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Abstract

Deep lifelong reinforcement learning is a new and interesting area that has only been
explored recently. One method to achieve lifelong learning under the deep lifelong learning
framework is to introduce an Experience Replay Buffer (ERB) to encapsulate knowledge
from previous rounds and to be used in future training. However, the ERB size can vary
in size and can be very large. To that end, we propose a coreset based ERB compression
method to compress the ERBs while preserving previous knowledge. We tested the coreset
ERB based lifelong deep reinforcement learning on the brain tumor segmentation (BRATS)
dataset for the task of ventricle localization. The conventional and coreset lifelong learning
models (at compression ratios of 10X, 20X, 30x, and 40X) were evaluated to iteratively
train on a sequence of 10 different imaging environments. The coreset lifelong learning
models with compression ratios of 10X, 20X, 30x, and 40X localized the ventricle with
a mean pixel distance of 12.93, 13.46, 17.75, and 18.55, respectively compared to the
baseline performance of 10.87 for the conventional lifelong learning model. Our results
demonstrate that the proposed coreset based ERB compression method can achieve up to
20X compression without a significant drop in performance.
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