
Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

PARETO-EFFICIENT DECISION AGENTS FOR OFFLINE
MULTI-OBJECTIVE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of multi-objective reinforcement learning (MORL) is to learn poli-
cies that simultaneously optimize multiple competing objectives. In practice, an
agent’s preferences over the objectives may not be known apriori, and hence, we
require policies that can generalize to arbitrary preferences at test time. In this
work, we propose a new data-driven setup for offline MORL, where we wish
to learn a preference-agnostic policy agent using only a finite dataset of offline
demonstrations of other agents and their preferences. The key contributions of
this work are two-fold. First, we introduce D4MORL, (D)atasets for MORL that
are specifically designed for offline settings. It contains 1.8 million annotated
demonstrations obtained by rolling out reference policies that optimize for ran-
domly sampled preferences on 6 MuJoCo environments with 2-3 objectives each.
Second, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline
MORL algorithms that builds and extends Decision Transformers (Chen et al.,
2021) via a novel preference-and-return conditioned policy. Empirically, we show
that PEDA closely approximates the behavioral policy on the D4MORL bench-
mark and provides an excellent approximation of the Pareto-front with appropriate
conditioning, as measured by the hypervolume and sparsity metrics.

1 INTRODUCTION

We are interested in learning agents for multi-objective reinforcement learning (MORL) that opti-
mize for one or more competing objectives. This setting is commonly observed in many real-world
scenarios. For instance, an autonomous driving car might trade off high speed and energy savings
depending on the user’s preferences. The car will move fast for users prefer speed, or keep a steady
speed for uses who try to save energy. One key challenge with MORL is that different users might
have different preferences on the objectives and systematically exploring policies for each preference
might be expensive or even impossible. In the online setting, prior work considers several approx-
imations based on learning an ensemble of policies based on enumerating preferences (Mossalam
et al., 2016a, Xu et al., 2020), or extensions of single-objective algorithms such as Q-learning to
vectorized value functions (Yang et al., 2019).

We introduce the setting of offline multi-objective reinforcement learning for high-dimensional state
and action spaces, where our goal is to train an MORL policy agent using an offline dataset of
demonstrations with known preferences. Similar to the single-task setting, offline MORL can utilize
auxiliary logged datasets to minimize interactions when deploying agents, thus improving data ef-
ficiency and minimizing interactions when deploying agents in high-risk settings. In addition to its
practical utility, offline RL (Levine et al., 2020) has enjoyed major successes in the last few years
(Kumar et al., 2020, Kostrikov et al., 2021, Chen et al., 2021) on challenging high-dimensional en-
vironments for continuous control and game-playing. Our contributions in this work are two-fold in
introducing benchmarking datasets and a new family of MORL, as described below.

We introduce Datasets for Multi-Objective Reinforcement Learning (D4MORL), a collection of 1.8
million trajectories on 6 multi-objective MuJoCo environments (Xu et al., 2020) with two or three
objectives each. For each environment in D4MORL, we collect demonstrations from 2 pretrained
behavioral agents: expert and amateur, where the relative expertize is measured empirically via
their hypervolumes. Furthermore, we also include 3 kinds of preference distributions with varying
entropies to expose additional data-centric aspects for downstream benchmarking.

1

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Next, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline MORL algorithms
that extends Decision Transformer (DT) (Chen et al., 2021) to the multi-objective setting. For
MORL, we introduce a novel preference and return conditioned policy network and train it via a
supervised learning loss. We find PEDA performs exceedingly well on D4MORL and closely ap-
proximates the reference Pareto-frontier of the behavioral policy used for data generation. In the
multi-objective HalfCheetah environment, compared with an upper bound on the hypervolume of
5.79 ˆ 106 achieved by the behavioral policy, PEDA achieves a hypervolume of 5.77 ˆ 106 on the
Expert and 5.76 ˆ 106 on the Amateur datasets.

2 PRELIMINARIES

Setup and Notation. We operate in the general framework of multi-objective Markov decision
process (MOMDP) with linear preferences (Wakuta, 1995). An MOMDP is represented by the tuple
xS,A,P,R,Ω, f, γy. At each timestep t, the agent with a current state st P S takes an action
at P A to transition into a new state st`1 with probability Ppst`1|st,atq and observes a reward
vector rt “ Rpst,atq P Rn. Here, n is the number of objectives. The vector-valued return R P Rn

of an agent is given by the discounted sum of reward vectors over a time horizon, R “
ř

t γ
trt. We

also assume that there exists a linear utility function f and a space of preferences Ω that can map the
reward vector rt and a preference vector ω P Ω to a scalar reward rt, i.e., rt “ fprt,ωq “ ω⊺rt.
The expected vector return of a policy π is given an Gπ “ rGπ

1 , G
π
2 , . . . , G

π
ns⊺ where the expected

return of the ith objective is given as Gπ
i “ Eat`1„πp¨|st,ωqr

ř

t Rpst,atqis for some predefined time
horizon and preference vector ω. The goal is to train a multi-objective policy πpa|s,ωq such that
the expected scalarized return ω⊺ Gπ “ Erω⊺ ř

t Rpst,atqs is maximized.

Pareto Optimality. In MORL, one cannot optimize all objectives simultaneously, so policies are
evaluated based on the Pareto set of their vector-valued expected returns. Consider a preference-
conditioned policy πpa|s,ωq that is evaluated for m distinct preferences ω1, . . . ,ωm, and let the
resulting policy set be represented as tπpup“1,...,m, where πp “ πpa|s,ω “ ωpq, and Gπp is the
corresponding unweighted expected return. We say the solution Gπp is dominated by Gπq when
there is no objective for which πq is worse than πp, i.e., Gπp

i ă G
πq

i for @i P r1, 2, . . . , ns. If a
solution is not dominated, it is part of the Pareto set denoted as P . The curve traced by the solutions
in a Pareto set is also known as the Pareto front. In MORL, our goal is to define a policy such that
its empirical Pareto set is a good approximation of the true Pareto front. While we do not know
the true Pareto front for many problems, we can evaluate the Pareto set P based on two metrics,
hypervolume and sparsity. These two metrics are used by Xu et al., 2020. We define and discuss
them in Appendix F.

3 D4MORL: DATASETS FOR OFFLINE MULTI-OBJECTIVE REINFORCEMENT
LEARNING

In offline RL, the goal of an RL agent is to learn the optimal policy using a fixed dataset without
any interactions with the environment (Levine et al., 2020). This perspective brings RL closer to
supervised learning, where the presence of large-scale datasets has been foundational for further
progress in the field. Many such data benchmarks exist for offline RL as well; a notable one is
the D4RL (Fu et al., 2020) benchmark for continuous control which has led to the development of
several state-of-the-art offline RL algorithms (Kostrikov et al., 2021; Kumar et al., 2020; Chen et al.,
2021) that can scale favorably even in high dimensions. To the best of our knowledge, there are no
such existing benchmarks for offline MORL.

In this paper, we introduce Datasets for Multi-Objective Reinforcement Learning (D4MORL), a
large-scale benchmark for offline MORL. Our benchmark consists of offline trajectories from 6
multi-objective MuJoCo environments including 5 environments with 2 objectives each viz. MO-
Ant, MO-HalfCheetah, MO-Hopper, MO-Swimmer, MO-Walker2d, and one environment with three
objectives: MO-Hopper-3obj. The objectives are conflicting for each environment, please see Ap-
pendix A for more details on the semantics of the target objectives. These environments were first
introduced in Xu et al. (2020) for online MORL.

2

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

(a) MO-Ant (b) MO-HalfCheetah (c) MO-Hopper (d) MO-Swimmer (e) MO-Walker2d

Figure 1: Empirical returns for expert and amateur trajectory datasets for the two-objective environ-
ments in D4MORL. For each environment and dataset, we randomly plot returns for 300 trajectories.

3.1 TRAJECTORY SAMPLING

The quality of the behavioral policy used for sampling trajectories in the offline dataset is a key factor
for benchmarking downstream offline RL algorithms. For a MOMDP, a reference expert policy (or
set of policies) should reflect the optimal returns for all possible preferences in the preference space.

We use Prediction-Guided Multi-Objective Reinforcement Learning (PGMORL), a state-of-the-art
MORL algorithm for defining reference expert policies. PGMORL (Xu et al., 2020) uses evolution-
ary algorithms to train an ensemble of policies to approximate the Pareto set. Each reference policy
in the ensemble is associated with a unique preference; for any new preference, it is mapped to the
closest preference in the reference set. Given a desired preference, we define two sets of behavioral
policies:

1. Expert Dataset: We find the best reference policy in the policy ensemble, and always
follow the action taken by the reference policy.

2. Amateur Dataset: As before, we first find the best reference policy in the policy ensem-
ble. With a fixed probability p, we randomly perturb the actions of the reference policies.
Otherwise, with probability 1 ´ p, we take the same action as the reference policy. In
D4MORL, we set p “ 0.65.

Further details are described in Appendix C. In Figure 1, we show the returns of the trajectories
rolled out from the expert and amateur policies for the 2 objective environments evaluated for a
uniform sampling of preferences. We can see that the expert trajectories typically dominate the
amateur trajectories, as desired. For the amateur trajectories, we see more diversity in the empirical
returns for both objectives under consideration. The return patterns for the amateur trajectories vary
across different environments providing a diverse suite of datasets in our benchmark.

3.2 PREFERENCE SAMPLING

The coverage of any offline dataset is an important factor in dictating the performance of downstream
offline RL algorithms (Levine et al., 2020). For MORL, the coverage depends on both the behavioral
MORL policy as well as the distribution of preferences over which this policy is evaluated. We use
the following protocols for sampling from the preference space Ω. First, we restrict our samples to
lie within a physically plausible preference space Ω˚ Ď Ω covered by the behavioral policy πβ . For
instance, the MO-Hopper agent can never gain running rewards without leaving the floor. Thus, the
preference of 100% running and 0% jumping is excluded from our preference sampling distribution.

Second, we are primarily interested in offline trajectories that emphasize competition between mul-
tiple objectives rather than focusing on a singular objective. To enforce this criteria, we define
3 sampling distributions concentrated around the centroid of the preference simplex. The largest
spread distribution samples uniformly from Ω˚ and is denoted as High-Entropy (High-H). Next,
we have a Medium-Entropy (Med-H) distribution specified via samples of Dirichlet distributions
with large values of their concentration hyperparameters (aka α). Finally, we have a Low-Entropy
(Low-H) distribution that is again specified via samples of Dirichlet distributions, but with low val-
ues of their concentration hyperparameters. We illustrate the samples for each of the preference
distributions along with their empirical entropies and other details in Figure 2 from Appendix B.
By ensuring different levels of coverage, we can test the generalizability of an MORL policy to

3

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

preferences unseen during training. In general, we expect Low-H to be the hardest of the three
distributions due to its restricted coverage, followed by Med-H and High-H.

4 PARETO-EFFICIENT DECISION AGENTS (PEDA)

In this section, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline multi-
objective RL agents that aims to achieve Pareto-efficiency by extending Decision Transform-
ers (Chen et al., 2021) into multi-objective setting. Our models extend from the architecture of De-
cision Transformers (DT) and its variant, Reinforcement Learning Via Supervised Learning (RvS).

4.1 MULTI-OBJECTIVE REINFORCEMENT LEARNING VIA SUPERVISED LEARNING

In PEDA, our goal is to train a single preference-conditioned agent for offline MORL. By includ-
ing preference conditioning, we enable the policy to be trained on arbitrary offline data, including
trajectories collected from behavioral policies that are associated with alternate preferences. To pa-
rameterize our policy agents, we extend the DT and RvS architectures to include preference tokens
and vector-valued returns. We refer to such preference-conditioned extensions of these architectures
as MODT(P) and MORVS(P) respectively, which we describe next.

Preference Conditioning. Naively, we can easily incorporate the preference ω into DT by adding
this token for each timestep and feeding it a separate embedding layer. However, empirically we
find that such a model design tends to ignore ω and the correlation between the preferences and
predicted actions is weak. Therefore, we propose to concatenate ω to other tokens before any layers
in MODT(P). Concretely, we define s˚ “ s

À

ω, a˚ “ a
À

ω, and g˚ “ g
À

ω where
À

denotes the concatenation operator. Hence, triples of s˚, a˚, g˚ form the new trajectory. As for
MORVS(P), we concatenate the preference with the states and the average RTGs by default and the
network interprets everything as one single input.

Multi-Objective Returns-to-Go. Similar to RTG for the single objective case, we can define
vector-valued RTG as gt “

řT
t1“t rt1 Given a preference vector ω, we can scalarize the total returns-

to-go as ĝt “ ωTgt. In principle, the scalarized RTG ĝt and preference vector ω can recover the
vector-valued RTG gt. However, empirically we find that directly feeding MODT/MORVS with the
preference-weighted RTG vector gt d ω is slightly preferable for stable training, where d denotes
the elementwise product operator.

Another unique challenge in the MORL setting concerns the scale of different objectives. Since
different objectives can signify different physical quantities (e.g., energy and speed), the choice
of scaling can influence policy optimization. We adopt a simple normalization scheme, where the
returns for each objective are normalized by subtracting the minimum observed value for that ob-
jective and dividing it by the range of values (max-min). Note that the maximum and minimum are
computed based on the offline dataset and hence, they are not necessarily the true min/max objective
values. For evaluating the hypervolume and sparsity, we use the unnormalized values so that we can
make comparisons across different datasets that may have different min/max boundaries.

5 EXPERIMENTS

In this section, we evaluate the performance of PEDA on D4MORL benchmark. First, we investigate
the benefits of preference conditioning by evaluating on MODT and MORVS where no preference
information is available while still using multi-objective return-to-go. We denote our methods with
preference conditioning as MODT(P) and MORVS(P). Then, we compare our methods with classic
imitation learning that uses supervised loss to train a mapping from states (w/ or w/o concatenating
preferences) to actions. We use behavioral cloning (BC) here and train multi-layer MLPs as models
named BC (w/o preference) and BC(P) (w/ preference). Finally, we modify the network archi-
tecture of Conservative Q-Learning (CQL) (Kumar et al., 2020), a state-of-the-art standard offline
RL method, such that it also takes preference vectors as inputs to learn a preference-conditioned
Q-function f˚ : S ˆ A ˆ Ω Ñ R. We denote this method as CQL(P).

4

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

5.1 MULTI-OBJECTIVE OFFLINE BENCHMARK

Table 1: Hypervolume performance on High-H-Expert dataset. PEDA variants MODT(P) and
MORVS(P) always approach the expert behavioral policy. (B: Behavioral policy)

Environments B MODT(P) MORVS(P) BC(P) CQL(P) MODT MORVS BC CQL

MO-Ant (106) 6.32 6.02˘.02 6.24˘.07 4.49˘.30 5.76˘.10 5.10˘.16 5.05˘.07 0.78˘.57 3.52˘.45
MO-HalfCheetah (106) 5.79 5.69˘.01 5.77˘.00 5.52˘.04 5.63˘.04 5.59˘.05 4.56˘.56 1.45˘.04 3.78˘.46
MO-Hopper (107) 2.09 1.92˘.01 1.98˘.02 1.40˘.03 0.33˘.39 1.60˘.04 1.72˘.04 0.82˘.42 0.02˘.02
MO-Hopper-3obj (1010) 3.73 3.24˘.09 3.27˘.10 2.29˘.29 0.78˘.24 1.22˘.27 2.33˘.14 0.03˘.01 0.00˘.00
MO-Swimmer (104) 3.25 3.16˘.01 3.22˘.01 3.21˘.01 3.22˘.08 2.49˘.28 3.19˘.01 1.81˘.03 2.08˘.08
MO-Walker2d (106) 5.21 4.84˘.10 5.15˘.01 3.47˘.13 3.21˘.32 0.61˘.43 4.95˘.06 0.07˘.01 0.82˘.62

Hypervolume. We compare hypervolume of our methods with all baselines on Expert datasets
in Table 1. For the two-objective environments, we evaluate the models on 501 and 325 equally
spaced preference points for two-objective and three-objective environments respectively. Each
point is evaluated 5 times with random environment re-initialization, and the median value is
recorded. Finally, all the results are based on average of 3 random seeds along with the standard er-
ror. In Table 1, we can see that MODT(P) and MORVS(P) outperform other baselines with higher
mean, lower standard errors. They also approach the behavioral policy upper-bound.

Sparsity. We also evaluate sparsity performance. We only show results for preference-conditioned
models since sparsity is only meaningful when models are sensitive to preference and are similar
in hypervolume performance. Overall, MORVS(P) has the lowest sparsity in most environments,
while at the same time featuring an outstanding hypervolume.

We include the the results and analysis on the Amateur datasets in Table 4 and Table 3 from
Appendix G. These tables lead to the same conclusion.

6 CONCLUSION

In this paper, we introduced a novel dataset benchmark and algorithms for offline Multi-Objective
Reinforcement Learning. We first proposed D4MORL, a dataset benchmark consisting of offline
datasets generated from behavioral policies of different fidelities (expert/amateur) and rolled out un-
der preference distributions with varying entropies (high/medium/low). Then, we propose PEDA,
a family of offline MORL policy optimization algorithms based on decision transformers and show
that by concatenating and embedding preference together with other inputs, our policies can effec-
tively approximate the Pareto front of the underlying behavioral policy as measured by the hypervol-
ume and sparsity metrics. Our proposed family includes MLP and transformer based variants, viz.
the MORVS(P) and MODT(P), with MORVS(P) performing the best overall. In some scenarios,
the learned policies can also generalize to higher target rewards that exceeds the data distribution.
To our knowledge, the PEDA variants are the first offline MORL policies that supports both the
continuous action control and continuous preference space.

Table 2: Sparsity (Ó) performance on High-H-Expert dataset. MODT(P) and MORVS(P) have
a lower density. BC(P) also has a competitive sparsity in smaller environments such as Swimmer.

Environments MODT(P) MORVS(P) BC(P) CQL(P)

MO-Ant (ˆ104) 7.06˘1.29 4.55˘.59 32.1˘12.2 0.58˘.10
MO-HalfCheetah (ˆ104) 1.44˘.28 0.74˘.03 1.69˘.70 0.10˘0.00
MO-Hopper (ˆ105) 8.89˘1.84 1.91˘.51 23.7˘20.1 2.84˘2.46
MO-Hopper-3obj (ˆ105) 1.42˘.42 1.11˘.22 0.75˘.15 2.60˘3.14
MO-Swimmer (ˆ1) 12.1˘6.49 5.00˘.42 3.79˘1.03 13.61˘5.31
MO-Walker2d (ˆ104) 5.28˘.99 1.91˘.25 46.9˘23.2 6.23˘10.71

5

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

REFERENCES

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline RL via supervised learning? In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=S874XAIpkR-.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz, Michael
Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, and Raia Hadsell. A
constrained multi-objective reinforcement learning framework. In Aleksandra Faust, David Hsu,
and Gerhard Neumann (eds.), Proceedings of the 5th Conference on Robot Learning, volume 164
of Proceedings of Machine Learning Research, pp. 883–893. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/huang22a.html.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning, 2021. URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement with
baseline bootstrapping, 2017. URL https://arxiv.org/abs/1712.06924.

Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In
ICML-27th International Conference on Machine Learning, pp. 599–606. Omnipress, 2010.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning, 2016a. URL https://arxiv.org/abs/1610.02707.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning, 2016b. URL https://arxiv.org/abs/1610.02707.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning
through continuous pareto manifold approximation. Journal of Artificial Intelligence Research,
57:187–227, 10 2016. doi: 10.1613/jair.4961.

Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Linear support for multi-objective
coordination graphs. In Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS ’14, pp. 1297–1304, Richland, SC, 2014. International Foun-
dation for Autonomous Agents and Multiagent Systems. ISBN 9781450327381.

Harsh Satija, Philip S. Thomas, Joelle Pineau, and Romain Laroche. Multi-objective
spibb: Seldonian offline policy improvement with safety constraints in finite mdps.
In Advances in Neural Information Processing Systems, volume 34, pp. 2004–2017,
2021. URL https://proceedings.neurips.cc/paper/2021/file/
0f65caf0a7d00afd2b87c028e88fe931-Paper.pdf.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in neural
information processing systems, 30, 2017.

6

https://openreview.net/forum?id=S874XAIpkR-
https://proceedings.mlr.press/v164/huang22a.html
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/1712.06924
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1610.02707
https://arxiv.org/abs/1610.02707
https://proceedings.neurips.cc/paper/2021/file/0f65caf0a7d00afd2b87c028e88fe931-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0f65caf0a7d00afd2b87c028e88fe931-Paper.pdf

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Oldrich Vasicek. A test for normality based on sample entropy. Journal of the Royal Sta-
tistical Society: Series B (Methodological), 38(1):54–59, 1976. doi: https://doi.org/10.1111/
j.2517-6161.1976.tb01566.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1976.tb01566.x.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Kazuyoshi Wakuta. Vector-valued markov decision processes and the systems of linear inequalities.
Stochastic Processes and their Applications, 56(1):159–169, 1995. ISSN 0304-4149. doi: https:
//doi.org/10.1016/0304-4149(94)00064-Z. URL https://www.sciencedirect.com/
science/article/pii/030441499400064Z.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Runzhe Wu, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Offline constrained
multi-objective reinforcement learning via pessimistic dual value iteration. In Ad-
vances in Neural Information Processing Systems, volume 34, pp. 25439–25451,
2021. URL https://proceedings.neurips.cc/paper/2021/file/
d5c8e1ab6fc0bfeb5f29aafa999cdb29-Paper.pdf.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In Pro-
ceedings of the 37th International Conference on Machine Learning, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems 32. 2019.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on de-
composition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007. doi:
10.1109/TEVC.2007.892759.

7

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1976.tb01566.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1976.tb01566.x
https://www.sciencedirect.com/science/article/pii/030441499400064Z
https://www.sciencedirect.com/science/article/pii/030441499400064Z
https://proceedings.neurips.cc/paper/2021/file/d5c8e1ab6fc0bfeb5f29aafa999cdb29-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d5c8e1ab6fc0bfeb5f29aafa999cdb29-Paper.pdf

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

A ENVIRONMENT DESCRIPTION

All environments are the same as in Xu et al., 2020, except for when resetting the environment, each
parameter are uniformly sampled from the rx´10´3, x`10´3s with x being the default value. The
only exception is that MO-Hopper and MO-Hopper-3objalways reset height the same way as 1.25,
since this parameter directly relates to the reward function. All environments have a max episode
length of 500 steps per trajectory, but the agent may also die before reaching the maximum length.

A.1 MO-ANT

The two objectives in MO-Ant are achieved distance in x and y axes respectively, denoted as r “

rrvxt , rvyt s⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, dt “ 0.05, and an action cost of ra “ 1

2

ř

k a
2
k. The

rewards are calculated as:

rvxt “ pxt ´ xt´1q { dt ` rs ´ ra

rvyt “ pyt ´ yt´1q { dt ` rs ´ ra
(1)

A.2 MO-HALFCHEETAH

The two objectives in MO-HalfCheetah are running speed, and energy saving, denoted as r “

rrvt , r
e
t s⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, fixed dt “ 0.05, and an action cost of ra “

ř

k a
2
k. The

rewards are calculated as:

rvt “ mint4.0, pxt ´ xt´1q { dtu ` rs

ret “ 4.0 ´ ra ` rs
(2)

A.3 MO-HOPPER

The two objectives in MO-Hopper are running and jumping, denoted as r “ rrr, rjs⊺.

Consider the position of the agent is represented as pxt, htq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed initial height as hinit “ 1.25, a fixed dt “ 0.01,
and an action cost of ra “ 2 ˆ 10´4

ř

k a
2
k. The rewards are calculated as:

rrt “ 1.5 ˆ pxt ´ xt´1q { dt ` rs ´ ra

rjt “ 12 ˆ pht ´ hinitq { dt ` rs ´ ra
(3)

A.4 MO-HOPPER-3OBJ

The physical dynamics are the same in MO-Hopper and MO-Hopper-3obj, while this environment
has 3 objectives: running, jumping, and energy saving. The rewards are denoted as r “ rrr, rj , res⊺.

Consider the position of the agent is represented as pxt, htq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed initial height as hinit “ 1.25, a fixed dt “ 0.01,
and an action cost of ra “

ř

k a
2
k. The rewards are calculated as:

rrt “ 1.5 ˆ pxt ´ xt´1q { dt ` rs

rjt “ 12 ˆ pht ´ hinitq { dt ` rs

ret “ 4.0 ´ ra ` rs
(4)

8

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

A.5 MO-SWIMMER

The two objectives inMO-Swimmer are speed and energy saving, denoted as r “ rrv, res⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed dt “ 0.05, and an action cost of ra “

ř

k a
2
k. The rewards are calculated as:

rvt “ pxt ´ xt´1q { dt

ret “ 0.3 ´ 0.15 ˆ ra
(5)

A.6 MO-WALKER2D

The objectives in MO-Walker2d are speed and energy saving, denoted as r “ rrv, res⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed dt “ 0.008, and an action cost of ra “

ř

k a
2
k.

The rewards are calculated as:

rvt “ pxt ´ xt´1q { dt ` rs

ret “ 4.0 ´ ra ` rs
(6)

To uniformly sample the High-H data from the entire preference space, the problem is equivalent
to sampling from a n-dimensional simplex, where n is the number of objectives. The resulting
sampling is:

ωhigh „ ||fexpp ¨ , λ “ 1q||1 (7)

We take the 1-norm following the exponential distribution to make sure each preference add up to
1. When Ω˚ ‰ Ω, we perform rejection sampling to restrict the range.

To sample the Med-H and Low-H data, we first sample α from a non-negative uniform distribution,
then sample the corresponding Dirichlet preference. Here, we sample a different alpha to make sure
the center of the Dirichlet changes and thus allows more variation.

ωmed „ fDirichletpαq ; where α „ Unifp0, 106q

ωlow „ fDirichletpαq ; where α „ Unifp1{3 ˆ 106, 2{3 ˆ 106q
(8)

For sampling from behavioral policy consists of a group of single-objective policies πβ “

tπ1, . . . , πBu with B being the total number of candidate policies, we recommend first find the
expected unweighted raw rewards Gπ1 , . . . ,GπB . Then, find the estimated ω̂π1 , . . . , ω̂πB by let-
ting ω̂πb

i “
G

πb
i

řn
j“1 G

πb
j

, which represents the estimated preference on ith objective of bth candidate

policy. For a sampled preference ω „ Ω˚, use the policy that provides the smallest euclidean dis-
tance dpω, ω̂πbq. Empirically, this means picking the candidate policy that has the expected reward
ratio closest to ω.

B PREFERENCE SAMPLING DETAILS

To uniformly sample the High-H data from the entire preference space, the problem is equivalent
to sampling from a n-dimensional simplex, where n is the number of objectives. The resulting
sampling is:

ωhigh „ ||fexpp ¨ , λ “ 1q||1 (9)

We take the 1-norm following the exponential distribution to make sure each preference add up to
1. When Ω˚ ‰ Ω, we perform rejection sampling to restrict the range.

9

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

(a) High Entropy (H=-0.2) (b) Med Entropy (H=-0.35) (c) Low Entropy (H=-1.54)

Figure 2: Illustration of the preference distributions for 3 objectives. Entropy is estimated on 50K
preference samples using the Vasicek estimator in Scipy (Vasicek, 1976, Virtanen et al., 2020).

To sample the Med-H and Low-H data, we first sample α from a non-negative uniform distribution,
then sample the corresponding Dirichlet preference. Here, we sample a different alpha to make sure
the center of the Dirichlet changes and thus allows more variation.

ωmed „ fDirichletpαq ; where α „ Unifp0, 106q

ωlow „ fDirichletpαq ; where α „ Unifp1{3 ˆ 106, 2{3 ˆ 106q
(10)

For sampling from behavioral policy consists of a group of single-objective policies πβ “

tπ1, . . . , πBu with B being the total number of candidate policies, we recommend first find the
expected unweighted raw rewards Gπ1 , . . . ,GπB . Then, find the estimated ω̂π1 , . . . , ω̂πB by let-
ting ω̂πb

i “
G

πb
i

řn
j“1 G

πb
j

, which represents the estimated preference on ith objective of bth candidate

policy. For a sampled preference ω „ Ω˚, use the policy that provides the smallest euclidean dis-
tance dpω, ω̂πbq. Empirically, this means picking the candidate policy that has the expected reward
ratio closest to ω.

C EXPERT & AMATEUR DETAILS

In Expert collection, we sample trajectories using the fully-trained behavioral policy πβ . In this
paper, we use PGMORL by Xu et al., 2020 as πβ

aexpert
t`1 “ πβpa|s “ st,ω “ ωtq (11)

In the Amateur collection, the policies has a 35% chance being stochastic on top of the expert
collection. Actions has a chance being stochastic, during which it is scaled from the expert action,
as following:

aamateur
t`1 “

"

aexpert
t`1 35%

aexpert
t`1 ˆ Unifp0.35, 1.65q 65%

(12)

In the MO-Swimmer environment only, we let actions has a 35% chance to be a uniform random
sample from the entire action space rather than being the same as expert to increase variance and
achieve a performance similar to amateur. The resulting strategy for MO-Swimmer is:

aamateur
t`1 “

"

UnifpAq 35%
aexpert
t`1 ˆ Unifp0.35, 1.65q 65%

(13)

D RELATED WORK

Multi-Objective Reinforcement Learning Predominant works in MORL focus on the online
setting where the goal is to train agents that can generalize to arbitrary preferences. This can be
achieved by training a single preference-conditioned policy (Yang et al., 2019; Parisi et al., 2016),

10

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

or an ensemble of single-objective policies for a finite set of preferences (Mossalam et al., 2016b; Xu
et al., 2020; Zhang & Li, 2007). Many of these algorithms consider vectorized variants of standard
algorithms such as Q-learning (Mossalam et al., 2016b; Yang et al., 2019), often augmented with
strategies to guide the policy ensemble towards the Pareto front using evolutionary or incrementally
updated algorithms (Xu et al., 2020; Zhang & Li, 2007; Mossalam et al., 2016b; Roijers et al., 2014;
Huang et al., 2022). In contrast to these online MORL works, our focus is on learning a single policy
that works for all preferences using only offline datasets.

There are also a few works that study offline MORL. Wu et al., 2021 propose a provably efficient
algorithm based on dual gradient ascent. Satija et al., 2021 study learning of safe policies by extend-
ing the approach of Laroche et al., 2017 to the offline MORL setting. However, these algorithms
assume the environments are primarily tabular MDPs with finite state and action spaces, while we
are interested in high-dimensional MDPs with continuous states and actions.

Multi-Task Reinforcement Learning MORL is also closely related to multi-task reinforcement
learning, where every task can be interpreted as a distinct objective. There is an extensive body of
work in learning multi-task policies both in the online and offline setups (Wilson et al., 2007; Lazaric
& Ghavamzadeh, 2010; Teh et al., 2017) inter alia. However, the key difference is that typical MTRL
benchmarks and algorithms do not consider solving multiple tasks that involve inherent trade-offs.
Consequently, there is no notion of Pareto efficiency and an agent can simultaneously excel in all
the tasks without accounting for user preferences.

Reinforcement Learning Via Supervised Learning A body of recent works have formulated of-
fline reinforcement learning as an autoregressive sequence modeling problem using Decision Trans-
formers (DT) (Chen et al., 2021). The key idea in DT is to learn a transformer-based policy that
conditions on the past history and a dynamic estimate of the returns (a.k.a. returns-to-go). Follow-
up works consider simpler variants that rely only on multi-layer perceptrons (Emmons et al., 2022).

E TRANING DETAILS

Common hyper-parameters have the same values across all models, except for the learning rate
scheduler and warmup steps. In MODT family, inputs are embedded by a 1-layer MLP into Hidden
Size, and n layer represents the number of transformer blocks; in BC family, n layer represents the
number of MLP layers to embedding each input; in MORVS and MORVS(P) family, the default
embedding strategy are used, please check Emmons et al., 2022. Here, we consider MORVS and
MORVS(P) both have context length of 1 because they only use the current state to predict the next
action, whereas MODT and BC use the past 20.

E.1 PARAMETERS

Hyperparameter MODT MORvS BC

Context Length - K 20 1 20
Batch Size 64

Hidden Size 512
Learning Rate 1e-4
Weight Decay 1e-3

Dropout 0.1
n layer 3

Optimizer AdamW
Loss Function MSE
LR Scheduler lambda None lambda
Warmup Steps 10000 N/A 4000

Activation ReLU

11

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

E.2 TRAINING STEPS

Dataset Name MODT Steps RvS/BC Steps

MO-Ant 20K 200K
MO-HalfCheetah 80K 200K

MO-Hopper 400K 200K
MO-Hopper-3obj 400K 200K

MO-Swimmer 260K 200K
MO-Walker2d 360K 200K

The exception is that we train MO-Swimmer and MO-Hopper-3obj under Low-H-Amateur for
40K and 120K steps respectively using MODT.

E.3 ATTEMPTED MODT AND MODT(P) ARCHITECTURES

Here are all the MODT architectures we tried in our experiments. We followed Case 4 in all of the
experiment results as we find that it makes the model follows closely to the given preference.

1. Consider ω as an independent token of the causal transformer.

2. Train a separate embedding for ω, concatenate the embeddings to get fϕspsq
À

fϕω pωq,
fϕapaq

À

fϕω pωq, and fϕg pgq
À

fϕω pωq then pass into the transformer.

3. Add another MLP layer on top of the Case 2 after concatenation, then pass output into the
transformer.

4. Concatenate ω to other tokens before any layers. This means we have s˚ “ s
À

ω,
a˚ “ a

À

ω, and g˚ “ g
À

ω.

F EVALUATION METRICS

Hypervolums & Sparsity We introduce the hypervolume and sparsity metric in this section with
a visualization.

Definition 1 (Hypervolume). Hypervolume HpP q measures the space or volume enclosed by the
solutions in the Pareto set P :

HpP q “

ż

Rm

1HpP qpzq dz,

where HpP q “ tz P Z|Di : 1 ď i ď |P |, r ĺ z ĺ P piqu. P piq is the ith solution in P , ĺ

is the dominance relation operator, and 1HpP qpzq equals 1 if z P HpP q and 0 otherwise. Higher
hypervolumes are better.

Definition 2 (Sparsity). Sparsity SpP q measures the density of the Pareto front covered by a Pareto
set P :

SpP q “
1

|P | ´ 1

n
ÿ

i“1

|P |´1
ÿ

k“1

pP̃ipkq ´ P̃ipk ` 1qq2,

where P̃i represents a list sorted as per the values of the ith objective in P and P̃ipkq is the kth value
in the sorted list. Lower sparsity is better.

See Figure 3 for an illustration and Appendix F for discussion on other possible metrics.

Other Metrics. Among a variety of metrics for MORL, we use Hypervolume and Sparsity (SP)
to benchmark models in this paper for several reasons. First, metrics such as the ϵ-metric require
prior knowledge of the true Pareto Fronts, which are not available for our MuJoCo Environments.
Second, due to limited resources, we only assume linear reward function and cannot collect real-time
user feedback, thus utility-based metrics such as expected utility metric (EUM) are not applicable.
Finally, it is easier to benchmark both our offline agents and behavioral policy on these metrics,
allowing for informative comparisons.

12

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Figure 3: Illustration of the Hypervolume and Sparsity Metrics. Only undominated solutions (i.e.,
the Pareto set) are used for calculating the evaluation metrics.

G AMATEUR RESULTS

Due to space limit, we present the results for Amateur datasets with High-H entropy for all
environments here in Table 3 and Table 4. We can achieve the same conclusion that PEDA variants
including MODT(P) and MORVS(P) have the best hypervolume and sparsity performance against
other baselines. They also can approach or exceed the Amateur behavioral policy, which shows
that our algorithms are able to learn strong policies from considerable amount of suboptimal data
rather than merely imitation learning agents.

Table 3: Hypervolume performance on High-H-Amateur dataset. PEDA variants still approach
or even exceed the behavioral policy even when a considerable portion of data is suboptimal.
MODT(P) and MORVS(P) still present to be the strongest models and outperform other base-
lines. (B: Behavioral policy)

Environments B MODT(P) MORVS(P) BC(P) CQL(P) MODT MORVS BC CQL

MO-Ant (106) 5.61 5.60˘.03 5.94˘.04 4.35˘.07 5.62˘.23 3.34˘.71 4.91˘.06 2.34˘.09 2.80˘.68
MO-HalfCheetah (106) 5.68 5.64˘.01 5.77˘.00 5.26˘.06 5.64˘.04 5.51˘.01 5.28˘.35 3.14˘.38 4.41˘.08
MO-Hopper (107) 1.97 1.82˘.02 1.80˘.03 1.56˘.01 1.15˘.24 1.54˘.08 1.42˘.04 0.48˘.48 0.00˘.06
MO-Hopper-3obj (1010) 3.09 2.63˘.17 2.98˘.06 2.31˘.16 0.59˘.42 1.72˘.12 1.57˘.08 0.13˘.04 0.10˘.16
MO-Swimmer (1) 2.11 2.83˘.04 2.76˘.02 2.81˘.04 1.69˘.93 0.67˘0.1 2.78˘.01 0.46˘.14 0.74˘.47
MO-Walker2d (104) 4.99 3.17˘.14 4.96˘.02 2.93˘.75 1.78˘.33 2.62˘.81 4.21˘.27 1.19˘.21 0.76˘.81

H PARETO FRONT & RETURN DISTRIBUTION

Pareto front approximation. We ablate how well the PEDA variants and other baselines can
approximate the Pareto front through conditioning on different preference points. We show the

Table 4: Sparsity (Ó) performance on High-H-Amateur dataset. We can see that all models still
have a similar or stronger sparsity performance when trained on amateur datasets. Furthermore,
MORVS(P) still presents the strongest performance. While BC(P) has strong performance in MO-
Hopper-3obj and MO-Swimmer, it also fails to give a dense solution in other environments and has
a higher standard error.

Environments MODT(P) MORVS(P) BC(P) CQL(P)

MO-Ant (ˆ104) 6.56˘.45 4.96˘ 1.1 11.7˘6.45 1.06˘.28
MO-HalfCheetah (ˆ104) 0.81˘.52 0.31˘.01 2.18˘.49 0.45˘.27
MO-Hopper (ˆ105) 1.54˘.69 1.75˘.52 9.57˘8.64 3.30˘5.25
MO-Hopper-3obj (ˆ105) 4.59˘1.51 1.04˘.28 0.79˘.19 2.00˘1.72
MO-Swimmer (ˆ1) 2.74˘1.51 1.53˘.10 1.21˘.07 8.87˘6.24
MO-Walker2d (ˆ104) 30.7˘13.6 2.10˘.02 154˘144 7.33˘5.89

13

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Figure 4: We show that MORVS(P) Model can follow the given target reward that are within the
dataset’s minimum and maximum record. The plots are for all of the two-objective environments.
In addition, MO-Hopper and MO-Walker2d present to be the most challenging environments for
PEDA variants, featuring more dominated solutions than other environments.

results in Figure 5, where we can see that the MODT(P) and MORVS(P) can approximate the
Pareto front, while having some dominated points colored in pink mostly in the MO-Hopper and
MO-Walker2d environments. The results are based on average of 3 seeds.

The distribution of returns. We ablate how well MODT(P) and MORVS(P) follow their given
target return, based on a normalized and weighted value. We present the results in Figure 4 for
MORVS(P) under High-H-Expert datasets. Here, we see that the models follow the oracle line
nicely when conditioned on target within the dataset distribution, and generalize to targets outside
of the dataset distribution as well. We present the Pareto Set visualizations for all of our models
trained under each High-H dataset in Figure 5. All subplots are based on 1 seed, in which we
evaluate the model using 501 equally spaced preference points in 2 objective environment and 351
equally spaced preference in the 3 objective environment from the full preference space. Since the
environments are stochastically initialized, we evaluate 5 times at each preference point and take the
median value. We here allow a small tolerance on coloring the dominated points.

If a preference point is within the achievable preference Ω˚ but the solution is dominated, we color
it in red. Since our models condition on continuous preference points and environments are ini-
tializaed stochastically, we give a small tolerance (3%-8%) for points to be colored in blue. The
hypervolume and sparsity metric, on the other hand, can based on strictly undominated solutions
without tolerance.

I MEDIUM & LOW ENTROPY DATASET TRAINING

We train on the Medium-Entropy and Low-Entropy datasets for the MO-HalfCheetah environment.
Overall, models have a similar performance under Med-H and High-H datasets, but suffers when
only trained on Low-H. We present the results in Table 5, in which we illustrate that the Low-H
dataset has a worse expert and amateur performance due to reduced variability on preference. How-
ever, MODT(P) and MORVS(P) are still able to get close or exceed in hypervolume on all datasets,
which showcase the effectiveness of PEDA as an efficient MORL policy. Results are based on aver-
age of 3 seeds with the standard error given.

J TRAINING WITH 1-DIM RTG

We attempted to train MODT and RvS with 1-dim return-to-go rather than a separate rtg for each
objective. According to results on MO-HalfCheetah and the High-H datasets in 6, using multi-
dimensional rtg enhances the performance of MODT(P), and are about the same for MORVS(P)
when preference are concatenated to states. However, it reduces standard error significantly in both

14

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Figure 5: Full Pareto Visulization for all PEDA variants and baselines on High-H datasets. We
notice that MO-Hopper and MO-Walker2d to be the harder environments, having significant of
dominated points for even the preference conditioned models. On other environments, however, the
PEDA variants produce good results for preference conditioned models, while other baselines fail at
a higher chances.

Table 5: We run MO-HalfCheetah environment on all the of PEDA variants on the full datasets
including Med-H and Low-H. (B: Behavioral Policy)

Dataset (ˆ106) B MODT(P) MORVS(P) BC(P) MODT MORVS BC

Med-H-Expert 5.79 5.69˘.02 5.77˘.01 3.60˘.04 4.66˘.05 4.09˘.10 1.61˘.12
Med-H-Amateur 5.69 5.61˘.01 5.77˘.00 1.63˘.26 3.84˘.44 4.61˘.03 3.63˘.12
Low-H-Expert 4.68 4.73˘.01 4.83˘.01 4.51˘.02 4.09˘.23 3.94˘.05 3.18˘.33
Low-H-Amateur 4.21 4.74˘.02 4.83˘.02 4.67˘.07 2.54˘.05 4.04˘.18 4.09˘.09
High-H-Expert 5.79 5.69˘.01 5.77˘.00 5.52˘.04 5.59˘.05 4.56˘.56 1.45˘.04
High-H-Amateur 5.68 5.64˘.01 5.77˘.00 5.36˘.06 5.51˘.01 5.28˘.35 3.14˘.38

15

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Table 6: We explore the importance of using multi-dimensional rtg instead of a one-dimensional rtg
by taking the weighted sum of objectives. (B: Behavioral Policy)

Setting Dataset (ˆ106) B MODT(P) MORVS(P) MODT MORVS

1-dim rtg High-H-Expert 5.79 5.54˘.09 5.78˘.03 4.34˘.13 3.06˘.42
High-H-Amateur 5.68 5.69˘.01 5.77˘.01 2.81˘1.2 2.52˘.19

mo rtg High-H-Expert 5.79 5.69˘.01 5.77˘.00 5.59˘.05 4.56˘.56
High-H-Amateur 5.68 5.64˘.01 5.77˘.00 5.51˘.01 5.28˘.35

MODT(P) and MORVS(P). In the naive models when preference are not concatenated to states,
using a multi-dimensional rtg helps to achieve a much more competitive hypervolume. We thus
believe multi-dimensional rtg conveys important preference information when the model doesn’t
directly take preference as an input. Results are based on average of 3 seeds with the standard error
given.

K OVERALL DATA GENERATION PIPELINE

The pseudocode for generating the dataset is described in Algorithm 1. Given a preference dis-
tribution, we first sample a preference ω and query the closest behavioral policy in either the am-
ateur/expert ensemble matching ω. We rollout this policy for T time steps (or until the end of an
episode if sooner) and record the state, action, and reward information. Each trajectory in our dataset
is represented as:

τ “ă ω, s1,a1, r1, . . . , sT ,aT , rT ą

For every environment in D4MORL, we collect 50K trajectories of length T “ 500 for both
expert and amateur trajectory distributions under each of the 3 preference distributions. Over-
all, this results in a total of 1.8M trajectories over all 6 environments, which corresponds to
roughly 867M time steps. Please refer to Table 7 in for additional statistics on the dataset.

Algorithm 1 Data Collection in D4MORL

procedure COLLECT(prefDist, nTraj, env, pretrainedAgents, T)
agents = pretrainedAgents
prefs = prefDist(nTraj)
all trajs = []
for ω in prefs do

agent = closestAgent(agents, ω)
s = env.reset()
done = False
τ = [ω]
t = 0
while (NOT done) AND (t ă T) do

a = agent.get action(s)
s1, done, r = env.step(a)
append s, a, s1, r to τ
s = s1

t = t + 1
append τ to all trajs

return all trajs

16

Under review at NeurIPS 2022 Offline Reinforcement Learning Workshop

Table 7: A comprehensive view of the dataset. All datasets have a 500 maximum step per trajectorie,
and 50K trajectories are collection under each setting. We also how the average step per trajectory
for expert and amateur respectively, where we see amateur’s step are always shorter or same as
expert, making the return to be lower.

max step
per traj

expert avg.
step per traj

amateur avg.
step per traj

trajectories
per dataset

MO-Ant 500 500 500 50K
MO-HalfCheetah 500 499.91 482.11 50K
MO-Hopper 500 499.94 387.72 50K
MO-Hopper-3obj 500 499.99 442.87 50K
MO-Swimmer 500 500 500 50K
MO-Walker2d 500 500 466.18 50K

17

	Introduction
	Preliminaries
	D4MORL: Datasets for Offline Multi-Objective Reinforcement Learning
	Trajectory Sampling
	Preference Sampling

	Pareto-Efficient Decision Agents (PEDA)
	Multi-Objective Reinforcement Learning Via Supervised Learning

	Experiments
	Multi-objective Offline Benchmark

	Conclusion
	Environment Description
	MO-Ant
	MO-HalfCheetah
	MO-Hopper
	MO-Hopper-3obj
	MO-Swimmer
	MO-Walker2d

	Preference Sampling Details
	Expert & Amateur Details
	Related Work
	Traning Details
	Parameters
	Training Steps
	Attempted MODT and MODT(P) Architectures

	Evaluation Metrics
	Amateur Results
	Pareto Front & Return Distribution
	Medium & Low Entropy Dataset Training
	Training with 1-dim RTG
	Overall Data Generation Pipeline

