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Abstract

Reward function specification, which requires considerable human effort and itera-1

tion, remains a major impediment for learning behaviors through deep reinforce-2

ment learning. In contrast, providing visual demonstrations of desired behaviors3

presents an easier and more natural way to teach agents. We consider a setting4

where an agent is provided a fixed dataset of visual demonstrations illustrating how5

to perform a task, and must learn to solve the task using the provided demonstra-6

tions and unsupervised environment interactions. This setting presents a number of7

challenges including representation learning for visual observations, sample com-8

plexity due to high dimensional spaces, and learning instability due to the lack of a9

fixed reward or learning signal. Towards addressing these challenges, we develop a10

variational model-based adversarial imitation learning (V-MAIL) algorithm. The11

model-based approach provides a strong signal for representation learning, enables12

sample efficiency, and improves the stability of adversarial training by enabling on-13

policy learning. Through experiments involving several vision-based locomotion14

and manipulation tasks, we find that V-MAIL learns successful visuomotor policies15

in a sample-efficient manner, has better stability compared to prior work, and also16

achieves higher asymptotic performance. We further find that by transferring the17

learned models, V-MAIL can learn new tasks from visual demonstrations without18

any additional environment interactions. All results including videos can be found19

online at https://sites.google.com/view/variational-mail.20

1 Introduction21

The ability of reinforcement learning (RL) agents to autonomously learn by interacting with the22

environment presents a promising approach for learning diverse skills. However, reward specification23

has remained a major challenge in the deployment of RL in practical settings [2, 9, 37]. The ability24

to imitate humans or other expert trajectories allows us to avoid the reward specification problem,25

while also circumventing challenges related to exploration in RL. Visual demonstrations are also26

a more natural way to teach robots various tasks and skills in real-world applications. However,27

this setting is also fraught with a number of technical challenges including representation learning28

for visual observations, sample complexity due to the high dimensional observation spaces, and29

learning instability [35, 25, 32] due to lack of a stationary learning signal. We aim to overcome these30

challenges and to develop an algorithm that can learn from limited demonstration data as well as31

scale to high-dimensional observation and action spaces often encountered in robotics applications.32

Behaviour cloning (BC) is a classic algorithm to imitate expert demonstrations [34], which uses33

supervised learning to greedily match the expert behaviour at demonstrated expert states. Due34

to environment stochasticity, covariate shift, and policy approximation error, the agent may drift35

away from the expert state distribution and ultimately fail to mimic the demonstrator [40]. While36

a wide initial state distribution [41] or the ability to interactively query the expert policy [40] can37
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Figure 1: Left: the variational dynamics model, which enables joint representation learning from visual inputs
and a latent space dynamics model, and the discriminator which is trained to distinguish latent states of expert
demonstrations from that of policy rollouts. Dashed lines represent inference and solid lines represent the
generative model. Right: the policy training, which uses the discriminator as the reward function, so that the
policy induces a latent state visitation distribution that is indistinguishable from that of the expert. The learned
policy network is composed with the image encoder from the variational model to recover a visuomotor policy.

circumvent these difficulties, such conditions require additional supervision and are difficult to meet38

in practical applications. An alternate line of work based on inverse RL [13, 14] and adversarial39

imitation learning [22, 12] aims to not only match actions at demonstrated states, but also the long40

term visitation distribution [16]. These approaches explicitly train a GAN-based classifier [17] to41

distinguish the visitation distribution of the agent from the expert, and use it as a reward signal42

for training the agent with RL. While these methods have achieved substantial improvement over43

behaviour cloning without additional expert supervision, they are difficult to deploy in realistic44

scenarios, primarily due to three reasons: (1) the objective requires on-policy data collection leading45

to high sample complexity; (2) the non-stationarity reward function changes as the RL agent learns;46

and (3) high-dimensional observation spaces require representation learning and exacerbate the47

optimization challenges.48

Our main contribution in this work is the development of a new algorithm, variational model-based49

adversarial imitation learning (V-MAIL), which aims to overcome each of the aforementioned chal-50

lenges within a single framework. As illustrated in Figure 1, V-MAIL trains a variational latent-space51

dynamics model and a discriminator that provides a learning reward signal by distinguishing latent52

rollouts of the agent from the expert. The key insight of our approach is that variational models can53

address these challenges simultaneously by (a) making it possible to collect on-policy roll-outs inside54

the model without environment interaction, leading to an efficient and stable optimization process55

and (b) providing a rich auxiliary objective for efficiently learning compact state representations56

and which regularizes the discriminator. Furthermore, the variational model also allows V-MAIL to57

perform zero-shot transfer to new imitation learning tasks. By generating on-policy rollouts within58

the model, and training the discriminator using these rollouts along with demonstrations of a new59

task, V-MAIL can learn policies for new tasks without any additional environment interactions.60

Through experiments on a collection of vision-based locomotion and manipulation tasks, we find that61

V-MAIL can learn successful visuomotor control policies through imitation learning. In particular,62

V-MAIL exhibits stable and near-monotonic learning, is highly sample efficient, and asymptotically63

matches the expert level performance on most tasks. In contrast, prior algorithms exhibit unstable64

learning and poor asymptotic performance, often achieving less that 20% of expert level performance.65

We further show the ability to transfer our models to novel task and acquire qualitatively new behaviors66

using only a few demonstrations and no additional environment interactions. To our knowledge this is67

the first approach to use variational model-based training for zero-shot or few-shot imitation learning.68

2 Related Work69

Here, we review the relevant literature on imitation learning and image-based RL.70

Imitation Learning. Recent model-free imitation learning can be categorized as either adversarial71

or non-adversarial. Adversarial methods inspired by GANs [17] train an explicit classifier between72
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expert and policy behaviour and optimize the agent in a two-player minimax game. GAIL [22]73

and AIRL [14] are two such algorithms; however they often have poor sample efficiency due to the74

requirement of on-policy rollouts in the environment. To address sample efficiency issues, off-policy75

variants such as DAC [27] and SAM [5] have been developed, however they suffer from an objective76

mismatch when using off-policy data [28], often resulting in learning instability [6].77

An alternate line of research attempts to forego adversarial training: SQIL [39] frames the problem78

as regularized behaviour cloning and trains an off-policy algorithm with rewards of 1 for expert79

trajectories and 0 for policy ones. RCE [10] uses a very similar approach, but derives it as maximizing80

probability of task success, which they show is equivalent to minimizing the Hellinger distance81

between the policy occupation distribution and a particular target distribution. ValueDICE [28] uses82

the same key result for iterative distribution matching as RCE in conjunction with the Donsker-83

Varadhan representation to obtain an off-policy distribution matching algorithm. In Swamy et al.84

[42] the authors derive distribution matching as a bound on policy under-performance, similar to our85

analysis in Section 4.1 and propose a practical non-adversarial algorithm AdVIL, however in reported86

experiments it does not outperform behaviour cloning. A few papers have considered model-based87

imitation learning as well: Baram et al. [3] is an adversarial algorithm conceptually similar to our88

approach, but only focuses on low-dimensional state-based tasks and train the discriminator using89

off-policy replay buffer, which does not allow it to generalize to new tasks. Related to our method is90

Finn et al. [13] which uses a similar reward learning in combination with a locally linear dynamics91

model, which leads to trajectory centric algorithms and the inability to transfer the model to new92

tasks. Das et al. [8] considers a similar setting for inverse RL using a simplified parameterization93

of the cost function. In this work we develop end-to-end model for adversarial imitation learning in94

high-dimensional POMDPs and generalization to novel tasks without hand-designed features.95

Reinforcement Learning From Images with Variational Models. Reinforcement learning from96

images is an inherently difficult task, since the agent needs to learn meaningful visual representations97

to support policy learning. A recent line of research [15, 19, 30, 20, 36] train a variational model of98

the image-based environment as an auxiliary task, either for representation learning only [15, 30] or99

for additionally generating on-policy data by rolling out the model [20]. Our method builds upon these100

ideas, but unlike these prior works, considers the problem of learning from visual demonstrations101

without access to rewards.102

3 Preliminaries103

We consider the problem setting of learning in partially observed Markov decision processes104

(POMDPs), which can be described with the tuple: M = (S,A,X ,R, T ,U , γ), where s ∈ S105

is the state space, a ∈ A is the action space, x ∈ X is the observation space and r = R(s,a) is a106

reward function. The state evolution is Markovian and governed by the dynamics as s′ ∼ T (·|s,a).107

Finally, the observations are generated through the observation model x ∼ U(·|s). The widely108

studied Markov decision process (MDP) is a special case of this 7-tuple where the underlying state is109

directly observed in the observation model.110

In this work, we study imitation learning in unknown POMDPs. Thus, we do not have access to the111

underlying dynamics, the true state representation of the POMDP, or the reward function. In place of112

the rewards, the agent is provided with a fixed set of expert demonstrations collected by executing an113

expert policy πE , which we assume is optimal under the unknown reward function. The agent can114

interact with the environment and must learn a policy π(at|x≤t) that mimics the expert.115

3.1 Imitation learning as divergence minimization116

In line with prior work, we interpret imitation learning as a divergence minimization problem [22, 16,117

24]. For simplicity of exposition, we consider the MDP case in this section, and discuss POMDP118

extensions in Section 4.2. Let ρπM(s,a) = (1 − γ)
∑∞
t=0 γ

tP (st = s,at = a) be the discounted119

state-action visitation distribution of a policy π in MDP M. Then, a divergence minimization120

objective for imitation learning corresponds to121

min
π

D(ρπM, ρEM), (1)

where ρEM is the discounted visitation distribution of the expert policy πE , and D is a divergence122

measure between probability distributions such as KL-divergence, Jensen-Shannon divergence, or a123

generic f−divergence. To see why this is a reasonable objective, let J(π,M) denote the expected124
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value of a policy π inM. Inverse RL [46, 22, 12] interprets the expert as the optimal policy under125

some unknown reward function. With respect to this unknown reward function, the sub-optimality of126

any policy π can be bounded as:127 ∣∣∣J(πE ,M)− J(π,M)
∣∣∣ ≤ Rmax

1− γ
DTV (ρπM, ρEM),

since the policy performance is J(π,M) = E(s,a)∼ρπM

[
r(s,a)

]
. We use DTV to denote total128

variation distance. Since various divergence measures are related to the total variation distance,129

optimizing the divergence between visitation distributions in state space amounts to optimizing a130

bound on the policy sub-optimality.131

3.2 Generative Adversarial Imitation Learning (GAIL)132

With the divergence minimization viewpoint, any standard generative modeling technique including133

density estimation, VAEs, GANs etc. can in principle be used to minimize Eq. 1. However, in134

practice, use of certain generative modeling techniques can be difficult. A standard density estimation135

technique would involve directly parameterizing ρπM, say through auto-regressive flows, and learning136

the density model. However, a policy that induces the learned visitation distribution inM is not137

guaranteed to exist and may prove hard to recover. Similar challenges prevent the direct application of138

a VAE based generative model as well. In contrast, GANs allow for a policy based parameterization,139

since it only requires the ability to sample from the generative model and does not require the140

likelihood. This approach was followed in GAIL, leading to the optimization141

max
π

min
Dψ

E(s,a)∼ρEM

[
− logDψ(s,a)

]
+ E(s,a)∼ρπM

[
− log

(
1−Dψ(s,a)

)]
, (2)

where Dψ is a discriminative classifier used to distinguish between samples from the expert distri-142

bution and the policy generated distribution. Results from Goodfellow et al. [17] and Ho & Ermon143

[22] suggest that the learning objective in Eq. 2 corresponds to the divergence minimization objective144

in Eq. 1 with Jensen-Shannon divergence. In order to estimate the second expectation in Eq. 2 we145

require on-policy samples from π, which is data-inefficient. Adversarial off-policy algorithms, such146

as [27, 5] replace the expectation under the policy distribution with expectation under the current147

replay buffer distribution, which allows for off-policy training, but no longer guarantee that the policy148

marginal distribution will match the expert.149

4 Variational Model-Based Adversarial Imitation Learning150

Generative modeling in the context of imitation learning poses unique challenges. Improving the151

generative distribution (policy in our case) requires samples from ρπM, which requires rolling out152

π in the environment. Furthermore, the complex optimization landscape of a saddle point problem153

requires many iterations of learning, each of which requires on-policy rollouts. This is unlike typical154

generative modeling applications where generating samples from the generator is cheap and does155

not require any environment interactions. To overcome this challenge, we present a model-based156

imitation learning algorithm. For conceptual clarity and ease of exposition, we will first present157

our conceptual algorithm in the MDP setting in Section 4.1. Subsequently, we will extend this158

algorithm to the POMDP case in Section 4.2. Finally, we present a practical version of our algorithm159

in Section 4.3.160

4.1 Model-Based Adversarial Imitation Learning161

Model-based algorithms for RL and IL involve learning an approximate dynamics model T̂ using162

environment interactions. The learned dynamics model can be used to construct an approximate MDP163

M̂. In our context of imitation learning, learning a dynamics model allows us to generate samples164

from M̂ as a surrogate for samples fromM, leading to the objective:165

min
π

D(ρπM̂, ρ
E
M), (3)

which can serve as a good proxy to Eq. 1 as long as the model approximation is accurate. In particular,166

with an α-approximate dynamics model given by DTV (T̂ (s,a), T (s,a)) ≤ α ∀(s,a), we can167

bound the policy suboptimality with respect to the expert as:168 ∣∣∣J(πE ,M)− J(π,M)
∣∣∣ ≤ Rmax

1− γ
DTV (ρπM̂, ρ

E
M) +

α ·Rmax

(1− γ)2
. (4)
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Thus, the divergence minimization in Eq. 3 serves as an approximate bound on the sub-optimality169

with a bias that is proportional to the model error. Thus, we ultimately propose to solve the following170

saddle point optimization problem:171

max
π

min
Dψ

E(s,a)∼ρEM

[
− logDψ(s,a)

]
+ E(s,a)∼ρπ

M̂

[
− log

(
1−Dψ(s,a)

)]
, (5)

which requires generating on-policy samples only from the learned model M̂. We can interleave172

policy learning according to Eq. 5 with performing policy rollouts in the real environment to iteratively173

improve the model. Provided the policy is updated sufficiently slowly, Rajeswaran et al. [38] show174

that such interleaved policy and model learning corresponds to a stable and convergent algorithm,175

while being highly sample efficient.176

4.2 Extension to POMDPs177

In POMDPs, the underlying state is not directly observed, and thus cannot be directly used by the178

policy. In this case, we typically use the notion of belief state, which is defined to be the filtering179

distribution P (st|ht), where we denote history with ht := (x≤t,a<t). By using the historical180

information, the belief state provides more information about the current state, and can enable the181

learning of better policies. However, learning and maintaining an explicit distribution over states182

can be difficult. Thus, we consider learning a latent representation of the history zt = q(ht), so that183

P (st|ht) ≈ P (st|zt).184

To develop an algorithm for the POMDP setting, we first make the key observation that imitation185

learning in POMDPs can be reduced to divergence minimization in the latent belief state representa-186

tion. To formalize this, we introduce the following theorem. A formal version of the theorem and187

proof are provided in the appendix.188

Theorem 1. (Divergence bound in latent space; Informal) Consider a POMDPM, and let zt be a
latent space representation of the history and belief state such that P (st|x≤t,a<t) = P (st|zt). Let
Df be a generic f−divergence. Then the following inequalities hold:

Df (ρ
π
M(x,a)||ρEM(x,a)) ≤ Df (ρ

π
M(s,a)||ρEM(s,a)) ≤ Df (ρ

π
M(z,a)||ρEM(z,a))

Theorem 1 suggests that the divergence of visitation distributions in the latent space represents189

an upper bound of the divergence in the state and observation spaces. This is particularly useful,190

since we do not have access to the ground-truth states of the POMDP and matching the expert191

marginal distribution in the high-dimensional observation space (such as images) could be difficult.192

Furthermore, based on the results in Section 3.1, minimizing the state divergence results in minimizing193

a bound on policy sub-optimality as well. These results provide a direct way to extend the results194

from Section 4.1 to the POMDP setting. If we can learn an encoder zt = q(x≤t,a<t) that captures195

sufficient statistics of the history, and a latent state space dynamics model zt+1 ∼ T̂ (·|zt,at), then196

we can learn the policy by extending Eq. 5 to the induced MDP in the latent space as:197

max
π

min
Dψ

E(z,a)∼ρEM(z,a)

[
− logDψ(z,a)

]
+ E(z,a)∼ρπ

M̂
(z,a)

[
− log

(
1−Dψ(z,a)

)]
. (6)

Once learned, the policy can be composed with the encoder for deployment in the POMDP.198

4.3 Practical Algorithm with Variational Models199

The divergence bound of Theorem 1 allows us to develop a practical algorithm if we can learn a good200

belief state representation. Towards that end we turn to the theory of deep Bayesian filters [23] and201

begin with the likelihood:202

logP (x1:T |a1:T ) = log

∫ T∏
t=1

U(xt|st)T (st|at−1, st−1)ds1:T

We can introduce the belief distribution q(z1:T |x1:T ,a1:T−1) =
∏T
t=1 q(zt|xt, zt−1,at−1), which203

considers only model classes that satisfy the the sufficient statistics requirement. Using the introduced204

belief distribution as the variational distribution, we derive the evidence lower bound (ELBO) [4, 26]:205
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Algorithm 1 V-MAIL: Variational Model-Based Adversarial Imitation Learning
1: Require: Expert demos BE , environment buffer Bπ .
2: Randomly initialize variational model {qθ, T̂θ}, policy πψ and discriminator Dψ

3: for number of iterations do
4: // Environment Data Collection
5: for timestep t = 1 : T do
6: Estimate latent state from the belief distribution zt ∼ qθ(·|xt, zt−1,at−1)
7: Sample action at ∼ πψ(at|zt)
8: Step environment and get observation xt+1

9: Add data {x1:T ,a1:T−1} to policy replay buffer Bπ
10: for number of training iterations do
11: // Dynamics Learning
12: Sample a batch of trajectories {x1:T ,a1:T−1} from the joint buffer BE ∪ Bπ
13: Optimize the variational model {qθ, T̂θ} using Equation 7
14: // Adversarial Policy Learning
15: Sample trajectories from expert buffer {xE1:T ,aE1:T−1} ∼ BE
16: Infer expert latent states zE1:T ∼ qθ(·|xE1:T ,aE1:T−1) using the belief model qθ
17: Generate latent rollouts zπψ1:H using the policy πψ from the forward model T̂θ
18: Update the discriminator Dψ with data zE1:T , z

πψ
1:H using Equation 6

19: Update the policy πψ to improve the value function in Equation 8

logP (x1:T |a1:T ) ≥ Eq(z1:T |x1:T ,a1:T−1)

log T∏
t=1

U(xt|zt)
T (zt|at−1, zt−1)
q(zt|xt, zt−1,at−1)


To estimate the expectation, we can use sequential sampling from the belief distribution zt ∼206

q(·|xt, zt−1,at−1), t = 1 : T and the reparameterization trick [26]. This ultimately leads to the207

empirical variational model training objective:208

max
θ

Êqθ
[ T∑
t=1

log Ûθ(xt|zt)︸ ︷︷ ︸
reconstruction

−DKL(qθ(zt|xt, zt−1,at−1)||T̂θ(zt|zt−1,at−1))︸ ︷︷ ︸
forward model

]
. (7)

That is, we jointly train a belief representation qθ and a Markovian dynamics model T̂ , which allows209

us to optimize Eq. 5 in our learned belief space. A number of recent works have considered similar210

models [44, 45, 30, 15, 19, 20]. We base our architectural choice on the recurrent state space model211

[19, 20], as it has shown strong performance in RL tasks from images. In principle, any on-policy RL212

algorithm can be used to train the policy using Eq. 6. In our setup, the RL objective is a differentiable213

function of the policy, model, and discriminator parameters. Based on this, we setup a K step value214

expansion objective [11, 7] given below, and use it for policy learning.215

V Kθ,ψ(zt) = Eπψ,T̂θ

t+K−1∑
τ=t

γτ−t logDψ(z
πψ
τ ,a

πψ
τ ) + γKVψ(z

πψ
t+K)

 (8)

Finally, we train the discriminator Dψ using Eq. 5 with on-policy rollots from the model T̂ . Our full216

approach is outlined in Algorithm 1.217

4.4 Zero-Shot Transfer to New Imitation Tasks218

Our model-based approach is well suited to the problem of zero-shot transfer to new imitation learning219

tasks, i.e. transferring to a new task using a modest number of demonstrations and no additional220

samples collected in the environment.. In particular, we assume a set of source tasks {T i}, each221

with a buffer of expert demonstrations BiE . Each source task corresponds to a different POMDP222

with different underlying rewards, but shared dynamics. The underlying state space may also change223
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Algorithm 2 Zero-Shot Transfer with V-MAIL
1: Require: Expert demos BiE for each source task, expert demos BE for target task
2: Randomly initialize policy πψ , and discriminator Dψ

3: Train Alg 1 on source tasks, yielding shared model {qθ, T̂θ} and aggregated replay buffer Bπ
4: for number of training iterations do
5: // Dynamics Fine-Tuning using Expert Trajectories
6: Update the variational model {qθ, T̂θ} using Equation 7 with data from BE ∪ Bπ
7: // Adversarial Policy Learning
8: Update discriminator Dψ and policy πψ with Equations 6 and 8.

across tasks, but the dynamics and observation model are shared across tasks. During training, the224

agent can interact with each source environment and collect additional data. At test time, we’re225

introduced with a new target task T with corresponding expert demonstrations BE and the goal is to226

obtain a policy that achieves high reward without additional interaction with the environment.227

Our key observation is that we can optimize Eq. 6 under our model and still obtain an upper bound228

on policy sub-optimality via Eq. 4. Furthermore, the sub-optimality is bound by the accuracy of our229

model over the marginal state-action distribution of the target task expert. Specifically, we first train230

on all of the source tasks using Algorithm 1, training a single shared variational model across the231

tasks. By fine-tuning that model on data that includes the target task expert demonstrations our hope232

is that we can get an accurate model and thus a high-quality policy. Similarly to Algorithm 1, we233

then train a discriminator and policy for the target task using only model rollouts. This approach is234

outlined in Algorithm 2.235

5 Experiments236

In our experiments, we aim to answer several questions: (1) can V-MAIL successfully scale to237

environments with image observations, (2) how does V-MAIL compare to state of the art model-free238

imitation approaches, (3) can V-MAIL solve realistic manipulation tasks and environments with239

complex physical interactions, and (4) can V-MAIL enable zero-shot transfer to new tasks? All240

experiments were carried out on a single Titan RTX GPU using an internal cluster for about 1000241

GPU hours.242

5.1 Single-Task Experiments243

Comparisons. To answer question (2), we choose to compare V-MAIL to model-free adversarial244

and non-adversarial imitation learning methods. For the former, we choose DAC [27] as a representa-245

tive approach, which we equip with DrQ data augmentation for greater performance on vision-based246

tasks. For the latter, we consider SQIL [39], also equipped with DrQ training. We refer to each247

approach with data augmentation as DA-DAC and DA-SQIL respectively. Both of these methods248

are off-policy algorithms, which we expect to be considerably more sample efficient than on-policy249

methods like GAIL [22] and AIRL [14].250

Environments and Demonstration Data. To answer the above questions, we consider the five251

visual control environments illustrated in Figure 2. We first evaluate our method on the visual252

Cheetah and visual Walker tasks from the DeepMind Control Suite [43]. Following SQIL [39] we253

also consider the classic Car Racing environment, which is difficult to solve even with ground-truth254

rewards. In addition, we benchmark our method on a custom D’Claw environment from the Robel255

Figure 2: Illustration of the environments used in our experiments: Cheetah, Walker, Car Racing, D’Claw, and
Baoding Balls. In all environments, the agent has access only to the RGB image frames as observations, except
with additional access to proprioception in the Baoding Balls environment.
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Figure 3: Learning curves showing ground truth reward versus number of environment steps for V-MAIL
(ours), prior model-free imitation learning approaches, and behavior cloning on five visual imitation tasks. We
find that V-MAIL consistently outperforms prior methods in terms of sample efficiency, final performance, and
stability, particularly for the first four environments where V-MAIL reaches near-expert performance. In the
most challenging visual Baoding Balls task, which is notably difficult even with ground-truth state, only V-MAIL
is able to make some progress, but all methods struggle. Confidence intervals are shown with 1 SD over 3 runs.

suite [1], entirely from images without proprioception. This makes the task challenging due to256

a complex action dynamics, contact dynamics, and occlusions from the robot fingers. Our final257

environment is the Baoding balls task from Nagabandi et al. [33]. This is an extremely challenging258

task for policy learning, even in the state-based case. All tasks are from raw RGB images, while the259

Baoding balls task additionally includes robot proprioception. All methods receive access to use 10260

expert demonstrations, with the exception of the Baoding environment, which uses 25 demonstrations.261

The demonstrations for the DeepMind Control and D’Claw tasks are generated using a policy trained262

with SAC [18], the expert data for the Car Racing environment is generated using Dreamer [20], and263

the demonstrations for the Baoding task is generated using PDDM [33] from low-dimensional states.264

Additional details on the experimental set-up are provided in the appendix.265

Results. Experiment results are shown in Figure 3. To answer questions (1) and (2), we compare V-266

MAIL to DA-SQIL and DA-DAC on the Cheetah and Walker tasks. We find that V-MAIL efficiently267

and reliably solves both tasks; in contrast, the model-free methods initially outperform V-MAIL,268

but their performance has high variance across random seeds and exhibits significant instability.269

Such stability issues have also been observed by Swamy et al. [42], which provides some theoretical270

explanation in the case of SQIL and the suggestion of early stopping as a mitigation technique. In271

the case of DAC, the reasons for instability are less clear. Motivated by instability we observed in272

the critic loss for DA-DAC, we experimented with a number of mitigation strategies in an attempt273

to improve DA-DAC, including constraining the discriminator, varying the buffer and batch sizes,274

and separating the convolutional encoders of the discriminator and the actor/critic; however, these275

techniques didn’t fully prevented the degradation in performance.276

On the Car Racing environment, we find that DA-SQIL and DA-DAC can reach or outperform277

behavior cloning, but struggle to reach expert-level performance. In contrast, V-MAIL stably and278

reliably achieves near-expert performance in about 200k environment steps. Note that Reddy et al.279

[39] report expert-level performance on this task, but in an easier setting with double the number of280

expert demonstrations available (20 vs. 10). Given that tracks are randomly generated per episode281

demanding significant generalization, it is not surprising that the problem becomes considerably more282

difficult with only 10 demonstrations.283

Finally, to answer question (3), we consider the D’Claw and Baoding Balls tasks. In the D’Claw284

environment, SQIL fails to make progress, while DA-DAC makes significant progress initially285

but quickly degrades. V-MAIL solves the task in less than 100k environment steps. In the most286

challenging visual Baoding Balls problem, involving a 26-dimensional control space, V-MAIL is the287

only algorithm to reach any success.288
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5.2 Transfer Experiments289

Transfer Scenarios. To evaluate V-MAIL’s ability to learn new imitation tasks in a zero-shot way290

(i.e. without any additional environment samples) we deploy Algorithm 2 on two domains: in a291

locomotion experiment we train on the Walker Stand and Walker Run (target speed greater than 8)292

tasks and and evaluate transfer to the Walker Walk (target speed between 2 and 4) task from the293

DeepMind Control suite. In a manipulation scenario, we use a set of custom D’Claw Screw tasks from294

the Robel suite [1]. We train our model on the 3-prong tasks with clockwise and counter-clockwise295

rotation, as well as the 4-prong task with counter-clockwise rotation and evaluate transfer to the296

4-prong task with clockwise rotation.297

Comparisons. To our knowledge, no prior work has considered this zero-shot transfer scenario298

previously. Thus, we devise several points of comparison. First, we compare to directly applying299

the policy learned in the most related source task to the target task. This tests whether the target300

task demands qualitatively distinct behavior. Second, we compare to an offline version of DAC,301

augmented with the CQL approach [29], where samples collected from the source task are used to302

update the policy, with the target task demonstrations used to learn the reward. Finally, we also303

compare to behavior cloning on the target task demonstrations (without leveraging any source task304

data), and an oracle that performs V-MAIL on the target task directly.305

Method Walker Walk Claw Rotate

Offline DAC 8.8% -0.7%
Behavior cloning 26.8% 8.3%
Policy transfer 21.3% 5.6%
V-MAIL (ours) 92.7% 97.9%

Target task IL (oracle) 98.2% 102.3%

Table 1: Performance on zero-shot transfer to a new imita-
tion learning task as percent of expert return. Each method
is provided with 10 demonstrations of the target task, and
zero additional samples in the environment. V-MAIL can
solve the target tasks within its learned model without any
additional samples, while model-free transfer learning ap-
proaches fail.

Results. Our results are shown in Table 1.306

Policy transfer performs poorly, suggesting307

that the target task indeed requires quali-308

tatively different behaviour from the few309

training tasks available. Further, behavior310

cloning on the target demonstrations is not311

sufficient to learn the task. Offline DAC312

also shows poor performance. Finally, we313

see that V-MAIL almost matches the per-314

formance of the agent explicitly trained on315

task, indicating the learned model and the316

algorithm for training within that model can317

be used not just for efficient visual imitation318

learning, but also for zero-shot transfer to319

new tasks.320

6 Conclusion321

In this work we presented V-MAIL, a model-based imitation learning algorithm that works from322

high-dimensional image observations. V-MAIL learns a model of the environment, which serves323

a strong supervision signal for visual representation learning, as well as allowing us to train an324

imitation learning algorithm on-policy, without sacrificing sample efficiency. V-MAIL achieves325

better asymptotic returns, is more stable, and matches the sample efficiency of off-policy model-free326

approaches. We also find that by training a policy using only model rollouts, our approach is a strong327

procedure for zero-shot transfer to novel imitation learning tasks.328

Future Work. We believe this work opens the door for many potential developments. One direction is329

to use recent developments in variational models to train our procedure using only expert observations330

without access to expert actions, which is an even more realistic scenario. This setup is quite difficult331

for model-free approaches, since expert actions usually serve as a strong supervision. Another332

direction is to use on-policy model based rollouts to efficiently train other algorithms that inherently333

require on-policy data, such as multi-modal imitation [31, 21]. Finally, the experiments suggest that334

this algorithm is efficient enough to be applied to real robots, an interesting direction for future work.335

Limitations. Although successful in domains with complex dynamics, crucially our approach relies336

on variational models with compact, single-level, latent state spaces. It is possible that this model337

class could not have the capacity to represent complex realistic scenes such as large-scale cluttered338

environments, cloth and deformable object dynamics, realistic city scenes or home environments,339

which would limit real world applications.340

Negative Societal Impacts. We do not anticipate any negative societal impacts that are unique to341

this paper compared to prior imitation learning works.342
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