapping TW,b : (QN ,Q∗,Q∗)→ (QN ,Q∗,Q∗).199

We can also view the growing memory module as a way of dynamically pointing to a sequence of200

neurons - consider a sequence of non-zero neurons appended by a zero neuron. z(t) can be viewed201

as the pointer for the last non-zero neuron in the sequence, and k(t) can be viewed as the pointer202

for the zero neuron in the sequence. Also, let m be the number of zero neurons in the sequence. If203

m = 0, then we add one zero neuron at the end of the sequence. If m > 1, then we remove m− 1204

zero neurons from the end of sequence. In this way, k(t) is always defined. An illustration of this is205

shown in Figure 1.206

The advantage of the proposed growing memory module is that it can dynamically recruit new207

neurons when more memories are needed, and releases them when memories become irrelevant. We208

therefore do not need to estimate the number of neurons required before simulating a Turing machine.209

It also saves computational cost significantly since neurons in the stack (except the top neuron) are210

not updated.211
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Based on the growing memory module, we can construct an RNN with bounded-precision neurons212

that can simulate any Turing Machines. We require two growing memory modules in the RNN: one213

for the left tape and one for the right tape. Similar to the previous section, we first describe how we214

can encode the instantaneous description (q, tl, tr) ∈ X by a vector of rational numbers and two215

stacks, with which an RNN and its growing memory modules can be initialized. In the following216

discussion, we assume that all neurons have precision bounded by p ≥ 2 in base 2|Γ|; that is, each217

neuron can encode p symbols at most.218

Both the state q and the top symbols tl,1, tr,1 are encoded with binary values using the same method219

as in Section 3. For the tape tm (m ∈ {l, r}), we define the fractal encoding ρt : Γ∗ → Q by:220

ρt(t) :=

|t|∑
i=1

2ti
(2|Γ|)i

, (8)

which is the same as (3) but with the encoding for infinite blank symbols removed. Then, we encode221

the tape tm into a stack of neurons as follows: First, encode the rightmost p symbols of it with ρt and222

push it into an empty stack, denoted as Mm. Then, encode the next rightmost p symbols and push it223

to Mm again, and repeat until there are no more than p symbols left in the tape. Denote this encoding224

function for the tape as ρM : Γ∗ → Q∗. The remaining symbols in the tape, denoted as tm,1:h(|tm|),225

where h(y) := ((y − 1) mod p) + 1, will be encoded with fractal encoding ρt as well but appears in226

the initialization values of the RNN’s neurons instead of the stacks.227

The general idea is that the symbols closest to the read/write head (tm,1:h(|tm|)) resides in the RNN228

since they are the symbols that require updating, and the remaining symbols will be stored in a stack.229

If the number of symbols residing in the RNN reaches 0 or p, then we pop or push from the stack230

respectively to ensure that at least 1 and at most p symbols reside in the RNN. It is also interesting to231

note that the kth neuron in the stack (from the top) will require at least kp steps of the Turing machine232

before it is changed, so the values of neurons near the bottom of the stack will not be changed for233

many steps.234

Finally, we need to encode h(|tm|), which keeps track of the number of symbols residing in the RNN,235

such that the RNN can know when to push or pop from the stack. We use the following function:236

ρh : {1, 2, ..., p} → Q by:237

ρh(y) =
y

p+ 1
. (9)

Together, define the encoding function ρ : X → (Q2|Γ|+dlog2 |Q|e+|Q||Γ|+19,Q∗,Q∗) by:238

ρ(q, tl, tr) =(ρq(q)⊕ ρt(tl,1:h(|tl|))⊕ ρ
t(tr,1:h(|tr|))⊕ ρ

t(tl,h(|tl|)+1:h(|tl|)+p)⊕
ρt(tr,h(|tr|)+1:h(|tr|)+p)⊕ ρr(tl,1)⊕ ρr(tr,1)⊕ ρh(h(|tl|))⊕ ρh(h(|tr|))⊕
0, ρM (tl), ρ

M (tr)), (10)

where 0 is a zero vector of size |Q||Γ| + 15. The first element of the tuple is for initializing the239

neurons in the RNN, while the second and third element of the tuple is for initializing stacks of240

the two growing memory modules. Note that all encoded values have precision of p in the above241

definition. Similar to the previous section, ρ is injective and so we can define the decoder function242

ρ−1 : ρ(X )→ X .243

With the new encoder function ρ and the growing memory module, we can prove an alternative244

version of Theorem 1 that only requires an RNN with bounded precision:245

Theorem 4. Given a Turing machineM, there exists an injective function ρ : X → (Qn,Q∗,Q∗)246

and an n-neuron p-precision (in base 2|Γ|) RNN with two growing memory modules TW,b :247

(Qn,Q∗,Q∗) → (Qn,Q∗,Q∗), where n = 2|Γ| + dlog2 |Q|e + |Q||Γ| + 19 and p ≥ 2, such248

that for all instantaneous descriptions x ∈ X ,249

250

ρ−1(T 3
W,b(ρ(x))) = PM(x). (11)

Proof. The detailed proof is in Appendix B. To illustrate the construction of the RNN, the parameters251

for the neuron initialized with ρh(h(|tl|)), called the left-selector neuron sl(t), will be described252

here.253
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We assume all neurons in the RNN are initialized with ρ(x) at time t = 1. The selector neuron sl(t)254

encodes the number of left-tape symbols residing in the RNN. In three steps of an RNN, we need255

to update its value from sl(1) = h(|tl|)/(p+ 1) to sl(4) = h(|t′l|)/(p+ 1), where t′l is the left tape256

after one step of the Turing machine. First, notice that h(|t′l|) can be expressed as:257

h(|t′l|) =


h(|tl|)− 1, if d = L and h(|tl|) ≥ 2

p, if d = L and h(|tl|) = 1

h(|tl|) + 1, if d = R and h(|tl|) ≤ p− 1

1, if d = R and h(|tl|) = p,

(12)

where d is the direction that the Turing machine is moving. For example, if the Turing machine is258

moving left, then there will be one less left-tape symbol residing in the RNN after one step of the259

Turing machine. However, if there are no left-tape symbols left in the RNN, the top neuron will be260

popped from the left-tape stack to the RNN, so there will be p left-tape symbols residing in the RNN261

instead. A similar process holds when the Turing machine is moving right.262

Then we consider how to implement (12) with an RNN: Define stage neurons as:263

c1(t+ 1) = σ(1− c1(t)− c2(t)), (13)
c2(t+ 1) = σ(c1(t)), (14)

with both neurons initialized to be zero. Define c(t) := [c1(t), c2(t), c3(t)] where c3(t) := 1 −264

c1(t) − c2(t), then c(1) = [0, 0, 1]; c(2) = [1, 0, 0]; c(3) = [0, 1, 0]. These stage neurons signal265

which one of the three steps that the RNN is in.266

Also, in the construction of our RNN, there exists a linear sum of neurons, denoted as, dm(t) =267

[dl(t), dr(t)], such that if the Turing machine is moving left, d(1) = [0, 0]; d(2) = [1, 0]; d(3) =268

[0, 0]; and if the Turing machine is moving right, d(1) = [0, 0]; d(2) = [0, 1]; d(3) = [0, 0]; this269

signals which direction the Turing machine is moving to (formulas of dm(t) appears in Appendix B).270

Then consider the following update rule for the left-selector neurons:271

sl(t+ 1) = σ(sl(t) + dr(t)− dl(t)− ps′l(t) + ps′′l (t)), (15)

s′l(t+ 1) = σ((p+ 1)sl(t) + dr(t)− p− c2(t)− c3(t)), (16)

s′′l (t+ 1) = σ(2− (p+ 1)sl(t)− dr(t)− c2(t)− c3(t)), (17)

where sl(1) = h(|tl|)/(p+ 1), s′l(1) = s′′l (1) = 0. It can be verified that sl(4) = h(|t′l|)/(p+ 1) as272

defined by (12), completing the proof for sl(t). The proof for the remaining neurons can be found in273

Appendix B.274

Similar to Corollary 1.1, it follows that:275

Corollary 4.1. Given a Turing machineM, there exists an injective function ρ : X → (Qn,Q∗,Q∗)276

and an n-neuron p-precision (in base |2Γ|) RNN with two growing memory modules TW,b :277

(Qn,Q∗,Q∗) → (Qn,Q∗,Q∗), where n = 2|Γ| + dlog2 |Q|e + |Q||Γ| + 19 and p ≥ 2, such278

that for all instantaneous descriptions x ∈ X , the following holds: If P∗M(x) is defined, then279

280

ρ−1(T ∗W,b(ρ(x))) = P∗M(x), (18)
281

and if P∗M(x) is not defined, then T ∗W,b(ρ(x)) is also not defined.282

Moreover, if P∗M(x) is defined and computed in T steps byM, then T ∗W,b(ρ(x)) is computed in 3T283

steps by the RNN.284

Finally, applying Corollary 4.1 to U6,4, we obtain:285

Theorem 5. There exists a 54-neuron p-precision (in base 8) RNN with two growing memory modules286

that can simulate any Turing machines in O(T 6), where T is the number of steps required for the287

Turing machine to compute the result and p ≥ 2.288

The architecture of the Turing-complete 54-neuron RNN follows the one used in the proof of Theorem289

4, which can be illustrated as a 4-layer model as shown in Figure 2.290
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Figure 2: The architecture of the Turing-complete 54-neuron RNN with two growing memory
modules. Blue (solid) lines denote bottom-up connections, and red (dotted) lines denote top-down
connections. Notable neurons include: state neurons - represent the current state; tape neurons -
represent the tape symbols near the read/write head; selector neurons - represent the number of
symbols residing in the RNN; push and pop neurons - control the pushing and popping of left-tape
and right-tape stacks; stage neurons - represent the current stage and inhibits computation of other
neurons if the neurons do not require updating in a stage. A detailed description of these neurons can
be found in Appendix B.

5 Turing Completeness of Bounded-Precision RNNs291

As discussed previously, it is inefficient to update all neurons that encode the tape in an RNN, since292

most of the neurons do not require updating. However, we do not need the growing memory modules293

if we update all neurons at the same time. To extend the theoretical foundation of RNNs, we also294

construct a bounded-precision RNN to simulate a Turing machine without any growing memory295

modules.296

We define a Turing machine with a bounded tape as a Turing machine that halts if the read/write head297

reaches the end of the tape, which is assumed to have a finite size. Then it is possible to construct an298

RNN with O(dF/pe) p-precision neurons to simulate a Turing machine with a bounded tape of size299

F :300

Theorem 6. Given a Turing machineM with a bounded tape of size F , there exists an injective301

function ρ : X → QN and an n-neuron p-precision (in base |2Γ|) RNN TW,b : Qn → Qn, where302

n = O(dF/pe) and p ≥ 2, such that for all instantaneous descriptions x ∈ X ,303

304

ρ−1(T 3
W,b(ρ(x))) = PM(x). (19)

The proof can be found in Appendix C. The general idea of the proof is to implement the growing305

memory module in Section 4 by an RNN as well and place all neurons inside the RNN. A corollary306

similar to Corollary 1.1 and 4.1 follows and is omitted here.307

This theorem shows that there is a trade-off between the number of neurons and precision when308

trying to simulate a Truing machine with an RNN. It also establishes that with the same precision309

p, an RNN with more neurons has a larger capability since it can simulate a Turing machine with310

a larger tape. Taking it to the extreme, we can use an infinite-neuron bounded-precision RNN to311

simulate U6,4, which has an unbounded tape. This leads to the following theorem:312

Theorem 7. There exists an infinite-neuron bounded-precision RNN that can simulate any Turing313

machines in O(T 6), where T is the number of steps required for the Turing machine to compute the314

result.315

6 Discussion and Conclusion316

It is inevitable that either unbounded precision (Theorem 2) or an infinite number of neurons317

(Theorem 7) is required to construct a Turing-complete RNN, since the tape in a Turing machine318
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has an unbounded length, and an RNN can only encode information by neurons. However, both319

unbounded precision or infinite neurons are not practical in implementation. This highlights a major320

limitation of RNNs. To provide a practical solution, we propose a growing memory module that321

allows an RNN to control a stack with two neurons and prove the Turing completeness of the enhanced322

RNN (Theorem 5).323

All the RNNs consider in this paper have a fixed parameter. Given the input and target output, we may324

also consider learning the parameters of RNNs with error backpropagation. However, the operation of325

the growing memory module is not fully differentiable. Nonetheless, it may be possible to construct326

a differentiable version of the growing memory module and learn the parameters of RNNs directly,327

which is left for future work. The growing memory module may facilitate RNNs to learn tasks that328

are more memory-intensive.329

In conclusion, we prove the Turing completeness of a 40-neuron unbounded-precision RNN, which330

is the smallest Turing-complete RNN to date. We propose a novel growing memory module that331

can be equipped to an RNN to remove the unbounded-precision requirement. With the growing332

memory module, a 54-neuron bounded-precision RNN can be Turing-complete. We also analyze the333

relationship between the number of neurons and the precision of an RNN when simulating a Turing334

machine. Finally, we prove the Turing completeness of an infinite-neuron bounded-precision RNN.335
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