
Bringing Efficiency and Interpretability to Learned
TCP Congestion Control

Anonymous Author(s)
Affiliation
Address
email

Abstract
Recent research in TCP congestion control (CC) has witnessed tremendous success1

with deep reinforcement learning (RL) approaches, which use feedforward neural2

networks (NN) to tackle complex environment conditions and make better decisions.3

However, these “black box" policies lack interpretability, and reliability and, more4

importantly, cannot operate under the TCP datapath’s ultra-contingent latency5

and computational constraints. This paper proposes a novel two-stage solution6

to achieve the best of both worlds: first to train a deep RL agent, then distill its7

(over-)parameterized NN policy into white-box, light-weight rules in the form8

of symbolic expressions that are much easier to understand and to implement9

in constrained environments. At the core of our proposal is a novel symbolic10

branching algorithm that allows the rule to be “context-aware” of various network11

conditions, eventually converting the NN policy into a symbolic tree. The distilled12

symbolic rules preserve and often improve performance over state-of-the-art NN13

policies while being orders of magnitude faster and interpretable. We validate14

the performance of our distilled symbolic rules on both simulation and emulation15

network systems. Our code will be released upon acceptance.16

1 Introduction17

Congestion control (CC) is fundamental to Transmission Control Protocol (TCP) communication.18

Congestion occurs when the data volume sent to a network reaches or exceeds its maximal capacity,19

in which case the network drops excess traffic, and the performance unavoidably declines. CC20

mitigates this problem by carefully adjusting the data transmission rate based on the inferred network21

capacities, aiming to send data as fast as possible without creating congestion. For instance, a classic22

and best-known strategy, Additive-Increase/Multiplicative-Decrease (AIMD) [1], gradually increases23

the sending rate when there is no congestion but exponentially reduces the rate when the network is24

congested. It ensures that TCP senders fairly share the network capacity in the converged state.25

Figure 1 shows an example where two TCP connections share a link between routers 1 and 2. When26

the shared link becomes a bottleneck, the CC algorithms running on sources A and B will alter the27

traffic rate based on the feedback to avoid congestion. Efficient and interpretable CC algorithms have28

been the bedrock for network services such as DASH video streaming, VoIP (voice-over-IP), VR/AR29

games, and IoT (Internet of Things), which ride atop the TCP protocol.30

However, it is nontrivial to design a high-performance CC algorithm. Over a long history, tens of CC31

proposals have been made, all with different metrics and strategies to infer and address congestion,32

and new designs are still emerging even today [2, 3]. There are two main challenges when designing33

a CC algorithm. 1 it needs to precisely infer whether the network is congested, and if so, how34

to adjust the sending rate, based on only partial or indirect observations. Note that CC runs on35

end hosts while congestion happens in the network, so CC algorithms cannot observe congestion36

directly. Instead, it can only rely on specific signals to infer the network status. For instance, TCP37

Cubic [4] uses packet loss as a congestion signal, and TCP Vegas [5] opts for delay increase. 2 CC38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

algorithms operate within the OS kernel, where the computing and memory resources are limited,39

and they need to make real-time decisions to adjust the traffic rates frequently (e.g., per round-trip40

time). Therefore, the algorithm must be extraordinarily efficient. Spending a long time to compute an41

action will significantly offset the benefit of congestion control.42

Bottleneck link

Source A

Source B

Destination A

Destination B

Router 1

User spaceApp App App

Router 2

Kernel space
Symbolic

RL agent

Data Feedback/ACK

Figure 1: Overview of a congestion control agent’s
role in the network. Multiple senders and receivers
share a single network link controlled by the agent,
which dynamically modulates the sending rates
conditioned on feedback from receivers.

In the long history of congestion control, most43

algorithms are implemented with manually-44

designed heuristics, including New Reno [6]45

Vegas [5], Cubic [4], and BBR [2]. In TCP46

New Reno, for example, the sender doubles the47

number of transmitted packets every RTT before48

reaching a predefined threshold, after which it49

sends one more packet every RTT. If there is50

a timeout caused by packet loss, it halves the51

sending rate immediately. Manually crafted CCs52

have been shown to be suboptimal and cannot53

support cases that escape the heuristics [7]. For54

example, packet loss-based CCs like Cubic [4]55

cannot distinguish packet drops caused by con-56

gestion or non-congestion-related events [7].57

Researchers have tried to construct CC algo-58

rithms with machine learning approaches to ad-59

dress these limitations [7–11]. The insight is60

that the CC decisions are dependent on traffic patterns and network circumstances that can be ex-61

ploited by deep reinforcement learning (RL) to learn a policy for each scenario. The learned policy62

can perform more flexible and accurate rate adjustment by discovering a mapping from experience,63

which can adapt to different network conditions and save manual tuning efforts for high performance.64

Most notably, Aurora [7], a deep RL framework for Performance-oriented Congestion Control (PCC),65

trains a well-established PPO [12] agent to suggest sending rates as actions by observing the network66

statistics such as latency ratio, send ratio, and sent latency inflation. It achieves competitive results on67

emulation environments Mininet [13] and Pantheon [14], demonstrating the potential of deep learning68

approaches to outperform algorithmic, hand-crafted ones. Despite its immense success, Aurora69

being a neural network based approach, is essentially a black-box to users or, in other words, lacks70

explicit declarative knowledge [15]. They also require exponentially more computation resources71

than traditional, algorithmic methods such as the widely deployed TCP-CUBIC [4].72

1.1 Our Contributions73

In this work, we develop a new algorithmic framework for performance-oriented congestion control74

(PCC) agents, which can 1 run as fast as classical algorithmic methods; 2 adjust the rate as75

accurately as data-driven RL methods; and 3 enjoy good interpretability.76

We solve this problem by grasping the opportunity enabled by advances in symbolic regression77

[16–19]. Symbolic regression bridges the gap between the infeasible search directly in the enormous78

symbolic algorithms space and the differentiable training of overparameterized and un-interpretable79

neural networks.80

At a high level, one can first train an RL agent through gradient descent, then distill the learned81

policy to obtain the data-driven optimized yet fully interpretable symbolic rules. This results in82

a set of symbolic rules through data-driven optimization that meets TCP CC’s extreme efficiency83

and reliability demands. However, considering the enormous volume of discrete symbolic space, it84

is challenging to learn effective symbolic rules from scratch directly. Therefore, in this paper, we85

adopt a two-stage approach: we first train a deep neural network policy with reinforcement learning86

mimicking Aurora [7], and then distill the resultant policy into numerical symbolic rules, using87

symbolic regression (SR).88

As the challenge, directly applying symbolic regression out of the box does not yield a sufficient89

versatile expression that captures diverse networking conditions. We hence propose a novel branching90

technique for training and then aggregating a number of SymbolicPCC agents, each of which cater to a91

subset of the possible network conditions. Specifically, we have multiple agents, each called a branch,92

and employ a light-weight “branch decider” to choose between the branches during deployment.93

2

In order to create the branching conditions we partition the network condition space into adjacent94

non-overlapping contexts, then regress symbolic rules in each context. With this modification, we95

enhance the expressiveness of the resulting SR equation and overcome the bias of traditional SR96

algorithm to output rules mostly using numerical operators. Our concrete technical contributions are97

summarized as follows:98

• We propose a symbolic distillation framework for TCP congestion control, which improves upon99

the state-of-the-art RL solutions. Our approach, SymbolicPCC, consists of two stages: first100

training an RL agent and then distilling its policy network into ultra-compact and interpretable101

rules in the symbolic expression form.102

• We propose a novel branching technique that advances existing symbolic regression techniques103

for training and aggregating multiple context-dependent symbolic policies, each of which104

specializes for its own subset of network conditions. A branch decider driven by light-weight105

classification algorithms determines which symbolic policy to use.106

• Through our simulation and emulation experiments, SymbolicPCC achieves highly competitive107

or even stronger performance results compared to their teacher policy networks while running108

orders of magnitude faster. Our approach enables congestion control RL that is as light-weight109

and interpretable as conventional algorithms while narrowing their performance gap.110

2 Related Works111
App App App

• Manually designed heuristic
• AIMD
• In kernel space, fast but not performant

Sending rate

ACKs

Pkt loss

Additive increase

Multiplicative decrease

App App App

• Online learning
• Maximize the defined utility
• In user space, performant but slow

Sending rate

Utility
MaxOnline

learning

Kernel space Kernel space

User space User space

CUBIC PCC Vivace

Monitor

App App App

• Manually designed heuristic
• Compute the best sending rate based on

path delay and bottlenecked bandwidth.
• Better than Cubic in certain scenarios

Sending rate

RTT

BW

Adjust

Kernel space

User space

BBR

Figure 2: Overview of Conventional Baselines

Conventional TCP CC adopts a112

heuristic-based approach where the113

heuristic functions are manually114

crafted to adjust the traffic rate in a de-115

terministic manner. Some proposals116

use packet loss as a signal for network117

congestion, e.g., Cubic [4], Reno [20],118

and NewReno [6], and others rely on119

the variation of delay, e.g., Vegas [5].120

Other CC designs combine packet loss121

and delay [21, 22]. Recently, different CC techniques specialized for data-center networks are also122

proposed [2, 3, 23].123

Researchers have also investigated the use of machine learning to construct better heuristics. In-124

digo [10] and Remy [11] use offline learning to obtain high-performance CC algorithms. PCC [24]125

and PCC Vivace [9] opt for online learning to avoid any hardwired mappings between states and126

actions. Aurora [7] utilizes deep reinforcement learning to obtain a new CC algorithm running in127

the user space. Orca [8] improves upon Aurora and designs a user-space CC agent that infrequently128

configures kernel-level CC policies. Our proposal further improves these work.129

These methods, although proven to be high-performing, lack any type of interpretability. On the other130

hand, Symbolic regression methods have [16–19] recently emerged for discovering underlying math131

equations that govern the observed data. Algorithms with such a property are more favorable for132

real-world deployment as they output white-box rules. [17] use genetic programming based method133

to generate a list of candidate equations, evaluate and filter out those bad performing ones, then134

randomly permute the remaining ones to evolve into better candidates. [19] use a recurrent neural135

network to perform a search in the symbolic space.136

We thus propose to synergize such numerical and data-driven approaches using symbolic regression137

(SR) in the congestion control domain. We use SR by following a post-hoc method of first training an138

RL algorithm then distilling it into its symbolic rules. Earlier methods that follow a similar procedure139

do exist, e.g., [25] distills the learned policy as a soft decision tree. They work on visual RL where140

the image observations are coarsely quantized into 10× 10 cells, and the soft decision tree policy141

is learned over the 100 dimensional space. [26] also aims to learn abstract rules using a common142

sense-based approach by modifying Q learning algorithms. Nevertheless, they fail to generalize143

beyond the specific simple grid worlds they were trained in. [27] learns from boolean feature sets, [28]144

directly approximates value functions based on a state-transition model, [29] optimizes risk-seeking145

policy gradients. Other works on abstracting pure symbolic rules from data include attention-based146

methods [30], visual summary based methods [31], reward decomposition based methods [32], casual147

3

RL Baseline

Of�ine Dataset
of Trajectories

Symbolic Policy
(unbranched)

Branching Boundary Conditions

RL 1 RL 2 RL 3 RL 4

train specialized RL agents

Sym1 Sym2 Sym3 Sym4

D1 D2 D3 D4

Of�ine Datasets of Trajectories

Symbolic Policy (branched)

symbolic distillation

collect rollouts

symbolic distillation

collect rollouts reward
clustering

Environment

Branch
decider

observations

Symbolic Policy
(branched)

branch

observations

actions

Training
SymbolicPCC

Evaluation/Deployment
SymbolicPCC

clustering
algorithm

Figure 3: The proposed SymbolicPCC training and evaluation technique: A baseline RL agent is first
trained then evaluated numerous times with the roll-outs being saved. Directly distilling out from this
data provides a baseline symbolic policy. A light-weight clustering algorithm is used to cluster from
the roll-out dataset, non-overlapping subsets of network conditions (aka. branching conditions) that
achieve similar rewards. Separate RL agents are then trained on each of these network contexts and
distilled into their respective symbolic rules. During the evaluation, the labels from the clustering
algorithm are re-purposed to classify which branch is to be taken given the observation statistics. The
chosen symbolic branch is then queried for the action.

model based methods [33], markov chain based methods [34], and case-based expert-behaviour148

retrieval methods [35].149

3 Methodology150

Inspired from the idea of “teacher-student knowledge distillation” [36], our symbolic distillation151

technique is two-staged—first train regular RL agents (as the teacher), then distill the learned policy152

networks into their white-box symbolic counterparts (as the student). In Section 3.1 we follow [7]’s153

approach in Aurora and the training of teacher agents on the PCC-RL gym environment. We also154

briefly discuss the approach of applying symbolic regression to create a light-weight numerical-driven155

expression that approximates a given teacher’s behavior. In Section 3.2 we look at the specifics of156

symbol spaces and attach internal attributes to aid long-term planning. Finally, in Section 3.3 we157

discuss our novel branching algorithm as a method for training, then ensembling multiple context-158

dependent symbolic agents during deployment.159

3.1 Preliminaries: The PCC-RL Environment and the Symbolic Distillation Workflow160

PCC-RL [7] is an open-source RL testbed for simulation of congestion control agents based on the161

popular OpenAI Gym [37] framework. We adopt it as our main playground. It formulates congestion162

control as a sequential decision making problem. Time is first divided into multiple periods called163

MIs (monitor intervals), following [24]. At the onset of each MI, the environment provides the agent164

with the history of statistic vector observations over the network, and the agent responds with adjusted165

sending rates for the following MI. The sending rate remains fixed during a single MI.166

The network statistics provided as observations to the congestion control agent are 1 the latency167

inflation, 2 the latency ratio, and 3 the sending ratio. The agent is guided by reward signals based168

on its ability to react appropriately when detecting changes and trends in the vector statistics of169

the PCC-RL environment. It is provided with positive rewards for higher values of throughputs170

(packets/second) while being penalized for higher values of latency (seconds) and loss (ratio of sent171

vs. acknowledged packets).172

Training of Teacher Agents: We first proceed to train RL agents using the PPO algorithm [12]173

similar to Aurora [7] in the PCC-RL gym environment till convergence. Although they statistically174

perform very well [7], the PPO agents are entirely black-boxes; this makes it difficult to explain its175

underlying causal rules directly. Also, their over-parameterized neural network forms incur high176

latency. Hence, we choose to indirectly learn the symbolic representations using a student-teacher177

type knowledge distillation approach based on the teacher’s (in this case, the RL agent) behaviors.178

4

Distillation of Student Agents: Using the teacher agents, we collect complete trajectories, formally179

known as roll-outs in RL, in an inference mode—deterministic actions are enforced. The observations180

and their corresponding teacher actions are MI-aligned and stored as an offline dataset. Note that181

this step is only performed once at the start of the distillation procedure and is reused in each of its182

iterative steps. A search space of operators and operands is also initialized (details are discussed183

shortly in Section 3.2). Guesses for possible symbolic relations are taken, composed of random184

operators and operands from their respective spaces. The stored observation trajectories are then185

re-evaluated based on this rule to output corresponding actions. The cross-entropy loss with respect186

to the teacher model’s actions from the same dataset is used as feedback. This feedback drives187

the iterative mutation and pruning following a genetic programming technique [38, 39]. The best188

candidate policies are collected and forwarded to the next stage. If the tree fails to converge or does189

not reach a specific threshold of acceptance, the procedure is restarted from scratch.190

3.2 A Symbolic Framework for Congestion Control191

Defining the Symbol Space for CC: Unlike visual RL [40], the PCC observation space is vector-192

based, hence we directly plug them into the search space of our numerical-driven symbolic algorithm.193

We henceforth call these observations as vector statistic symbols. The distillation procedure194

as described earlier learns to chain these vector statistic symbols using a pre-defined operator195

space. Specifically, we employ three types of numerical operators. The first type of operators are196

arithmetic based which include +,−, ∗, /, sin, cos, tan, cot, (·)2, (·)3,
√
·, exp, log, |·|. The second197

type of operators are Boolean logic, such as is(x < y), is(x ≤ y), is(x == y), a | b, a & b, and ¬ a.198

We also utilize a third type of high level operators – namely the slope_of (observation history)199

which provides the average slope of an array of observations, and get_value_at (observation200

history, index). The slope operator is especially useful when trying to detect trends of a specific201

statistic vector over the provided monitor interval. For instance, identifying latency increase or202

decrease trends serves as one of the crucial indicators for adjusting sending rates. Meanwhile the203

index operator is observed from our experiments to be implicitly used for immediate responding—i.e.,204

based on the latest observations.205

We note that the underlying decision procedure of the policy network could be efficiently represented206

in the form of a high-fidelity tree-shaped form similar to Figure 4. This decision tree contains said207

condition nodes and action nodes. Each condition node forks into two leaf nodes based on the208

Boolean result of its symbolic composition.209

Attributes for Long Term CC Planning: In addition to having these operators and operands as210

part of the symbolic search space, we also attach a few attributes/flags to the agent which are shared211

across consecutive MI processing steps and help with long-term planning. One emerging behaviour212

in our SymbolicPCC agents is to use this attribute for remembering if the agent is in the process of213

recovering from a network overload or if the network is stable. Indeed, a more straightforward option214

for such “multi-MI tracking” would be to just provide a longer history of the vector statistics into215

the searching algorithms. But this quickly becomes infeasible due to an exponential increase of the216

possible symbolic expressions with respect to the length of vector statistic symbols.217

3.3 Novel Branching Algorithm: Switching between Context-Dependent Policies218

Unlike traditional visual RL environments, congestion control is a technically more demanding task219

due to the variety of possible network conditions. The behaviour of the congestion control agent220

will improve if its response is conditioned on the specific network context. However, as this context221

cannot be known by the congestion control agent, the traditional algorithms such as TCP Cubic [4]222

are forced to react in a slow and passive manner to generalize to both slow-paced and fast-paced223

conditions.224

Hence, we propose to create n non-overlapping contexts for different network conditions, namely—225

bandwidth, latency, queue size, and loss rate. We then train n individual RL agents in the PCC Gym226

by exposing them only to their corresponding network conditions. We thus have a diverse set of227

teachers which are each highly performant in their individual contexts. Following the same approach228

as described in Section 3.1, each of the agents are distilled—each one called a branch. Finally,229

during deployment, based on the inference network conditions, the branch with the closest matching230

boundary conditions/context is selected and the corresponding symbolic policy is used.231

Partitioning the Networking Contexts: A crucial point to note in the proposed branching pro-232

cedure is to identify the most suitable branching context boundary values. In other words, the best233

5

Yes

&

Yes No

&

Yes

Yes No

No

Yes
No

&
&

Start

Yes

&
&

No

Yes

&

No

&
&

No

Yes

Yes No

No

No

Yes

Key

 - Latency Ratio

 - Send Ratio

 - Sent Latency In�ation
☐ - Latest Value

&

Yes No

1

2

3

4

5

6

7

8
9

10
11

Figure 4: A distilled symbolic policy from the baseline RL Agent in the PCC-RL Environment.
Condition nodes are represented as rectangular blocks and action nodes as process blocks.
boundary conditions for grouping need to be statistically valid, and plain hand-crafted boundaries are234

not optimal. This is because we do not have ground truths of any of the network conditions [41], let235

alone four of them together. Therefore, we first use a trained a RL agent on the default (maximal)236

bounds of network conditions (hereinafter known as the “baseline” agent). We then evaluate the237

baseline agent on multiple regularly spaced intervals of bandwidth, latency, queue size, and loss238

rate and store their corresponding rewards as well as observation trajectories. To create the optimal239

groupings, we simply use KMeans [42] to cluster the data based on their rewards. Due to the inherent240

proportional relation of difficulty (or in this case the ballpark of rewards) with respect to a network241

context, clear boundaries for the branches can be obtained by inspecting the extremes of each network242

condition within a specific cluster. Our experimentally obtained branching conditions are further243

discussed in Section 4.2 and Table 1.244

Branch Decider. Since the network context is not known during deployment, this creates the need245

for a branch decider module. The branch decider reuses clusters labels from the training stage246

for a K Nearest Neighbours [43] classification. The light-weight distance based metric is used to247

classify the inference-time observation into one of the training groupings, and thereby executing the248

corresponding branch’s symbolic policy. Figure 3 illustrates our complete training and deployment249

techniques.250

Lastly, in order to accommodate for branching, we have yet another long-term tracking attribute that251

stores a history of branches taken in order to smooth over any erratic bouncing between branches252

which are in non-adjacent contexts.253

4 Experimental Settings and Results254

Next, we discuss the abstract rules uncovered by SR, as well as validate the branching contexts. In255

Sections 4.3, 4.4, and 4.5 we provide emulation results on Mininet [13], a widely-used network256

emulator that can emulate a variety of networking conditions. Lastly in Section 4.6, we compare the257

compute requirements and efficiencies of SymbolicPCC with conventional algorithms, RL-driven258

methods as well as their pruned and quantized variants.259

4.1 Interpreting the Symbolic Policies260

The baseline symbolic policy distilled from the baseline RL agent is represented in its decision tree261

form in Figure 4. One typical CC process presented by the tree is increasing the sending rate until the262

network starts to “choke” and then balancing around that rate. This process is guided with a series263

of conditions regarding to inflation and ratio signals, marked with circled numbers in Figure 4. The264

detailed explanation is in the following.265

Condition node 1 checks whether the vector statistic symbols are all stable—namely,266

whether the latency inflation is close to zero, while latency ratio and send ratio are close to one.267

6

Table 1: The baseline network conditions and resultant branching boundary values (contexts) for
each branch after clustering. The rewards centroid refers to the reward value at cluster center of that
specific branch.

Branch Rewards Centroid Bandwidth (pps) Latency (sec) Queue Size (packets) Loss Rate (%)

Baseline - 100 - 500 0.05 - 0.5 2 - 2981 0.00 - 0.05
Branch 1 95.84 100 - 200 0.35 - 0.5 2 - 2981 0.04 - 0.05
Branch 2 576.57 200 - 250 0.25 - 0.35 2 - 2981 0.02 - 0.03
Branch 3 1046.46 250 - 350 0.15 - 0.25 2 - 2981 0.02 - 0.03
Branch 4 1516.70 350 - 500 0.05 - 0.15 2 - 2981 0.00 - 0.02

The sending rate starts to grow if the condition holds. Condition node 2 identifies if the network268

is in a over-utilized status slope_of (latency inflation) increasing as the key indicator. It269

the condition is true, the acceleration of sending rate will be reduced appropriately. On the other270

hand, condition node 3 is activated when the initial sending rate is too low or has been reduced271

extensively due to 2 . 4 is evaluated when major network congestion starts to occur due to increased272

sending rates from the earlier condition nodes. It checks both latency inflation and latency ratios273

in an increasing state. Its child nodes start reducing the sending rates and also flip the internal274

state attribute to 1. The latter is used to track if the agent is recovering from network congestion.275

On the “False” side of 6 (i.e. internal state = 1), 7 and 8 tackle two stages of recovery,276

where the latency inflation ratio starts plateauing and then starts reducing. 11 indicates that stable277

conditions have been recovered again and the agent is at an optimal sending rate. The internal278

state is flipped back again to 0 after this recovery.279

4.2 Inspecting the Branching Conditions280

As discussed in Section 3.3, a light-weight clustering algorithm divides the network conditions into281

multiple non-overlapping subsets. Table 1 summarizes the obtained boundary values. The baseline282

agent is trained on all possible bandwidth, latency, queue size, and loss rate values, as depicted in283

the first row. During the evaluation, bandwidth, latency, and loss rate are tested on linearly spaced284

values of step sizes 50, 0.1, and 0.01, while queue sizes are exponentially spaced by powers of e2285

respectively. The rewards of the saved roll-outs are clustered using K-Means Clustering, and the286

optimal cluster number is found to be 4 using the popular elbow curve [44] and silhouette analysis287

[45] methods. By observing the maximum and minimum of each network condition individually in288

the 4 clusters, respective boundary values are obtained. A clear relation discovered is that higher289

bandwidths and lower latencies are directly related to higher baseline rewards.290

Remark 1: Exceptions for non-overlapping contexts. It is also to be noted that no such trend was291

found between the queue size and rewards, and hence all the 4 resultant branches were given the292

same queue size. A similar exception was made for the loss rates of Branches 2 and 3.293

Remark 2: Interpreting the symbolic policies branches. All the 4 distilled symbolic trees from the294

specialized RL agents possess high structural similarity and share similar governing rules as to that295

of the baseline agent in Section 4.1. They majorly differ in the numerical thresholds and magnitudes296

of action nodes, i.e., by varying their “reaction speeds” and “reaction strengths”, respectively.297

4.3 Emulation Performance on Lossy Network Conditions298

The ability to differentiate between congestion-induced and random losses is essential to any PCC299

agent. Figure 5a1 shows a 25-second trace of throughput on a link where 1% of packets are300

randomly dropped [46]. As the link’s bandwidth is set to 30 Mbps, the ideal congestion control301

would aim to utilize it fully as depicted by the gray dotted line. Baseline SymbolicPCC shows near-302

ideal performance with its branched version pushing boundaries further. In contrast, conventional303

algorithms, especially TCP CUBIC [4], repeatedly reduces its sending rates as a response to the304

random losses. Quantitative measures of mean square error with respect to the ideal line are provided305

in Table 2 as “Lossy ∆2
opt.”. This result proves that SymbolicPCC can effectively differentiate306

between packet loss caused by randomness and real network congestion.307

1Interestingly, the figure shows that BBR has rate drop around 11th second. This is a limitation of the BBRv1
design—it reduces sending rate if the min_rrt has not been in 10s, which is triggered because the RTT in our
setup is very stable. We have confirmed this with the BBR team at Google.

7

4.4 Emulation Performance under Network Dynamics308

0 5 10 15 20 25
Time (s)

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (m

bp
s)

Optimum
PCC Vivace

Aurora (baseline)
SymbolicPCC (baseline)

TCP CUBIC
BBR

SymbolicPCC (branched)

(a) A 25-second thoughput trace for TCP CUBIC, PCC-Vivace, BBR, Aurora,
and our SymbolicPCC variants on a 30 Mbps bandwidth link with 2% random
loss, 30 ms latency, and a queue size of 1000.

0 5 10 15 20 25
Time (s)

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (m

bp
s)

Optimum
PCC Vivace

Aurora (baseline)
SymbolicPCC (baseline)

TCP CUBIC
BBR

SymbolicPCC (branched)

(b) A 25-second throughput trace for TCP CUBIC, PCC Vivace, BBR, Aurora,
and our SymbolicPCC variants on a link alternating between 20 and 40 Mbps
every 5 seconds with 0% random loss, 30 ms latency, and a queue size of 1000.

Figure 5: Emulation performances on different conditions.

Unstable network condi-309

tions are common in the real310

world and this test bench-311

marks the agent’s ability312

of quickly responding to313

network dynamics. Fig-314

ure 5b shows our symbolic315

agent’s ability to handle316

such conditions. The ben-317

efits of our novel branch-318

ing algorithm and switching319

between agents which each320

specializes in their own net-321

work context is clearly vis-322

ible from faster response323

speeds. In this case, the324

link was configured with325

its bandwidth alternating326

between 20 Mbps and 40327

Mbps every 5 seconds with328

no loss. Quantitative results329

from Table 2 show the mean330

square error with respect to331

the ideal CC as “Unstable332

∆2
opt.”.333

4.5 Link Utilization334

and Network Sensitivities335

Link utilization as mea-336

sured from the server side337

is defined as the ratio of average throughput over the emulation period to the available bandwidth.338

A single link is first configured with defaults of 30 Mbps capacity, 30 ms of latency, a 1000-packet339

queue, and 0% random loss. To measure the sensitivity with respect to a specific condition, it is340

independently varied keeping the rest of the conditions constant. An ideal CC preserves high link341

utilization over the complete range of measurements. From Figure 6, it is observed that our branched342

SymbolicPCC provides near-capacity link-utilization at most tests and shows improvement over any343

of the other algorithms.344

4.6 Efficiency and Speed Comparisons345

Since TCP congestion control lies on the fast path, ultra-fast responses are needed from the agents.346

Due to its GPU compute requirements and slower runtimes, RL-based approaches such as Aurora are347

constrained in their deployment settings (e.g., user-space decisions). On the other hand, our symbolic348

policies are entirely composed of numerical operators, making them structurally and computationally349

minimal. From our results in Table 2, adding the branch decider incurs a slight overhead as compared350

0 20 40 60 80 100
Bandwidth (mbps)

0.80

0.85

0.90

0.95

1.00

Lin
k

Ut
iliz

at
io

n

(a) Bandwidth Sensitivity

0 20 40 60 80 100
Latency (ms)

0.75

0.80

0.85

0.90

0.95

1.00
(b) Latency Sensitivity

100 101 102 103 104

Queue Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Buffer Size Sensitivity

0.00 0.02 0.04 0.06 0.08
Loss Probability

0.0

0.2

0.4

0.6

0.8

1.0

(d) Loss Rate Sensitivity

PCC Vivace Aurora (baseline) SymbolicPCC (baseline) TCP CUBIC BBR SymbolicPCC (branched)

Figure 6: Link-utilization trends as a measure of sensitivities of bandwidth, latency, queue size, and
loss rate. Higher values are better.

8

Table 2: Efficiency and speed comparison of congestion control agents.

Algorithm Type FLOPs (↓) Runtime (µs) (↓) Lossy ∆2
opt. (↓) Oscillating ∆2

opt. (↓)

TCP CUBIC Conventional - < 10 823.02 126.07
PCC Vivace Conventional - < 10 440.55 186.76

Aurora (baseline) RL-Based 1488 864 26.29 53.22
Aurora (50% pruned) RL-Based 744 781 27.37 61.85
Aurora (80% pruned) RL-Based 298 769 48.13 79.80
Aurora (95% pruned) RL-Based 74 703 83.66 103.53
Aurora (quantized) RL-Based 835 810 142.92 88.45

SymbolicPCC (baseline) Symbolic 48 23 7.29 85.03
SymbolicPCC (branched) Symbolic 63 37 4.14 43.83

to the non-branched counterpart. Nevertheless, it is preferable due to its increased versatility in351

different network conditions, as verified by Mininet emulation results. SymbolicPCC enjoys over a352

23× faster run times over Aurora, being reasonably comparable to PCC Vivace and TCP CUBIC.353

We also compare between global magnitude pruned and dynamically quantized versions of Aurora.354

Although these run faster than their baseline versions, they come at the cost of worse CC performance.355

5 Discussions and Potential Impacts of SymbolicPCC356

Table 3: Decoupling: symbolic alone helps gener-
alization.

Model Avg. Rewards (↑)

Aurora 832
Black-box dist. (50%) from Aurora 641
White-box dist. from above model 687

The interpretability of our approach enables re-357

searchers to verify the learned model, which is358

critical for both performance and security ob-359

jectives in practical deployments. It also pro-360

vides more insights for networking researchers361

of what are the key heuristic for TCP CC. More-362

over, our success of using symbolic distillation363

for CC also paves the possibility of applying it364

to other systems and networking applications where performance and interpretability are both key365

consideration, such as traffic classification and CPU scheduling tasks.366

Need for Branching. The branched training of multiple symbolic models, each in different training367

regimes, is designed to ease the optimization process. It does not directly enforce similarity between368

solutions for the grouped states – therefore not causing brittleness. This is assured as the symbolic369

model within any branch does not directly perform the same action for all scenarios within its regime,370

but contains multiple operations within itself to map states to actions based on the network state371

observed. Also, during the inference/deployment stage, we use the branch-decider network which372

chooses branches based on the observed state, not the bandwidths or latencies (in fact, these measures373

are unavailable to the controller agent and cannot be observed).374

Interpretability – a universal boon for ML? It may be a bit surprising that the distilled symbolic375

policy outperforms Aurora. A natural question arises if it is due to a generalization amplification376

that sometimes happens for distillation in general or if it is due to the symbolic representation. We377

hypothesize that the performance of a symbolic algorithm boils down to the nature of the environment378

it is employed in. The congestion control problem is predominantly rule-based, with deep RL models379

brought to devise rules more complex and robust than hand-crafted ones through iterative interaction.380

It is only natural to observe that symbolic models outperform such PCC RL models when the381

distillation is composed of a rich operator space and dedicated policy denoising and pruning stages to382

boost their robustness and compactness further. To justify this, in Table 3 we analyze the performance383

obtained by decoupling distillation and symbolic representation: we first distill a black-box NN384

half the size of Aurora (“typical KD") and then further perform symbolic distillation on it.385

6 Conclusion and Future Work386

This work studied the distillation of NN-based deep reinforcement learning agents into symbolic poli-387

cies for performance-oriented congestion control in TCP. Our branched symbolic framework enables388

better interpretability and efficiency while exhibiting comparable and often improved performances389

over their black-box teacher counterparts on both simulation and rigorous emulation testbeds. Our390

results point towards a fresh direction to make congestion control extremely light-weight and more391

interpretable, via a symbolic design. Our future work aims for more integrated neural-symbolic solu-392

tions and faster model-free online training/fine-tuning for performance-oriented congestion control.393

Exploring the fairness between our learned CC and legacy CC is also an interesting next step. Besides,394

we also aim to apply symbolic distillation to a wider range of systems and networking problems.395

9

References396

[1] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion397

avoidance in computer networks. Computer Networks and ISDN systems, 17(1):1–14, 1989.398

[2] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.399

BBR: congestion-based congestion control. Communications of the ACM, 60(2):58–66, 2017.400

[3] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu, Behnam Montaz-401

eri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, et al. Swift: Delay402

is simple and effective for congestion control in the datacenter. In Proceedings of the Annual403

conference of the ACM Special Interest Group on Data Communication on the applications,404

technologies, architectures, and protocols for computer communication, pages 514–528, 2020.405

[4] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed tcp variant.406

ACM SIGOPS operating systems review, 42(5):64–74, 2008.407

[5] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas: New techniques408

for congestion detection and avoidance. In Proceedings of the conference on Communications409

architectures, protocols and applications, pages 24–35, 1994.410

[6] Sally Floyd, Tom Henderson, and Andrei Gurtov. Rfc3782: The newreno modification to tcp’s411

fast recovery algorithm, 2004.412

[7] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep413

reinforcement learning perspective on internet congestion control. In International Conference414

on Machine Learning, pages 3050–3059. PMLR, 2019.415

[8] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. Classic meets modern: A pragmatic416

learning-based congestion control for the internet. In Proceedings of the Annual conference417

of the ACM Special Interest Group on Data Communication on the applications, technologies,418

architectures, and protocols for computer communication, pages 632–647, 2020.419

[9] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and420

Michael Schapira. PCC vivace: Online-learning congestion control. In Proc. NSDI, 2018.421

[10] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and422

Keith Winstein. Pantheon: the training ground for internet congestion-control research. In Proc.423

ATC, 2018.424

[11] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated congestion425

control. ACM SIGCOMM Computer Communication Review, 43(4):123–134, 2013.426

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal427

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.428

[13] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos, and Christian Esteve429

Rothenberg. Mininet-wifi: Emulating software-defined wireless networks. In 2015 11th430

International Conference on Network and Service Management (CNSM), pages 384–389. IEEE,431

2015.432

[14] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and433

Keith Winstein. Pantheon: the training ground for internet congestion-control research. In 2018434

{USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pages 731–743, 2018.435

[15] Andreas Holzinger. From machine learning to explainable ai. In 2018 world symposium on436

digital intelligence for systems and machines (DISA), pages 55–66. IEEE, 2018.437

[16] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.438

science, 324(5923):81–85, 2009.439

[17] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David440

Spergel, and Shirley Ho. Discovering symbolic models from deep learning with inductive441

biases. arXiv preprint arXiv:2006.11287, 2020.442

[18] Miles Cranmer. Pysr: Fast & parallelized symbolic regression in python/julia. GitHub repository,443

2020.444

[19] Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K445

Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions446

from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.447

10

[20] Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer communication448

review, 18(4):314–329, 1988.449

[21] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A compound tcp approach for450

high-speed and long distance networks. In Proceedings-IEEE INFOCOM, 2006.451

[22] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and Ren Wang. Tcp452

westwood: Bandwidth estimation for enhanced transport over wireless links. In Proceedings of453

the 7th annual international conference on Mobile computing and networking, pages 287–297,454

2001.455

[23] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel, Balaji456

Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In Proceedings of457

the ACM SIGCOMM 2010 Conference, pages 63–74, 2010.458

[24] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira. {PCC}: Re-459

architecting congestion control for consistent high performance. In 12th {USENIX} Symposium460

on Networked Systems Design and Implementation ({NSDI} 15), pages 395–408, 2015.461

[25] Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber,462

and Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees.463

In Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pages 1–6,464

2019.465

[26] Artur d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. Towards symbolic466

reinforcement learning with common sense. arXiv preprint arXiv:1804.08597, 2018.467

[27] Andrea Dittadi, Frederik K Drachmann, and Thomas Bolander. Planning from pixels in atari468

with learned symbolic representations. arXiv preprint arXiv:2012.09126, 2020.469

[28] Jiří Kubalík, Jan Žegklitz, Erik Derner, and Robert Babuška. Symbolic regression methods for470

reinforcement learning. arXiv preprint arXiv:1903.09688, 2019.471

[29] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,472

Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep473

reinforcement learning. In International Conference on Machine Learning, pages 5979–5989.474

PMLR, 2021.475

[30] Wenjie Shi, Shiji Song, Zhuoyuan Wang, and Gao Huang. Self-supervised discovering of causal476

features: Towards interpretable reinforcement learning. arXiv preprint arXiv:2003.07069, 2020.477

[31] Pedro Sequeira and Melinda Gervasio. Interestingness elements for explainable reinforcement478

learning: Understanding agents’ capabilities and limitations. Artificial Intelligence, 288:103367,479

2020.480

[32] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable481

reinforcement learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable482

Artificial Intelligence, 2019.483

[33] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. Explainable reinforcement484

learning through a causal lens. In Proceedings of the AAAI Conference on Artificial Intelligence,485

volume 34, pages 2493–2500, 2020.486

[34] Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement487

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages488

2514–2521, 2019.489

[35] Santiago Ontanón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based planning and490

execution for real-time strategy games. In International Conference on Case-Based Reasoning,491

pages 164–178. Springer, 2007.492

[36] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A493

survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.494

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,495

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.496

[38] Alan M Turing. Computing machinery and intelligence. In Parsing the turing test, pages 23–65.497

Springer, 2009.498

[39] Richard Forsyth. Beagle—a darwinian approach to pattern recognition. Kybernetes, 1981.499

11

[40] Alexander Sieusahai and Matthew Guzdial. Explaining deep reinforcement learning agents500

in the atari domain through a surrogate model. In Proceedings of the AAAI Conference on501

Artificial Intelligence and Interactive Digital Entertainment, volume 17, pages 82–90, 2021.502

[41] Nathan Jay. Continued development of internet congestion control: Reinforcement learning and503

robustness testing approaches. 2019.504

[42] James MacQueen et al. Some methods for classification and analysis of multivariate observations.505

In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,506

volume 1, pages 281–297. Oakland, CA, USA, 1967.507

[43] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric discrimination:508

Consistency properties. International Statistical Review/Revue Internationale de Statistique,509

57(3):238–247, 1989.510

[44] Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.511

[45] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster512

analysis. Journal of computational and applied mathematics, 20:53–65, 1987.513

[46] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind Krishnamurthy,514

and Thomas Anderson. Understanding and mitigating packet corruption in data center networks.515

In Proceedings of the SIGCOMM Conference, 2017.516

Checklist517

1. For all authors...518

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s519

contributions and scope? [Yes]520

(b) Did you describe the limitations of your work? [Yes] See section 5.521

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section522

5523

(d) Have you read the ethics review guidelines and ensured that your paper conforms to524

them? [Yes]525

2. If you are including theoretical results...526

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not527

include theoretical results.528

(b) Did you include complete proofs of all theoretical results? [N/A]529

3. If you ran experiments...530

(a) Did you include the code, data, and instructions needed to reproduce the main experi-531

mental results (either in the supplemental material or as a URL)? [No] Our codes and532

data will be fully released upon acceptance.533

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they534

were chosen)? [Yes]535

(c) Did you report error bars (e.g., with respect to the random seed after running experi-536

ments multiple times)? [Yes]537

(d) Did you include the total amount of compute and the type of resources used (e.g., type538

of GPUs, internal cluster, or cloud provider)? [No]539

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...540

(a) If your work uses existing assets, did you cite the creators? [Yes]541

(b) Did you mention the license of the assets? [N/A] The assets we used are open-source.542

The license information is available online.543

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]544

545

(d) Did you discuss whether and how consent was obtained from people whose data you’re546

using/curating? [Yes] The data we are using is open source.547

(e) Did you discuss whether the data you are using/curating contains personally identifiable548

information or offensive content? [No] Our data does not include personally identifiable549

information or offensive content.550

12

5. If you used crowdsourcing or conducted research with human subjects...551

(a) Did you include the full text of instructions given to participants and screenshots, if552

applicable? [N/A]553

(b) Did you describe any potential participant risks, with links to Institutional Review554

Board (IRB) approvals, if applicable? [N/A]555

(c) Did you include the estimated hourly wage paid to participants and the total amount556

spent on participant compensation? [N/A]557

13

	Introduction
	Our Contributions

	Related Works
	Methodology
	Preliminaries: The PCC-RL Environment and the Symbolic Distillation Workflow
	A Symbolic Framework for Congestion Control
	Novel Branching Algorithm: Switching between Context-Dependent Policies

	Experimental Settings and Results
	Interpreting the Symbolic Policies
	Inspecting the Branching Conditions
	Emulation Performance on Lossy Network Conditions
	Emulation Performance under Network Dynamics
	Link Utilization and Network Sensitivities
	Efficiency and Speed Comparisons

	Discussions and Potential Impacts of SymbolicPCC
	Conclusion and Future Work

