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Abstract

Learning the distribution of a continuous or categorical response variable y given1

its covariates x is a fundamental problem in statistics and machine learning. Deep2

neural network-based supervised learning algorithms have made great progress in3

predicting the mean of y given x, but they are often criticized for their ability to4

accurately capture the uncertainty of their predictions. In this paper, we introduce5

classification and regression diffusion (CARD) models, which combine a denoising6

diffusion-based conditional generative model and a pre-trained conditional mean7

estimator, to accurately predict the distribution of y given x. We demonstrate8

the outstanding ability of CARD in conditional distribution prediction with both9

toy examples and real world datasets, the experimental results on which show10

that CARD in general outperforms state-of-the-art methods, including Bayesian11

neural network based one, designed for uncertainty estimation, especially when the12

conditional distribution of y given x is multi-modal.13

1 Introduction14

A fundamental problem in statistics and machine learning is to predict the response variable y given15

a set of covariates x. Generally speaking, y is a continuous variable for regression analysis and a16

categorical variable for classification. Denote f(x) ∈ RC as a deterministic function that transforms17

x into a C dimensional output. Denote fc(x) as the c-th dimension of f(x). Existing methods18

typically assume an additive noise model: for regression analysis with y ∈ RC , one often assumes19

y = f(x) + ϵ, ϵ ∼ N (0,Σ), while for classification with y ∈ {1, . . . , C}, one often assumes20

y = argmax
(
f1(x)+ϵ1, . . . , fC(x)+ϵC

)
, where ϵc

iid∼ EV1(0, 1), a standard type-1 extreme value21

distribution. Thus we have the expected value of y given x as E[y |x] = f(x) in regression and22

P (y = c |x) = E[y = c |x] = softmaxc(f(x)) =
exp(fc(x))∑C

c′=1
exp(fc′ (x))

in classification.23

These additive-noise models are primarily focusing on accurately estimating the conditional mean24

E[y |x], while paying less attention to whether the noise distribution can accurately capture the25

uncertainty of y given x. For this reason, they may not work well if the distribution of y given x26

clearly deviates from the additive-noise assumption. For example, if p(y |x) is multi-modal, which27

commonly happens when there are missing categorical covariates in x, then E[y |x] may not be close28

to any possible true values of y given that specific x. More specifically, consider a person whose29

weight, height, blood pressure, and age are known but gender is unknown, then the testosterone level30

of this person is likely to follow a bimodal distribution and the chance of developing breast cancer31

is also likely to follow a bimodal distribution. Therefore, these widely used additive-noise models,32

which use a deterministic function f(x) to characterize the conditional mean of y, are inherently33

restrictive in their ability for uncertainty estimation.34

In this paper, our goal is to accurately recover the full distribution of y conditioning on x given a set of35

N training data points, denoted as D = {(xi,yi)}1,N . To realize this goal, we consider the diffusion-36

based (a.k.a. score-based) generative models [23, 11, 24, 25] and inject covariate-dependence into37
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both the forward (inference) and reverse (generative) diffusion chains. Our method can model the38

conditional distribution of both continuous and categorical y variable, and the algorithms developed39

under this method will be collectively referred to as Classification And Regression Diffusion (CARD)40

models.41

Diffusion-based generative models have received significant recent attention due to not only their42

ability to generate high-dimensional data, such as high-resolution photo-realistic images, but also43

their training stability. They can be understood from the perspective of score matching [12, 27] and44

Langevin dynamics [16, 28], as pioneered by Song and Ermon [23]. They can also be understood45

from the perspective of diffusion probabilistic models [22, 11], which first define a forward diffusion46

to transform the data into noise and then an inverse diffusion to regenerate the data from noise.47

These previous methods mainly focus on unconditional generative modeling. While there exist guided-48

diffusion models [23, 25, 4, 17, 21] that target on generating high-resolution photo-realistic images49

that match the semantic meanings or content of the label, text, or corrupted-images, we focus on50

studying diffusion-based conditional generative modeling at a more fundamental level. In particular,51

our goal is to thoroughly investigate whether CARD can help accurately recovery p(y |x,D), the52

predictive distribution of y given x after observing data D. In other words, our focus is on regression53

analysis of continuous or categorical response variables given their corresponding covariates.54

We summarize our main contributions as follows: 1) We show CARD, which injects covariate-55

dependence and a pre-trained conditional mean estimator into both the forward and reverse diffusion56

chains to construct a denoising diffusion probabilistic model, provides an accurate estimation of57

p(y |x,D). 2) We provide a new metric to better evaluate how well a regression model captures the58

full distribution p(y |x,D). 3) Experiments on standard benchmarks for regression analysis show59

that CARD achieves state-of-the-art results, using both existing metrics and the new one.60

2 Methods and Algorithms for CARD61

2.1 Problem Statement62

Given the ground-truth response variable y0 and its covariates x, and assuming a sequence of63

intermediate uncertain prediction y1:T made by the diffusion model, the goal of supervised learning is64

to learn a good model such that the log-likelihood is maximized by optimizing the following ELBO:65

log pθ(x,y0) = log

∫
pθ(x,y0:T )dy1;T ≥ Eq(y1:T |x)

[
log

pθ(y0:T |x)
q(y1:T |y0,x)

]
, (1)

where q(y1:T |y0,x) is called the forward process or diffusion process in the concept of diffusion66

models [11]. Denoting DKL(q||p) as the Kullback–LeiblerKL (KL) divergence from distributions p67

to q. The above objective can be rewritten as:68

LELBO(x) := L0(x) +

T∑
t=2

Lt−1(x) + LT (x), (2)

L0(x) := Eq [− log pθ(y0 |y1,x)] , (3)
Lt−1(x) := Eq [DKL (q(yt−1 |yt,y0,x)||pθ(yt−1 |yt,x))] , (4)
LT (x) := Eq [DKL (q(yT |y0,x)||p(yT |x))] . (5)

Here we follow the convention to assume LT does not depend on any parameter and it will be close69

to zero by carefully diffusing the observed response variable y0 towards a pre-assumed distribution70

p(yT |x). The rest of terms will make sure the model pθ(yt−1 |yt,x) predicts at different diffusion71

steps and we hope this gives us different scales in uncertainty measure. Different than vanilla diffusion72

model, we assume the endpoint of the diffusion as:73

p(yT ) = N (fϕ(x), I). (6)

where fϕ(x) is pre-knowledge of the relation between x and y0, e.g., pre-trained with D to74

approximate E[y |x], or 0 if we assume the relation is unknown. With a diffusion schedule75

{βt}t=1:T ∈ (0, 1)T , we specify the forward diffusion process conditional distributions in a similar76

fashion as [18], but for all timesteps including t = 1:77

q
(
yt |yt−1, fϕ(x)

)
= N

(
yt;
√
1− βtyt−1 + (1−

√
1− βt)fϕ(x), βtI

)
, (7)
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which admits a closed form sampling distribution with arbitary timestep t:78

q
(
yt |y0, fϕ(x)

)
= N

(
yt;

√
ᾱty0 + (1−

√
ᾱt)fϕ(x), (1− ᾱt)I

)
, (8)

where αt = 1− βt and ᾱt =
∏

t αt. Note that Eq. (7) can be viewed as an interpolation between79

true data y0 and predicted conditional expectation fϕ(x), that gradually changes from the former to80

the latter throughout the forward process.81

Such formulation corresponds to a tractable forward process posterior:82

q(yt−1 |yt, fϕ(x)) = N
(
yt−1; µ̃

(
yt, fϕ(x)), β̃tI

)
, (9)

where83

µ̃
(
yt, fϕ(x)

)
:=

βt
√
ᾱt−1

1− ᾱt︸ ︷︷ ︸
γ0

y0 +
(1− ᾱt−1)

√
αt

1− ᾱt︸ ︷︷ ︸
γ1

yt +

(
1 +

(
√
ᾱt − 1)(

√
αt +

√
ᾱt−1)

1− ᾱt

)
︸ ︷︷ ︸

γ2

fϕ(x),

β̃t :=
1− ᾱt−1

1− ᾱt
βt.

We provide the derivation in Appendix A.1.84

2.2 CARD for Regression85

For regression problems, the goal of the reverse diffusion process is to gradually recover the distribu-86

tion of the noise term, the aleatoric uncertainty inherent in the observations according to Kendall and87

Gal [13], enabling us to generate samples that match the true conditional p(y |x).88

Following the reparameterization introduced by Ho et al. [11], we construct ϵθ
(
x,yt, fϕ(x), t

)
,89

which is a function approximator parameterized by a deep neural network that predicts the forward90

diffusion noise ϵ sampled for yt. The training and inference procedure can be carried out in a standard91

DDPM manner.92

Algorithm 1 Training (Regression)
1: pre-train fϕ(x) that predicts E(y |x) with MSE
2: repeat
3: y0 ∼ q(y0)
4: t ∼ Uniform({1 . . . T})
5: ϵ ∼ N (0, I)
6: compute noise estimation loss

Lϵ = ||ϵ− ϵθ(x,
√
ᾱty0 +

√
1− ᾱtϵ+

√
1− ᾱtfϕ(x), t)||2

7: take numerical optimization step on:
∇θLϵ

8: until convergence

Algorithm 2 Inference (Regression)
1: yT ∼ N (fϕ(x), I)
2: for t = T to 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: reparameterized ŷ0 = 1√

ᾱt

(
yt − (1−

√
ᾱt)fϕ(x)− ϵθ(x,yt, fϕ(x), t)

√
1− ᾱt

)
5: yt−1 = γ0ŷ0 + γ1yt + γ2fϕ(x) + zβ̃t

6: end for
7: return y0
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2.3 CARD for Classification93

We formulate the classification tasks in a similar fashion as in Section 2.2, where we:94

1. replace the continuous response variable with one-hot encoded labels for y0;95

2. replace the mean estimator with a pre-trained classifier that outputs softmax probabilities of96

the class labels for fϕ(x).97

This construction no longer assumes y0 to be drawn from a categorical distribution, but instead98

treating each one-hot label as a class prototype. The sampling procedure would output reconstructed99

y0 in the range of real numbers for each dimension, instead of a vector in the probability simplex.100

We convert such output to a probability vector inspired by the Brier score [2], which computes the101

squared error between the prediction and a vector of 1s with length C, the number of classes:102

ŷ = Softmax
(
− (y0 − 1C)

2
)
. (10)

Intuitively, this construction would assign the class whose raw output in the sampled y0 is closest to103

the true class, encoded by the value of 1 in the one-hot label, with the highest probability.104

The stochasticity of generative model would give us a different class prototype reconstruction, which105

leads to the variation in the predicted probability for each class label, enabling us to prediction106

intervals. Such stochastic reconstruction is in a similar fashion as DALL-E 2 [20] that applies a107

diffusion prior to reconstruct the image embedding by conditioning on the text embedding during108

reverse diffusion process, which is a key step in generated image diversity.109

3 Experiments110

For the hyperparameters of CARD in both regression and classification tasks, we set the number111

of timesteps as T = 1000, a linear noise schedule with β1 = 10−4 and βT = 0.02, same as Ho112

et al. [11]. For network architecture, we adopt the settings described in [30, 32]. We provide a more113

detailed walkthrough of experimental setup in Appendix A.2.114

3.1 Regression115

Putting aside its statistical interpretation, the word regress indicates a direction opposite to progress,116

suggesting a less developed state. Such semantics in fact translates well into the statistical domain, in117

the sense that traditional regression analysis methods often only focus on estimating E(y |x), while118

leaving out all other details about p(y |x). In recent years, Bayesian neural networks (BNNs) have119

emerged as a class of models that aims at estimating the uncertainty [10, 7, 14, 26], providing a more120

complete picture of p(y |x). The metric that they use to quantify uncertainty estimation, negative121

log-likelihood (NLL), is computed with a Gaussian density, implying their assumption such that122

the conditional distributions p(y |x = x) for all x are Gaussian. However, this assumption is very123

difficult to verify for real world datasets: the covariates can be arbitrarily high-dimensional, making124

the feature space increasingly sparse with respect to the number of collected observations.125

To accommodate the need for uncertainty estimation without imposing such restriction for the126

parametric form of p(y |x), we apply the following two metrics, both of which are designed to127

empirically evaluate the level of similarity between the learned and the true conditional distributions:128

1. Prediction Interval Coverage Probability (PICP);129

2. Quantile Interval Coverage Error (QICE).130

PICP has been described in Yao et al. [31], whereas QICE is a new metric proposed by us. We131

describe both of them in the following section.132

3.1.1 PICP and QICE133

The PICP is computed as:134

PICP :=
1

N

N∑
n=1

1yn≥ŷlow
n

· 1yn≤ŷhigh
n

, (11)
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where ŷlow
n and ŷhigh

n represents the low and high percentile of our choice for the predicted y outputs135

given the same x input. This metric measures the proportion of true observations that fall in the136

percentile range of the generated y samples given each x input. Intuitively, when the learned137

distribution represents the true distribution well, this measurement should be close to the difference138

between the selected low and high percentile. In this paper, we choose the 2.5% and 97.5% percentile,139

thus an ideal PICP value for the learned model should be 95%.140

Meanwhile, there is a caveat for this metric: for example, imagine a situation where the 2.5% and141

97.5% percentile of the learned distribution happens to cover the data between the 1% and 96%142

percentile from the true distribution. Given enough samples, we shall still obtain a PICP value close143

to 95%, but clearly there is a mismatch between the learned distribution and the true one.144

Based on such reasoning, we propose a new empirical metric QICE, which by design can be viewed145

as PICP with finer granularity. To compute QICE, we first generate enough y samples given each x,146

and divide them into M bins with roughly equal sizes. We would obtain the corresponding quantile147

values at each boundary. In this paper, we set M = 10, and obtain the following 10 quantile intervals148

(QIs) of the generated y samples: below 10% percentile, between 10% and 20% percentile, . . . ,149

between 80% and 90% percentile, and above 90% percentile. Optimally, when the learned conditional150

distribution is identical to the true one, given enough samples from both learned and true distribution151

we shall observe about 10% of true data falling into each of these 10 QIs.152

We define QICE to be the mean absolute error between the proportion of true data contained by each153

QI and the optimal proportion, which is 1/M for all intervals:154

QICE :=
1

M

M∑
m=1

∣∣∣∣rm − 1

M

∣∣∣∣, where rm =
1

N

N∑
n=1

1yn≥ŷlowm
n

· 1
yn≤ŷ

highm
n

. (12)

Intuitively, under optimal scenario with enough samples, we shall obtain a QICE value of 0. Note155

that each rm is indeed the PICP for the corresponding QI with boundaries at ŷlowm
n and ŷ

highm
n . Since156

the true y for each x is guaranteed to fall into one of these QIs, we are thus able to overcome the157

mismatch issue described in the above example for PICP: fewer true instances falling into one QI158

would result in more instances captured by another QI, thus increasing the absolute error for both QIs.159

QICE is similar to NLL in the sense that it also utilizes the summary statistics of the samples from160

the learned distribution conditional on each new x to empirically evaluate how well the model fits the161

true data. Meanwhile, it does not assume any parametric form on the conditional distribution, making162

it a much more generalizable metric to measure the level of distributional match between the learned163

and the underlying true conditional distributions, especially when the true conditional distribution is164

known to be multi-modal. We will demonstrate this point through the regression toy examples.165

3.1.2 Toy Examples166

To demonstrate the effectiveness of CARD in regression tasks for not only learning the conditional167

mean E(y |x), but also recreating the ground truth data generating mechanism, we first apply CARD168

on 8 toy examples, whose data generating functions are designed to possess different statistical169

characteristics: some have a uni-modal symmetric distribution for their error term (linear regression,170

quadratic regression, sinusoidal regression1), others have heteroscedasticity (log-log linear regression,171

log-log cubic regression) or multi-modality (inverse sinusoidal regression2, 8 Gaussians3, full circle).172

We show that CARD can generate samples that are visually indistinguishable from the true response173

variables of the new covariates, as well as quantitatively match the true distribution in terms of some174

summary statistics.175

The 8 toy examples are summarized by Table 7 in Appendix A.3. For each task, we create the dataset176

by sampling 10 240 data points from the data generating function, and randomly split them into177

training and test set with a 80%/20% ratio.178

We first examine the performance of CARD visually, by making the scatter plots of both true test179

data and generated data conditional on test x for all 8 tasks. For tasks with uni-modal conditional180

1The data generating function was originally proposed in [1].
2Swap x and the generated y from the sinusoidal regression task.
3We set the coordinates of 8 modes at (

√
2, 0), (−

√
2, 0), (0,

√
2), (0,−

√
2), (1, 1), (1,−1), (−1, 1),

(−1,−1), and add a different noise sample to x and y coordinate of a mode to generate one instance.

5



Figure 1: Regression toy example scatter plots. (Top) left to right: linear regression, quadratic
regression, log-log linear regression, log-log cubic regression; (Bottom) left to right: sinusoidal
regression, inverse sinusoidal regression, 8 Gaussians, full circle.

distribution, we fill the region between the 2.5-th and 97.5-th percentile of the generated y’s, and plot181

the true E(y |x) along with the sample means. We observe that for all 8 tasks, the generated samples182

(blue dots) have blended remarkably well with the true test instances (red dots), suggesting the CARD183

model is capable of reconstructing the underlying data generation mechanism. For all uni-modal184

tasks, we note that the empirical means of generated samples are close to the true conditional means185

for all test x, as the green and orange line interlace with each other without a clear separation at any186

point. Note that we include all y samples for the computation of each conditional mean, instead of187

discarding any samples that might be deemed as extreme.188

To quantitatively evaluate the performance of CARD, we generate 1 000 y samples for each x in189

the test set, and compute the corresponding metrics. We conduct such procedure over 10 runs, each190

applying a different random seed to generate the dataset, and report the mean and standard deviation191

over all runs for each metric. For all tasks regardless of the form of p(y |x), we compute PICP and192

QICE. For tasks with uni-modal p(y |x) distributions, we summarize the 1 000 samples for each test193

x by computing their mean, as an unbiased estimator to E(y |x), and compute the root mean squared194

error (RMSE) between the estimated and true conditional mean. For all tasks, we obtain a mean195

PICP very close to the optimal 95%, and most of the tasks have a mean QICE value far less than196

0.01 except log-log cubic regression, which also has a mean RMSE noticeably larger by an order197

of magnitude among cases with uni-modal conditional distributions. Note that the y samples here198

have a much wider range: as x increases from 0 to 10, y increases from 0 to over 1 200, resulting in199

a much more difficult task. Therefore, the metrics reported here can be viewed with relativity, and200

combined with the qualitative conclusions from 1. The metrics of all tasks are recorded to Table 8 in201

Appendix A.3.202

3.1.3 UCI Regression Tasks203

We continue to investigate our model through experiments on real world datasets. We adopt the same204

set of 10 UCI regression benchmark datasets [5] as well as the experimental protocol proposed in [10]205

and followed by [7] and [14]. The dataset information in terms of their size and number of features206

are summarized in 1.207

Table 1: Dataset size (N observations, P features) of UCI regression tasks.

Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

(N,P ) (506, 13) (1 030, 8) (768, 8) (8 192, 8) (11 934, 16) (9 568, 4) (45 730, 9) (1 599, 11) (308, 6) (515 345, 90)
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We apply multiple train-test splits with 90%/10% ratio in the same way (20 folds for all datasets208

except 5 for Protein and 1 for Year), and report the metrics by their mean and standard deviation across209

all splits. We compare our method to all aforementioned BNN frameworks: PBP, MC Dropout, and210

Deep Ensembles, as well as another deep generative model that estimates a conditional distribution211

sampler, GCDS[33]. Similar to BNNs, we evaluate the accuracy and predictive uncertainty estimation212

of CARD by reporting RMSE and NLL. Furthermore, we also report QICE for all methods to evaluate213

distributional matching. Since this new metric was not applied in previous methods, we re-ran the214

experiments for all BNNs and obtained comparable or slightly better results reported in their literature.215

Further details about the experiment setup for these models can be found in the Appendix. The216

experiment results with corresponding metrics are shown in Table 2, 3, 4, with the number of times217

each model achieves the best corresponding metric reported in the last row.218

Table 2: RMSE of UCI regression tasks. For both 1Kin8nm and 2Naval dataset, we multiply the
response variable by 100 to match the scale of others.

Dataset RMSE ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 2.89± 0.74 3.06± 0.96 3.17± 1.05 2.75± 0.58 2.62± 0.63
Concrete 5.55± 0.46 5.09± 0.60 4.91± 0.47 5.39± 0.55 4.92± 0.48
Energy 1.58± 0.21 1.70± 0.22 2.02± 0.32 0.64± 0.09 0.69± 0.20
Kin8nm1 9.42± 0.29 7.10± 0.26 8.65± 0.47 8.88± 0.42 6.40± 0.19
Naval2 0.41± 0.08 0.08± 0.03 0.09± 0.01 0.14± 0.05 0.02± 0.00
Power 4.10± 0.15 4.04± 0.14 4.02± 0.15 4.11± 0.16 3.91± 0.16
Protein 4.65± 0.02 4.16± 0.12 4.45± 0.02 4.50± 0.02 3.71± 0.01
Wine 0.64± 0.04 0.62± 0.04 0.63± 0.04 0.66± 0.04 0.62± 0.04
Yacht 0.88± 0.22 0.84± 0.27 1.19± 0.49 0.79± 0.26 0.56± 0.20
Year 8.86± NA 8.77± NA 8.79± NA 9.20± NA 8.69± NA

# best 0 1 1 1 8

Table 3: NLL of UCI regression tasks.

Dataset NLL ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 2.53± 0.27 2.46± 0.12 2.35± 0.16 18.66± 8.92 2.32± 0.17
Concrete 3.19± 0.05 3.21± 0.18 2.93± 0.12 13.64± 6.88 2.99± 0.12
Energy 2.05± 0.05 1.50± 0.11 1.40± 0.27 1.46± 0.72 1.12± 0.15
Kin8nm −0.83± 0.02 −1.14± 0.05 −1.06± 0.02 −0.38± 0.36 −1.31± 0.02
Naval −3.97± 0.10 −4.45± 0.38 −5.94± 0.10 −5.06± 0.48 −6.49± 0.01
Power 2.92± 0.02 2.90± 0.03 2.89± 0.02 2.83± 0.06 2.82± 0.02
Protein 3.05± 0.00 2.80± 0.08 2.89± 0.02 2.81± 0.09 2.47± 0.01
Wine 1.03± 0.03 0.93± 0.06 0.96± 0.06 6.52± 21.86 0.87± 0.08
Yacht 1.58± 0.08 1.73± 0.22 1.11± 0.18 0.61± 0.34 0.89± 0.07
Year 3.69± NA 3.42± NA 3.44± NA 3.43± NA 3.34± NA

# best 0 0 1 1 8

Table 4: QICE (in %) of UCI regression tasks.

Dataset QICE ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 3.50± 0.88 3.82± 0.82 3.37± 0.00 11.73± 1.05 3.50± 0.89
Concrete 2.52± 0.60 4.17± 1.06 2.68± 0.64 10.49± 1.01 2.38± 0.61
Energy 6.54± 0.90 5.22± 1.02 3.62± 0.58 7.41± 2.19 4.82± 1.06
Kin8nm 1.31± 0.25 1.50± 0.32 1.17± 0.22 7.73± 0.80 0.90± 0.28
Naval 4.06± 1.25 12.50± 1.95 6.64± 0.60 5.76± 2.25 2.57± 0.71
Power 0.82± 0.19 1.32± 0.37 1.09± 0.26 1.77± 0.33 0.85± 0.18
Protein 1.69± 0.09 2.82± 0.41 2.17± 0.16 2.33± 0.18 0.75± 0.04
Wine 2.22± 0.64 2.79± 0.56 2.37± 0.63 3.13± 0.79 3.68± 0.82
Yacht 6.93± 1.74 10.33± 1.34 7.22± 1.41 5.01± 1.02 8.17± 0.85
Year 2.96±NA 2.43±NA 2.56±NA 1.61±NA 0.56±NA

# best 2 0 2 1 5

We observe that CARD outperforms existing methods, often by a considerable margin (especially on219

larger datasets), in all metrics for most of the datasets, and is competitive with the best method for220
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the remaining ones: we obtain state-of-the-art results in 8 out of 10 datasets in terms of both RMSE221

and NLL, and 5 out of 10 for QICE. Note that although we do not explicitly optimize our model by222

MSE or by NLL, we still obtain better results than models trained with these objectives.223

3.2 Classification224

Similar to Lakshminarayanan et al. [14], our motivation for classification is not to achieve the state-of-225

the-art performance in terms of mean accuracy on the benchmark datasets, which is strongly related226

to network architecture design. Our goal is two-fold:227

1. We aim to solve classification problems via a generative model, emphasizing its capability228

to improve the performance of a base classifier with deterministic outputs;229

2. We intent to introduce the idea of uncertainty to classification predictions at instance level.230

As another type of supervised learning problems, classification is different than regression mainly231

for the response variable being discrete class labels instead of continuous values. Conventionally,232

the output from a classification algorithm is a point estimate, a value being casted as between 0233

and 1, with the intention to align with the human cognitive intuition of probability for each class234

label [3]. In other words, that point estimate should express a level of confidence, or the likelihood235

of correctness, in that prediction by the model. Metrics like Expected Calibration Error (ECE) and236

Maximum Calibration Error (MCE) have been proposed to evaluate the alignment between classifier237

predictions and the true correctness likelihood, and calibration methods like Platt scaling and isotonic238

regression have been developed to improve such alginment [9], but all are based on point estimate239

predictions. In the next section, we introduce an alternative in access model confidence, at the level240

of individual instances, specifically tailored for models with stochastic output.241

3.2.1 Estimating Instance Level Prediction Confidence via Generative Models242

We utilize the stochasticity of generative models to construct our framework of evaluating prediction243

uncertainty at instance level. As introduced in Section 2.3, we view each one-hot label as a class244

prototype, and we use the generative model to reconstruct this prototype in a stochastic fashion. The245

intuition is that if the learned model knows well about which class a particular instance belongs to,246

it would precisely reconstruct the prototype vector; otherwise if the model is unsure about a new247

instance based on the learned patterns, it would not be robust against the input noise sample: under248

the context of denoising diffusion models, the class prototype reconstruction would appear rather249

different from each other, given a different sample from the prior distribution at timestep T .250

We propose the following framework to access model confidence: during test time, we sample N251

class prototype reconstructions for each instance, converting them into probability scale with Eq.252

(10), and make the following two computations:253

1. We calculate the prediction interval width (PIW) between 2.5% and 97.5% percentile of the254

N predicted probabilities for the true class associated with each instance;255

2. We apply paired two-sample t-test as an uncertainty estimation method proposed in [6]:256

we obtain the most and second most predicted class for each instance, and test whether the257

difference in their mean predicted probability is statistically significant.258

3.2.2 Classification on FashionMNIST with Prediction Uncertainty Evaluation259

We demonstrate our experiment results on the FashionMNIST dataset. Following the recipe in 2.3,260

we first pre-train a deterministic classifier with ResNet-18 architecture for 10 epochs with a batch261

size of 256, and achieve a test accuracy of 91.19%. After training CARD, we obtain our instance262

prediction through majority vote, i.e. the most predicted class label among its N samples, and achieve263

an improved test accuracy of 91.71%, showing its ability to improve the prediction accuracy from the264

base classifier. We contextualize such performance by reporting the mean accuracy of other BNNs265

with LeNet CNN architecture [26] in Table 5. CARD uses a much simpler network as its image266

feature encoder, yet still outperforms all other models.267

In Table 6, we report the mean PIW among both correct and incorrect predictions, as well as the mean268

accuracy among both groups rejected and not-rejected by the paired two-sample t-test (α = 0.01).269

We report these metrics for all test instances and for each class label along with their group accuracy.270
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Table 5: Comparison of mean accuracy for FashionMNIST classification task with other BNNs and
ResNet-18 (our pre-trained classifier fϕ).

Model CMV-MF-VI CM-MF-VI CV-MF-VI CM-MF-VI OPT MF-VI MAP MC Dropout MF-VI EB ResNet-18 CARD (ours)

Mean Accuracy 91.10% 90.95% 88.53% 90.67% 87.04% 88.06% 87.99% 87.04% 91.19% 91.71%

Table 6: PIW (in %) and t-test results for FashionMNIST classification task.

Class Accuracy PIW Accuracy by t-test Status
Correct Incorrect Rejected Not-Rejected (Count)

All 91.71% 2.39 22.05 92.05% 40.00% (65)

1 86.70% 4.35 21.75 87.13% 53.85% (13)
2 98.30% 0.77 13.79 98.30% 100% (1)
3 86.90% 3.65 20.41 87.35% 50.00% (12)
4 92.00% 2.80 27.58 92.25% 50.00% (6)
5 86.40% 3.99 33.36 87.21% 33.33% (15)
6 99.00% 0.83 18.36 99.00% NA (0)
7 76.70% 5.57 16.00 77.56% 20.00% (15)
8 96.20% 1.32 29.15 96.30% 0.00% (1)
9 98.50% 0.57 10.79 98.50% NA (0)
10 96.40% 1.29 15.30 96.49% 50.00% (2)

We observe from Table 6 that under the scope of the entire test set, mean PIW of the true class271

label among the correct predictions is narrower than that of the incorrect predictions by an order of272

magnitude, indicating that CARD is much more confident when making correct predictions; on the273

other hand, CARD is also aware of what it does not know. More revealing observations can be made274

when comparing mean PIWs across different classes: a class with more accurate predictions tends to275

have a sharper contrast between correct and incorrect predictions; additionally, the metric values of276

both types of predictions tend to be larger in a less accurate class. Meanwhile, we observe that the277

accuracy of test instances rejected by the t-test is much higher than that of the not-rejected ones, both278

among the entire set and within each class (except Class 2 with only 1 not-rejected instance).279

We point out that these metrics can thus reflect how sure CARD is about its predictions, and can be280

used as an important indicator of whether the model prediction can be trusted or not. Therefore, it281

has the potential to be further applied in the human-machine collaboration domain [15, 19, 29, 8],282

such that one can apply such uncertainty measurement to decide if we can directly accept the model283

prediction, or we need to allocate the instance to humans for further evaluation.284

4 Conclusion285

In this paper, we propose Classification And Regression Diffusion (CARD) models, a class of genera-286

tive models that approaches supervised learning problems from a generative modeling perspective.287

Without training with objectives directly related to the evaluation metrics, we achieve state-of-the-art288

results on benchmark regression tasks. Furthermore, CARD exhibits a strong ability to represent289

conditional distribution with multiple density modes. We also propose a new metric Quantile Interval290

Coverage Error (QICE), which can be viewed as a generalized version of negative log-likelihood in291

evaluating how well the model fits the data. Lastly, we introduce a framework to evaluate prediction292

uncertainty at instance level for classification tasks.293
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