
Under review as a conference paper at ICLR 2022

WHAT’S WRONG WITH DEEP LEARNING IN TREE
SEARCH FOR COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial optimization lies at the core of many real-world problems. Espe-
cially since the rise of graph neural networks (GNNs), the deep learning community
has been developing solvers that derive solutions to NP-hard problems by learning
the problem-specific solution structure. However, reproducing the results of these
publications proves to be difficult. We make three contributions. First, we present
an open-source benchmark suite for the NP-hard MAXIMUM INDEPENDENT SET
problem, in both its weighted and unweighted variants. The suite offers a uni-
fied interface to various state-of-the-art traditional and machine learning-based
solvers. Second, using our benchmark suite, we conduct an in-depth analysis
of the popular guided tree search algorithm by Li et al. [NeurIPS 2018], testing
various configurations on small and large synthetic and real-world graphs. By
re-implementing their algorithm with a focus on code quality and extensibility, we
show that the graph convolution network used in the tree search does not learn a
meaningful representation of the solution structure, and can in fact be replaced by
random values. Instead, the tree search relies on algorithmic techniques like graph
kernelization to find good solutions. Thus, the results from the original publication
are not reproducible. Third, we extend the analysis to compare the tree search
implementations to other solvers, showing that the classical algorithmic solvers
often are faster, while providing solutions of similar quality. Additionally, we
analyze a recent solver based on reinforcement learning and observe that for this
solver, the GNN is responsible for the competitive solution quality.

1 INTRODUCTION

Various communities have been dealing with the question of how to efficiently solve combinatorial
problems, which frequently are NP-hard. These problems often have real-world applications in
industry, for instance in staff assignment (Peters et al., 2019), supply chain optimization (Eskandarpour
et al., 2015), and traffic optimization (Böther et al., 2021).

In recent years, also the machine learning community has been engaged in solving combinatorial
problems. The reason why machine learning might be able to solve such problems faster compared
to classical solvers like Gurobi (Gurobi Optimization LLC, 2021) is that the solutions to a specific
problem often follow a certain structure, which we might be able to learn given enough data. Com-
monly used machine learning approaches for combinatorial optimization include Deep Reinforcement
Learning (Khalil et al., 2017; Ahn et al., 2020) and Graph Neural Networks (GNNs) (Cappart et al.,
2021; Li et al., 2018).

However, these statistics-based techniques have the well-known problem of reproducibility (Ioannidis,
2005; Baker, 2016), which is a particular problem in machine learning research with untested or
even unpublished code and data sets (Kapoor & Narayanan, 2020; Ding et al., 2020), and is the
reason for the interest in initiatives such as Papers With Code1 and the ReScience Journal2. Keeping
the importance of reproducibility in mind, we evaluate various machine learning approaches for
combinatorial optimization, and compare them to traditional solvers. Following previous research (Li
et al., 2018; Ahn et al., 2020), we focus on the MAXIMUM (WEIGHTED) INDEPENDENT SET
problem (Miller & Muller, 1960; Karp, 1972). Overall, we contribute the following.

1https://paperswithcode.com/
2https://rescience.github.io/

1

https://paperswithcode.com/
https://rescience.github.io/

Under review as a conference paper at ICLR 2022

• We provide an open-source, extensible benchmark suite for MAXIMUM (WEIGHTED)
INDEPENDENT SET solvers. The software currently supports five state-of-the-art solvers,
INTEL-TREESEARCH (Li, Chen, and Koltun, 2018), GUROBI (Gurobi Optimization LLC,
2021), KAMIS (Lamm et al., 2017; Hespe et al., 2019; Lamm et al., 2019), LEARNING
WHAT TO DEFER (Ahn, Seo, and Shin, 2020), and DGL-TREESEARCH. Our DGL-
TREESEARCH is a modern re-implementation of the INTEL-TREESEARCH, implemented in
PyTorch (Paszke et al., 2019) and the Deep Graph Library (Wang et al., 2019), with a focus
on clean, readable code, as well as performance, and it fixes various issues of the original
code. Our evaluation suite lays the ground for further research on hard combinatorial (graph)
problems and aims at providing a fair and comparable environment for further evaluations.

• Using our re-implementation of the tree search, we propose and analyze additional tech-
niques aiming at improving the guided search. Employing the benchmark suite, we conduct
an exhaustive analysis of various configurations of the tree search algorithms, showing that
the results of the highly-cited INTEL-TREESEARCH approach are not reproducible, neither
with the original code nor with our re-implementation. When exploring the design space
further, we show that the various techniques used by the tree search algorithm to improve
the results, like graph kernelization, are the reason for good performance, especially on hard
data sets. In fact, replacing the GNN output with random values performs similar to using
the trained network.

• Having analyzed the configuration space, we compare the tree search approaches to the
classical solvers like GUROBI and KAMIS, showing that problem-tailored solvers are often
the superior approach. Without using techniques like graph reduction in the tree search,
classical solvers are superior. The classical solvers show to be more efficient even when
accessing these routines – that have been implemented for the algorithmic solvers in the first
place – in the tree search. Last, we show that LEARNING WHAT TO DEFER seems to be
able to find good results very quickly, indicating that unsupervised reinforcement learning
for combinatorial problems is a promising direction for future research.

The remainder of this paper is structured as follows. In Section 2, we introduce the various solvers and
how they are integrated into our open-source benchmark suite, before evaluating them in Section 3.
We discuss some related work in Section 4, and conclude in Section 5.

2 INDEPENDENT SET SOLVERS

In this section, we formally introduce the MAXIMUM INDEPENDENT SET (MIS) problem as well as
the solvers included in our analysis.

Given an undirected graphG = (V,E), an independent set is a set of vertices S ⊆ V for which for all
vertices u, v ∈ S, (u, v) 6∈ E. For u ∈ V , let wu be its weight, and let IS(G) be all independent sets
of G, then the MAXIMUM WEIGHTED INDEPENDENT SET (MWIS) problem aims at determining

argmax
S∈IS(G)

∑
u∈S

wu.

The unweighted MIS problem is equivalent to the MWIS problem, where f.a. u ∈ V , wu = 1. Both
problems are strongly NP-complete (Garey & Johnson, 1978). Next, we briefly explain the solvers
that we use to find such maximum independent sets.

Gurobi. GUROBI is a commercial mathematical optimization solver. We access GUROBI in Python
using the abstraction layer PuLP3, and formulate the MWIS problem as a linear program.

KaMIS. KAMIS is an open-source solver tailored towards the MIS and MWIS problems. It offers
support both for the unweighted case (Lamm et al., 2017; Hespe et al., 2019) as well as the weighted
case (Lamm et al., 2019). It employs graph kernelization and an optimized branch-and-bound
algorithm to efficiently find independent sets. Note that the algorithms and techniques differ between
the weighted and unweighted cases. We use the code unmodified from the official repository4.

3https://coin-or.github.io/pulp/
4https://github.com/KarlsruheMIS/KaMIS

2

https://coin-or.github.io/pulp/
https://github.com/KarlsruheMIS/KaMIS

Under review as a conference paper at ICLR 2022

Intel-TreeSearch. In their influential paper, Li et al. (2018) propose a guided tree search algorithm
to find maximum independent sets of a graph. The idea is to train a graph convolutional network
(GCN) (Kipf & Welling, 2017), which assigns each vertex a probability of belonging to the inde-
pendent set, and then greedily and iteratively assign vertices to the set. They furthermore employ
the reduction and local search algorithms by KAMIS to speed up the computation. We use their
published code5, which unfortunately is not runnable in its default state. We apply a git patch6 to
make the code runnable, enable further evaluation by collecting statistics, and add command-line
flags for more fine-grained control of the solver configuration. For a detailed explanation of the
tree search algorithm and details of the model, we refer to Appendix B as well as the original paper.
In Appendix C, we give some details on possible complications with the original code.

DGL-TreeSearch. Because the code provided by Li et al. (2018) might be difficult to read and
maintain, and hence is prone to errors in the evaluation, we re-implement the tree search using
PyTorch (Paszke et al., 2019) and the established Deep Graph Library (Wang et al., 2019). Our
implementation aims at offering a more readable and modern implementation, which benefits from
improvements in the two deep learning libraries during recent years. Furthermore, it fixes various
issues of the original implementation that sometimes deviates from the paper. Additionally, we
implement further techniques to improve the search, like queue pruning, and weighted selection of
the next element, as well as multi-GPU functionality. The code is delivered in conjunction with the
benchmarking suite.

Learning What To Defer. We test LEARNING WHAT TO DEFER (LWD), an unsupervised deep
reinforcement learning-based solution introduced by Ahn et al. (2020). Their idea is similar to the
tree search, as the algorithm iteratively assigns vertices to the independent set. However, this is not
done using a supervised GCN, but instead by an unsupervised agent built upon the GraphSAGE
architecture (Hamilton et al., 2017) and trained by Proximal Policy Optimization (Schulman et al.,
2017). There is no queue of partial solutions. We refer to the original paper for details on the
algorithm. As their code7 does not work with generic input, we patch their code.

Our open-source benchmarking suite8 integrates all these solvers in one easily accessible command-
line interface using Anaconda (Anaconda Inc., 2020), with a unified input and output format. We
provide our code for DGL-TREESEARCH and our GUROBI interface directly, and download, compile,
and patch the other solvers on-demand. It handles the correct invocation of the solvers and allows to
quickly run experiments on various solvers in different configurations.

3 EVALUATION

In this section, we first introduce our experimental setup and then focus on the analysis of the
supervised tree search approach for combinatorial optimization in Section 3.1. After having derived a
good configuration for the tree search algorithm, we continue to compare the tree search algorithms to
the other classical and reinforcement learning solvers in Section 3.2. We investigate the scalability of
the approaches in Section 3.3, and analyze the behavior on the weighted MIS problem in Section 3.4.

Experimental Setup. We run all our experiments on an NVIDIA DGX-1 with two 20-Core Intel
Xeon E5-2698 CPUs at 2.2 GHz, leading to overall 40 physical and 80 logical cores, 512 GB of
memory, and a total of eight NVIDIA Tesla V100 GPUs. For each experiment, we explicitly state the
number of threads and GPUs used. We run Ubuntu 20.04.1 LTS, using Linux kernel 4.15.0-124.

Datasets. We evaluate the various solvers and configurations using both real-world datasets as well
as generated random graphs in various sizes. We make use of the random graph models by Erdős &
Rényi (1960) (ER), Albert & Barabási (2002) (BA), Holme & Kim (2002) (HK), Watts & Strogatz
(1998) (WS) and the Hyperbolic Random Graph model (Krioukov et al., 2010) (HRG). The graph

5https://github.com/isl-org/NPHard
6A git patch is a file transparently stating the changes we require to make the code compatible with our

benchmarking suite.
7https://github.com/sungsoo-ahn/learning what to defer
8Anonymous repository: https://anonymous.4open.science/r/mwis-benchmark

3

https://github.com/isl-org/NPHard
https://github.com/sungsoo-ahn/learning_what_to_defer
https://anonymous.4open.science/r/mwis-benchmark

Under review as a conference paper at ICLR 2022

Table 1: Results of the tree searches in various configurations. We run experiments on both synthetic
and real-world graphs with varying numbers of nodes (c.f. Appendix D). For all configurations, in
the first row, we state the average MIS size as well as the average approximation factor for graphs
where we were able to pre-calculate the provably optimal MIS using GUROBI. In the second row, the
average time in seconds until the best solution was found, and, in brackets, the number of graphs
where any solution was found are given. The average values refer only to the graphs within a dataset
for which a solution was found. Columns that start with a plus (+) add an additional flag to the
previous column; columns that do not start with a plus use just the stated flags. For Intel, we start with
the default setting (d), proceed to include the graph reduction (+r), and then the local search (+ls),
and last test reduction and local search in a multithreaded setup (+mt). For DGL, we explore the
configuration space further. After analyzing the default (d), adding reduction (+r), and local search
(+ls), we test configurations replacing the GCN with random outputs (rand), using queue pruning
(qp), and weighted queue pop (+wp). We also test a combination of reduction, queue pruning, and
weighted queue pop (+r), proceed to add the local search (+ls), and again replace the GCN by
randomly generated outputs (+rand). The full configuration is tested with and without random
output in a multithreaded setup (+mt). All multithreaded experiments in this table use 8 threads, and
all threads share a single GPU. For the random graphs of size 50-100, all solvers have a time limit of
15 seconds; for the SATLIB, as-caida, PPI, REDDIT, Citeseer, Cora, and ego-facebook datasets the
time limit is 30 seconds; for the bitcoin, PubMed, Wikipedia, VC-BM and roadnet-berlin graphs, the
time limit is 5 minutes. We refer to Appendix B for detailed explanations of the techniques used. We
mark the configuration/solver that has the best average MIS in bold, and grey out configurations for
which solutions were found for less than 20 % of all graphs.

Intel DGL
Graph Nodes d +r +ls +mt d +r +ls rand qp +wp +r +ls +rand r+qp+wp+ls+mt +rand

ER
50-100 20.58 (0.98) 20.76 (0.99) 20.83 (1.00) 20.83 (1.00) 19.88 (0.95) 20.58 (0.98) 20.83 (1.00) 19.05 (0.91) 19.69 (0.94) 19.16 (0.92) 20.54 (0.98) 20.83 (1.00) 20.83 (1.00) 20.83 (0.99) 20.82 (0.99)

1.70 (500) 0.81 (500) 0.02 (500) 5.39 (500) 3.53 (500) 1.89 (500) 0.28 (500) 5.26 (500) 2.66 (500) 3.39 (500) 1.59 (500) 0.26 (500) 0.31 (500) 0.41 (500) 0.37 (499)

700-800 39.90 (-) 39.71 (-) 44.08 (-) 44.98 (-) 37.13 (-) 38.51 (-) 43.90 (-) 33.69 (-) 37.06 (-) 34.79 (-) 38.31 (-) 43.91 (-) 44.02 (-) 44.32 (-) 44.55 (-)
12.00 (100) 19.73 (98) 16.81 (100) 11.90 (100) 13.63 (100) 15.91 (100) 12.82 (100) 15.71 (100) 14.76 (100) 9.11 (100) 12.52 (100) 9.30 (100) 10.08 (100) 22.97 (96) 17.95 (99)

BA
50-100 42.42 (0.99) 42.43 (1.00) 42.43 (1.00) 42.43 (1.00) 42.05 (0.99) 42.43 (1.00) 42.43 (1.00) 40.81 (0.96) 41.72 (0.98) 41.74 (0.98) 42.43 (1.00) 42.43 (1.00) 42.43 (1.00) 42.43 (1.00) 42.43 (1.00)

0.54 (500) 0.00 (500) 0.00 (500) 4.97 (500) 2.44 (500) 0.08 (500) 0.08 (500) 5.52 (500) 1.84 (500) 1.64 (500) 0.07 (500) 0.08 (500) 0.12 (500) 0.11 (500) 0.12 (500)

700-800 420.89 (0.97) 432.58 (1.00) 432.58 (1.00) 432.58 (1.00) 389.65 (0.90) 432.58 (1.00) 432.58 (1.00) 374.37 (0.86) 398.90 (0.92) 406.82 (0.94) 432.58 (1.00) 432.58 (1.00) 432.58 (1.00) 432.58 (1.00) 432.58 (1.00)
3.09 (18) 0.01 (100) 0.02 (100) 5.31 (100) 16.50 (80) 0.45 (100) 0.50 (100) 20.08 (19) 19.09 (86) 6.92 (100) 0.39 (100) 0.43 (100) 0.67 (100) 0.69 (100) 0.73 (100)

HK
50-100 42.32 (0.99) 42.33 (1.00) 42.33 (1.00) 42.33 (1.00) 41.87 (0.98) 42.33 (1.00) 42.33 (1.00) 40.87 (0.96) 41.50 (0.98) 41.45 (0.98) 42.33 (1.00) 42.33 (1.00) 42.33 (1.00) 42.33 (1.00) 42.33 (1.00)

0.53 (500) 0.00 (500) 0.00 (500) 0.00 (500) 2.59 (500) 0.06 (500) 0.07 (500) 5.78 (500) 2.08 (500) 1.77 (500) 0.07 (500) 0.07 (500) 0.08 (500) 0.07 (500) 0.08 (500)

700-800 417.89 (0.98) 429.81 (1.00) 429.81 (1.00) 429.81 (1.00) 390.64 (0.90) 429.81 (1.00) 429.81 (1.00) 370.05 (0.86) 393.10 (0.91) 407.04 (0.94) 429.81 (1.00) 429.81 (1.00) 429.81 (1.00) 429.81 (1.00) 429.81 (1.00)
4.23 (19) 0.01 (100) 0.01 (100) 5.26 (100) 19.66 (83) 0.37 (100) 0.38 (100) 22.29 (19) 18.15 (80) 7.50 (100) 0.42 (100) 0.39 (100) 0.44 (100) 0.42 (100) 0.43 (100)

WS
50-100 38.69 (0.99) 38.70 (1.00) 38.70 (1.00) 38.70 (1.00) 37.91 (0.97) 38.70 (0.99) 38.70 (1.00) 36.58 (0.94) 37.60 (0.97) 36.94 (0.95) 38.70 (0.99) 38.70 (1.00) 38.70 (1.00) 38.70 (1.00) 38.70 (1.00)

0.53 (500) 0.00 (500) 0.00 (500) 0.00 (500) 3.80 (500) 0.07 (500) 0.07 (500) 5.22 (500) 2.42 (500) 2.17 (500) 0.08 (500) 0.08 (500) 0.08 (500) 0.07 (500) 0.08 (500)

700-800 - (-) 386.90 (1.00) 386.90 (1.00) 386.90 (1.00) - (-) 386.90 (1.00) 386.90 (1.00) 326.71 (0.87) - (-) 368.64 (0.95) 386.90 (1.00) 386.90 (1.00) 386.90 (1.00) 386.90 (1.00) 386.90 (1.00)
- 0.00 (100) 0.00 (100) 5.49 (100) - 0.37 (100) 0.36 (100) 21.34 (7) - 13.02 (87) 0.40 (100) 0.42 (100) 0.43 (100) 0.39 (100) 0.43 (100)

HRG
50-100 33.62 (0.99) 33.72 (1.00) 33.72 (1.00) 33.72 (1.00) 32.80 (0.97) 33.72 (1.00) 33.72 (1.00) 32.40 (0.96) 32.62 (0.96) 30.93 (0.92) 33.72 (1.00) 33.72 (1.00) 33.72 (1.00) 33.72 (1.00) 33.72 (1.00)

3.24 (495) 0.00 (500) 0.00 (500) 0.00 (500) 5.50 (500) 0.07 (500) 0.06 (500) 5.14 (500) 4.23 (500) 3.45 (500) 0.06 (500) 0.07 (500) 0.07 (500) 0.06 (500) 0.07 (500)

700-800 - (-) 304.21 (1.00) 304.21 (1.00) 304.21 (1.00) 221.80 (0.75) 304.21 (1.00) 304.21 (1.00) 260.27 (0.86) 221.67 (0.74) 245.29 (0.80) 304.21 (1.00) 304.21 (1.00) 304.21 (1.00) 304.21 (1.00) 304.21 (1.00)
- 0.01 (100) 0.01 (100) 5.51 (100) 17.81 (5) 0.35 (100) 0.40 (100) 20.57 (15) 21.23 (6) 13.55 (98) 0.39 (100) 0.39 (100) 0.44 (100) 0.44 (100) 0.42 (100)

SATLIB 1209-1 347 - (-) 424.86 (0.99) 426.39 (0.99) 426.51 (0.99) 340.50 (0.79) 421.93 (0.98) 426.25 (0.99) - (-) - (-) 356.93 (0.84) 419.61 (0.98) 426.37 (0.99) 426.48 (0.99) 426.55 (0.99) 426.57 (0.99)
- 11.54 (500) 6.89 (500) 7.99 (500) 18.48 (2) 16.42 (500) 9.55 (500) - - 17.91 (211) 12.57 (500) 6.23 (500) 5.58 (500) 13.12 (500) 10.34 (500)

VC-BM 450-1 534 39.85 (0.90) 39.08 (0.91) 44.26 (0.99) 45.10 (1.00) 37.20 (0.85) 38.70 (0.90) 44.35 (0.99) 35.45 (0.82) 37.70 (0.85) 35.42 (0.78) 38.38 (0.86) 44.52 (0.99) 44.58 (0.99) 44.65 (0.99) 44.88 (0.99)
149.80 (40) 169.49 (38) 166.04 (39) 51.64 (40) 139.55 (40) 138.83 (40) 84.08 (40) 123.72 (40) 119.78 (40) 68.33 (40) 93.88 (40) 73.67 (40) 64.57 (40) 145.24 (40) 113.43 (40)

as-Caida 8020-26 475 - (-) 19387.47 (0.99) 19387.47 (0.99) 19387.47 (0.99) - (-) 19388.03 (1.00) 19387.90 (0.99) - (-) - (-) - (-) 19388.03 (1.00) 19387.90 (0.99) 19387.90 (0.99) 19387.90 (0.99) 19387.90 (0.99)
- 0.26 (122) 8.41 (122) 14.49 (122) - 7.32 (122) 11.22 (122) - - - 7.62 (122) 12.27 (122) 14.48 (122) 15.63 (122) 12.74 (122)

PPI 591-3 480 - (-) 1002.12 (0.99) 1002.83 (1.00) 1002.71 (0.99) 269.00 (0.97) 1001.83 (0.99) 1002.67 (0.99) - (-) 372.67 (0.84) 804.38 (0.92) 1001.67 (0.99) 1002.67 (0.99) 1002.79 (0.99) 1002.50 (0.99) 1002.58 (0.99)
- 14.59 (24) 24.70 (24) 8.73 (24) 23.56 (1) 7.14 (24) 3.70 (24) - 19.86 (3) 20.11 (13) 9.81 (24) 3.68 (24) 4.11 (24) 3.70 (24) 4.82 (24)

REDDIT-B 46-2 283 146.06 (0.99) 287.54 (1.00) 287.54 (1.00) 287.54 (1.00) 186.31 (0.87) 287.54 (1.00) 287.54 (1.00) 248.96 (0.96) 198.68 (0.89) 249.27 (0.92) 287.54 (1.00) 287.54 (1.00) 287.54 (1.00) 287.54 (1.00) 287.54 (1.00)
5.94 (200) 0.00 (500) 0.02 (500) 5.37 (500) 11.81 (406) 0.18 (500) 0.20 (500) 15.23 (475) 12.29 (424) 4.93 (492) 0.20 (500) 0.24 (500) 0.26 (500) 0.26 (500) 0.27 (500)

REDDIT-5K 55-3 648 194.27 (0.99) 586.31 (0.99) 586.31 (0.99) 586.31 (0.99) 252.74 (0.88) 586.32 (1.00) 586.32 (1.00) 378.83 (0.94) 255.66 (0.89) 416.49 (0.92) 586.32 (1.00) 586.32 (1.00) 586.32 (1.00) 586.32 (1.00) 586.32 (1.00)
7.97 (37) 0.01 (500) 0.04 (500) 5.35 (500) 15.36 (152) 0.33 (500) 0.37 (500) 19.41 (325) 17.87 (168) 9.63 (396) 0.37 (500) 0.46 (500) 0.44 (500) 0.48 (500) 0.50 (500)

REDDIT-12K 41-897 128.61 (0.99) 170.20 (1.00) 170.20 (1.00) 170.20 (1.00) 136.05 (0.92) 170.20 (1.00) 170.20 (1.00) 163.15 (0.98) 145.23 (0.95) 155.81 (0.93) 170.20 (1.00) 170.20 (1.00) 170.20 (1.00) 170.20 (1.00) 170.20 (1.00)
3.99 (349) 0.00 (500) 0.01 (500) 5.20 (500) 9.53 (467) 0.12 (500) 0.14 (500) 11.46 (497) 8.17 (478) 3.86 (500) 0.14 (500) 0.16 (500) 0.16 (500) 0.17 (500) 0.17 (500)

wiki-RfA 11 380 - (-) 8111.00 (1.00) 8111.00 (1.00) 8111.00 (1.00) - (-) 8096.00 (0.99) 8096.00 (0.99) - (-) - (-) 8072.00 (0.99) 8096.00 (0.99) 8096.00 (0.99) 8096.00 (0.99) 8096.00 (0.99) 8096.00 (0.99)
- 0.86 6.50 13.08 - 10.79 16.14 - - 270.94 12.41 19.12 20.40 19.95 26.38

wiki-Vote 7 115 - (-) 4866.00 (1.00) 4866.00 (1.00) 4866.00 (1.00) - (-) 4864.00 (0.99) 4864.00 (0.99) - (-) - (-) 4748.00 (0.97) 4864.00 (0.99) 4864.00 (0.99) 4864.00 (0.99) 4864.00 (0.99) 4864.00 (0.99)
- 0.45 2.60 8.56 - 7.79 12.05 - - 236.68 10.82 13.99 19.11 11.20 24.41

PubMed 19 717 - (-) 15912.00 (1.00) 15912.00 (1.00) 15912.00 (1.00) - (-) 15888.00 (0.99) 15888.00 (0.99) - (-) - (-) - (-) 15888.00 (0.99) 15888.00 (0.99) 15888.00 (0.99) 15888.00 (0.99) 15888.00 (0.99)
- 0.25 6.07 12.91 - 12.32 17.12 - - - 14.77 18.44 20.44 23.34 29.13

Cora 2 708 - (-) 1451.00 (1.00) 1451.00 (1.00) 1451.00 (1.00) - (-) 1451.00 (1.00) 1451.00 (1.00) - (-) - (-) - (-) 1451.00 (1.00) 1451.00 (1.00) 1451.00 (1.00) 1451.00 (1.00) 1451.00 (1.00)
- 0.03 0.21 5.63 - 7.88 6.27 - - - 9.73 11.48 21.09 13.63 6.38

Citeseer 3 264 - (-) 1808.00 (1.00) 1808.00 (1.00) 1808.00 (1.00) - (-) 1808.00 (1.00) 1808.00 (1.00) - (-) - (-) - (-) 1808.00 (1.00) 1808.00 (1.00) 1808.00 (1.00) 1808.00 (1.00) 1808.00 (1.00)
- 0.03 0.24 5.51 - 9.21 6.19 - - - 9.60 11.96 17.24 14.62 7.34

bitcoin-alpha 3 783 - (-) 2718.00 (1.00) 2718.00 (1.00) 2718.00 (1.00) - (-) 2716.00 (0.99) 2716.00 (0.99) - (-) - (-) 2658.00 (0.97) 2716.00 (0.99) 2716.00 (0.99) 2716.00 (0.99) 2716.00 (0.99) 2716.00 (0.99)
- 0.05 0.50 6.10 - 6.65 5.28 - - 76.54 8.58 8.91 12.33 11.41 16.35

bitcoin-otc 5 881 - (-) 4346.00 (0.99) 4346.00 (0.99) 4346.00 (0.99) - (-) 4352.00 (1.00) 4352.00 (1.00) - (-) - (-) - (-) 4352.00 (1.00) 4352.00 (1.00) 4352.00 (1.00) 4352.00 (1.00) 4352.00 (1.00)
- 0.08 1.13 6.86 - 7.44 6.19 - - - 10.33 10.35 12.95 12.47 14.57

ego-facebook 4 039 - (-) - (-) - (-) 1046.00 (1.00) - (-) 1030.00 (0.98) 1046.00 (1.00) - (-) - (-) - (-) 1030.00 (0.98) 1046.00 (1.00) 1046.00 (1.00) - (-) 1046.00 (1.00)
- - - 14.34 - 17.04 11.82 - - - 29.87 14.94 23.95 - 14.12

roadnet-berlin 61 204 - (-) - (-) - (-) 29843.00 (0.99) - (-) 29792.00 (0.99) 29792.00 (0.99) - (-) - (-) - (-) 29792.00 (0.99) 29792.00 (0.99) 29792.00 (0.99) 29888.00 (1.00) 29888.00 (1.00)
- - - 144.22 - 28.27 34.13 - - - 33.04 39.53 39.21 68.22 52.70

generation functionality, employing NetworkX (Hagberg et al., 2008) and girgs (Bläsius et al., 2019)
as backends, is integrated into our benchmark suite. For real-world datasets, we focus on the SATLIB
dataset (Hoos & Stützle, 2000), which consists of synthetic 3-SAT instances, and the vertex cover
benchmark (VC-BM) (Xu et al., 2007) consisting of 40 graphs on which finding the maximum
independent set is synthetically made hard; we also test various other graphs, like citation networks.
Details on these datasets, as well as detailed descriptions and splits of all mentioned datasets, and
hyperparameters of graph generation, can be found in Appendix D.

4

Under review as a conference paper at ICLR 2022

3.1 ANALYSIS OF THE TREE SEARCH

In this subsection, we analyze the INTEL-TREESEARCH and DGL-TREESEARCH. These supervised
approaches require training a GCN (Kipf & Welling, 2017). Following Li et al. (2018), we train
both on the SATLIB dataset for 20 epochs using the Adam optimizer (Kingma & Ba, 2015). As the
GCN outputs multiple probability maps (c.f. Appendix B), we employ the hindsight loss, which, for
multiple choices, outputs the loss of the best choice (Guzmán-Rivera et al., 2012; Chen & Koltun,
2017). We fix the number of probability maps to 32, to enable comparison with Li et al. (2018). We
test the solvers in different configurations on various graphs; these configurations are assorted with
increasing levels of complexity and intuitively should improve the solution quality. Details on what
effects the individual configuration options have are given in Appendix B. The results can be found
in Table 1.

First, we discuss the results of the random graphs. For all small graphs, both tree searches in all
configurations find solutions most of the time. These are close to optimal as soon as reduction (+r)
and local search (+ls) are involved. Notably, on larger graphs, in the default variants, where neither
reduction nor local search is enabled, both INTEL-TREESEARCH and DGL-TREESEARCH do not
often find a solution. This shows that for medium-sized graphs, vanilla tree searches cannot discover
solutions within a feasible time limit. The reductions often single-handedly solve the problem
instance, as seen for example on the simple BA graphs, where a solution is found instantaneously.

To approach the issue of requiring hand-tailored reduction techniques to obtain any solution, with
DGL-TREESEARCH, we analyze queue pruning and the weighted queue pop. While queue pruning
itself performs similar to the default configuration for all graphs, the weighted pop vastly increases
the number of solutions found. For example, for large hyperbolic random graphs, in the default
configuration, the DGL-TREESEARCH was only able to find solutions for 5 graphs (and the INTEL-
TREESEARCH was not able to find any solution), whereas using queue pruning together with the
weighted queue pop, we find solutions for 98 % of all large HRGs. A similar observation can
be made for WS graphs. Interestingly, it seems like the MIS problem is harder to address with
the default approach on graphs that try to model real-world networks, such as the just mentioned
HRGs and WS graphs (Bläsius et al., 2018). Overall, queue pruning might be desirable to reduce
memory consumption, but its impact on solving quality and time is limited; on the other hand,
weighted queue popping is a general idea that brings some more depth-search-like behavior into the
breadth-search-like approach at hand, and thus enables the solver to find a lot more solutions.

For small and large BA, HK, WS graphs as well as HRGs, the reduction itself already leads to an
achieved average approximation of 1. Only for the large ER graphs, for which GUROBI was not able
to find provably optimal assignments, the local search further improves the average independent set
size. Multithreading cannot further improve the results of the random graphs.

Now, we discuss the results for real-world graphs. Unlike previously, where we just aimed at finding
an MIS on random graphs, solving the MIS problem on SATLIB is equivalent to finding a satisfiable
assignment to synthesized hard 3-SAT instances. Thus, one can expect this data set to be particularly
hard. Our experiments confirm this, as both implementations rarely find solutions within the time
limit without reduction enabled. We can see that, similar to the random graphs, the weighted queue
pop enables the search to at least find some solution, as this configuration is at least able to find 211
instead of no results at all. However, the average independent set size is 357, which is not very good,
considering each MIS in this dataset contains at least 403 vertices.

Considering the other hard dataset, VC-BM, due to the higher time limit, the default configurations
are already able to find some solution. Interestingly, for VC-BM, the reductions do not improve the
performance of the solvers. Hence, the weighted queue pop is very important for finding results
quickly, shrinking the time needed from the default 140 seconds to under 70 seconds. We also see
that the weighted pop enables discovering a solution for the Wikipedia datasets and the bitcoin-alpha
graph.

These results are interesting for various reasons. First, the models are trained on the SATLIB data,
so they do not have to generalize to a different solution structure for this dataset. Still, the default
configuration does not find any independent set for this dataset. This contradicts the original paper
by Li et al. (2018), which claims an average MIS of 426 and related work by Ahn et al. (2020),
claiming an average MIS of 418. Additionally to our own trained weights, we test the model weights
provided in the official INTEL-TREESEARCH repository, but do not find any differences in the results.

5

Under review as a conference paper at ICLR 2022

Ahn et al. (2020) mention that they modified the official INTEL-TREESEARCH code. Unfortunately,
neither the paper documents how exactly their queue pruning has been implemented, nor were
the authors themselves able to provide us their modifications to the original INTEL-TREESEARCH
repository when we contacted them. Hence, it remains unclear whether the difference in the SATLIB
results between Ahn et al. (2020) and our experiments stems from how they implemented queue
pruning, or from some unwanted side effects in their experiments (e.g., the reduction may have been
still enabled). Furthermore, we unsuccessfully contacted Li et al. (2018) about our findings. As
both the INTEL-TREESEARCH and our re-implementation DGL-TREESEARCH, which was written
from scratch, exhibit this behavior, we suspect that there must be an undocumented modification
or problem in the experiments that leads to Ahn et al. (2020) obtaining rather good results with the
default configuration. Overall, neither the original code with the original weights, nor the original
code with newly trained weights, nor our reimplementation are performing as originally claimed.
In order to be as transparent as possible about our findings, we provide all of our code changes
applied to the Intel repository as a patch and provide the entire source code of the re-implemented
DGL-TREESEARCH as well.

Next, we analyze the replacement of the outputs of the GCN with random values. We start with the
randomized default configuration, i.e., no techniques like reduction are enabled. In this case, we see
that for all small random graphs, the tree search is still able to find solutions; however, the quality
of these MIS seems to be slightly worse than the default results. For 80 % of the larger random
graphs – except for ER graphs – the randomized tree search is not able to find solutions. As the
default configuration is not able to find any solution for SATLIB, it is to be expected that the random
configuration does not find any solution either.

For the other real-world graphs, the reddit datasets are the only datasets where the default configuration
performed reasonably well. We find that the randomness here in fact increases the performance of the
algorithm. Hence, the guidance by the GCN does not help our tree search algorithm; for some datasets,
it is not able to generalize well (randomness beats the GCN), for others, there is no performance
difference between random values and the GCN. If we focus on the configuration of the tree search
that could be considered the production version9, i.e., with at least reduction and local search enabled,
we find that random outputs lead to identical performance, with very minor differences in the time
until the final solution discovery. Overall, major contributing factors to solution quality are the
reduction and local search by KAMIS, and in fact, the tree search algorithm is a “smarter brute-force”
approach that does not gain any performance by being guided by a machine learning model. Instead,
the tree-search is almost like a classic branch-and-bound solver, and techniques such as data reduction
and weighted queue popping, that narrow the search space, lead to the discovery of good solutions.

Lastly, we briefly note that the experimental results are influenced by randomness, as the queue
popping happens randomly; this can for example be seen in the two cases, where a solution was dis-
covered in the default configuration of the DGL-TREESEARCH, but no solutions for the configuration
with queue pruning enabled.

3.2 COMPARING TREE SEARCH SOLVERS TO OTHER SOLVERS

Having understood the implications of the various possible configurations of tree searches, next, we
compare INTEL-TREESEARCH and DGL-TREESEARCH to KAMIS, a heuristic solver optimized for
the MAXIMUM INDEPENDENT SET problem, the mathematical optimization tool GUROBI, and the
reinforcement learning tool LEARNING WHAT TO DEFER. For LWD, we train for 20 000 iterations
of proximal policy optimization on the SATLIB dataset, using the hyperparameters given for SATLIB
in Table 5 (Appendix A.1) of Ahn et al. (2020).

The results are given in Table 2. As we can see, the sophisticated state-of-the-art solver KAMIS can
solve almost all instances perfectly; for example, for the large ER graphs, the multithreaded INTEL-
TREESEARCH has a slightly higher average MIS, and a faster time until a solution is found. For
other graphs, especially the SATLIB dataset, KAMIS is very fast, while obtaining very high-quality
results. Regarding the general-purpose solver GUROBI, we find that it performs similar to KAMIS
on simple instances, however, on harder datasets such as SATLIB or VC-BM, we see that Gurobi

9Recall that the default version is not able to solve the SATLIB dataset without the help of reduction and
local search techniques.

6

Under review as a conference paper at ICLR 2022

Table 2: Run times results of the modern MIS solver KAMIS, the optimization tool GUROBI, the
reinforcement-learning based LEARNING WHAT TO DEFER, and the tree search algorithms in their
default and full configuration. For the explanation of the various configuration flags, we refer to the
caption of Table 1. All multithreaded experiments in this table use 8 threads, and all threads share
a single GPU. Time limits are set equally to Table 1. We note that KAMIS and LWD always run
single-threadedly, while GUROBI employs up to 8 threads, as needed. For LWD, we test the default
configuration (d) and replace the output of the GNN with a random tensor (rand); the random graphs
are executed with 32 iterations per episode, and all other graphs with 128 iterations per episode
(c.f. Ahn et al. (2020)). We mark the configuration/solver that has the best average MIS in bold, and
grey out configurations for which solutions were found for less than 20 % of all graphs.

Intel DGL LwD KaMIS Gurobi
Graph Nodes d r+ls+mt d r+qp+wp+ls+mt d +rand default default

ER
50-100 20.58 (0.98) 20.83 (1.00) 19.88 (0.95) 20.83 (0.99) 20.36 (0.97) 8.64 (0.41) 20.83 (1.00) 20.83 (1.00)

1.70 (500) 5.39 (500) 3.53 (500) 0.41 (500) 0.24 (500) 0.06 (500) 1.60 (500) 0.10 (500)

700-800 39.90 (-) 44.98 (-) 37.13 (-) 44.32 (-) 33.65 (-) 8.85 (-) 44.57 (-) 37.79 (-)
12.00 (100) 11.90 (100) 13.63 (100) 22.97 (96) 0.37 (100) 0.12 (100) 31.28 (100) 30.01 (100)

BA
50-100 42.42 (0.99) 42.43 (1.00) 42.05 (0.99) 42.43 (1.00) 42.43 (1.00) 22.38 (0.53) 42.43 (1.00) 42.43 (1.00)

0.54 (500) 4.97 (500) 2.44 (500) 0.11 (500) 0.26 (500) 0.06 (500) 0.05 (500) 0.00 (500)

700-800 420.89 (0.97) 432.58 (1.00) 389.65 (0.90) 432.58 (1.00) 432.57 (0.99) 187.79 (0.43) 432.58 (1.00) 432.58 (1.00)
3.09 (18) 5.31 (100) 16.50 (80) 0.69 (100) 0.28 (100) 0.10 (100) 0.06 (100) 0.01 (100)

HK
50-100 42.32 (0.99) 42.33 (1.00) 41.87 (0.98) 42.33 (1.00) 42.33 (1.00) 22.40 (0.53) 42.33 (1.00) 42.33 (1.00)

0.53 (500) 5.15 (500) 2.59 (500) 0.07 (500) 0.25 (500) 0.06 (500) 0.06 (500) 0.00 (500)

700-800 417.89 (0.98) 429.81 (1.00) 390.64 (0.90) 429.81 (1.00) 429.77 (0.99) 188.94 (0.43) 429.81 (1.00) 429.81 (1.00)
4.23 (19) 5.26 (100) 19.66 (83) 0.42 (100) 0.27 (100) 0.09 (100) 0.08 (100) 0.01 (100)

WS
50-100 38.69 (0.99) 38.70 (1.00) 37.91 (0.97) 38.70 (1.00) 38.70 (0.99) 24.59 (0.63) 38.70 (1.00) 38.70 (1.00)

0.53 (500) 5.24 (500) 3.80 (500) 0.07 (500) 0.24 (500) 0.07 (500) 0.04 (500) 0.00 (500)

700-800 - (-) 386.90 (1.00) - (-) 386.90 (1.00) 386.90 (1.00) 220.07 (0.56) 386.90 (1.00) 386.90 (1.00)
- 5.49 (100) - 0.39 (100) 0.28 (100) 0.09 (100) 0.05 (100) 0.00 (100)

HRG
50-100 33.62 (0.99) 33.72 (1.00) 32.80 (0.97) 33.72 (1.00) 33.72 (1.00) 19.51 (0.58) 33.72 (1.00) 33.72 (1.00)

3.24 (495) 5.11 (500) 5.50 (500) 0.06 (500) 0.26 (500) 0.07 (500) 0.06 (500) 0.00 (500)

700-800 - (-) 304.21 (1.00) 221.80 (0.75) 304.21 (1.00) 304.07 (0.99) 140.20 (0.46) 304.21 (1.00) 304.21 (1.00)
- 5.51 (100) 17.81 (5) 0.44 (100) 0.30 (100) 0.11 (100) 0.13 (100) 0.01 (100)

SATLIB 1 209-1 347 - (-) 426.51 (0.99) 340.50 (0.79) 426.55 (0.99) 423.48 (0.99) 144.85 (0.33) 426.59 (0.99) 426.57 (0.99)
- 7.99 (500) 18.48 (2) 13.12 (500) 0.91 (500) 0.09 (500) 4.51 (500) 3.12 (500)

VC-BM 450-1 534 39.85 (0.90) 45.10 (1.00) 37.20 (0.85) 44.65 (0.99) 36.02 (0.85) 9.78 (0.25) 44.95 (0.99) 42.73 (0.99)
149.80 (40) 51.64 (40) 139.55 (40) 145.24 (40) 1.95 (40) 0.15 (40) 86.58 (40) 266.71 (40)

as-Caida 8 020-26 475 - (-) 19387.47 (0.99) - (-) 19387.90 (1.00) 19387.47 (0.99) 7267.39 (0.37) 19387.47 (0.99) 19387.47 (0.99)
- 14.49 (122) - 15.63 (122) 3.65 (122) 6.22 (122) 2.23 (122) 0.15 (122)

PPI 591-3 480 - (-) 1002.71 (0.99) 269.00 (0.97) 1002.50 (0.99) 1001.54 (0.99) 251.62 (0.25) 1002.83 (1.00) 1002.83 (1.00)
- 8.73 (24) 23.56 (1) 3.70 (24) 1.67 (24) 0.28 (24) 5.86 (24) 8.16 (24)

REDDIT-B 46-2 283 146.06 (0.99) 287.54 (1.00) 186.31 (0.87) 287.54 (1.00) 287.54 (1.00) 147.79 (0.52) 287.54 (1.00) 287.54 (1.00)
5.94 (200) 5.37 (500) 11.81 (406) 0.26 (500) 0.90 (500) 0.08 (500) 0.18 (500) 0.00 (500)

REDDIT-5K 55-3 648 194.27 (0.99) 586.31 (0.99) 252.74 (0.88) 586.32 (1.00) 586.31 (0.99) 287.78 (0.49) 586.31 (0.99) 586.31 (0.99)
7.97 (37) 5.35 (500) 15.36 (152) 0.48 (500) 0.93 (500) 0.10 (500) 0.22 (500) 0.00 (500)

REDDIT-12K 41-897 128.61 (0.99) 170.20 (1.00) 136.05 (0.92) 170.20 (1.00) 170.20 (1.00) 91.45 (0.55) 170.20 (1.00) 170.20 (1.00)
3.99 (349) 5.20 (500) 9.53 (467) 0.17 (500) 0.86 (500) 0.07 (500) 0.10 (500) 0.00 (500)

wiki-RfA 11 380 - (-) 8111.00 (1.00) - (-) 8096.00 (0.99) 8107.00 (0.99) 2243.00 (0.27) 8111.00 (1.00) 8111.00 (1.00)
- 13.08 - 19.95 4.79 3.07 0.82 1.57

wiki-Vote 7 115 - (-) 4866.00 (1.00) - (-) 4864.00 (0.99) 4864.00 (0.99) 1430.00 (0.29) 4866.00 (1.00) 4866.00 (1.00)
- 8.56 - 11.20 3.94 2.18 0.73 0.87

PubMed 19 717 - (-) 15912.00 (1.00) - (-) 15888.00 (0.99) 15912.00 (1.00) 5474.00 (0.34) 15912.00 (1.00) 15912.00 (1.00)
- 12.91 - 23.34 3.34 2.02 0.16 0.19

Cora 2 708 - (-) 1451.00 (1.00) - (-) 1451.00 (1.00) 1451.00 (1.00) 644.00 (0.44) 1451.00 (1.00) 1451.00 (1.00)
- 5.63 - 13.63 2.74 1.25 0.06 0.03

Citeseer 3 264 - (-) 1808.00 (1.00) - (-) 1808.00 (1.00) 1808.00 (1.00) 928.00 (0.51) 1808.00 (1.00) 1808.00 (1.00)
- 5.51 - 14.62 3.38 1.74 0.06 0.04

bitcoin-alpha 3 783 - (-) 2718.00 (1.00) - (-) 2716.00 (0.99) 2718.00 (1.00) 1011.00 (0.37) 2718.00 (1.00) 2718.00 (1.00)
- 6.10 - 11.41 2.37 1.85 0.21 0.05

bitcoin-otc 5 881 - (-) 4346.00 (0.99) - (-) 4352.00 (1.00) 4346.00 (0.99) 1574.00 (0.36) 4346.00 (0.99) 4346.00 (0.99)
- 6.86 - 12.47 2.71 2.21 0.06 0.08

ego-facebook 4 039 - (-) 1046.00 (1.00) - (-) - (-) 1034.00 (0.98) 291.00 (0.27) 1046.00 (1.00) 1046.00 (1.00)
- 14.34 - - 5.50 1.84 19.86 30.05

roadnet-berlin 61 204 - (-) 29843.00 (0.99) - (-) 29888.00 (1.00) 29739.00 (0.99) 14520.00 (0.49) 29843.00 (0.99) 29843.00 (0.99)
- 144.22 - 68.22 6.66 2.17 1.95 22.72

7

Under review as a conference paper at ICLR 2022

takes significantly more time to find good solutions, and the average MIS is a little smaller (e.g., for
large ER graphs, KAMIS achieves 44.57, compared to 37.79 for GUROBI).

We analyze LWD first in its default configuration and then, similar to the tree search, replace the
output of the graph neural network with a random tensor. First, LWD is very fast, even though it
requires neural network inference. Quality-wise, except for the VC-BM dataset, it always finds
near-optimal solutions. Note that we did not use the local search or reduction techniques for LWD,
which could further improve solution quality. When using random output instead of the neural
network, unlike the tree search algorithms, the solution quality degrades noticeably. These promising
results show that LWD did learn the solution structure of the MIS problem and is able to generalize
over different datasets.

For tree search approaches, we see that state-of-the-art algorithmic techniques are required to find
good solutions. As the fully-configured versions of the tree searches employ these KAMIS-internal
routines, one can argue that the purely algorithmic solvers are the better choice, because the quality
difference is negligible, while KAMIS is faster than the tree searches. Purely algorithmic solvers
do not come with the overhead of a machine learning environment (training as well as execution
are more complicated), and the important algorithmic techniques need to be developed in any case.
However, the good results for LWD indicate that future work could focus on deep reinforcement
learning solutions as well.

3.3 LARGE-SCALE GRAPHS

However, the question is whether these observations also hold true for large-scale graphs. To this end,
we evaluate the solvers on random graph instances from 500 000 to 5 000 000 vertices, and on huge
real-world graphs. Detailed results can be found in Appendix A in Table 3.

Overall, we observe similar performance characteristics on large-scale graphs. Only KAMIS and
GUROBI are able to find solutions for all scenarios. KAMIS performs best, both with respect
to solution quality and time required to find these solutions; in many cases, it is more than one
order of magnitude faster than other solvers. Compared to the INTEL-TREESEARCH, the DGL-
TREESEARCH time outs more often due to VRAM limits; the INTEL-TREESEARCH benefits from
lower-level implementation using numpy arrays and sparse adjacency matrices, while the DGL-
TREESEARCH employs the higher level Deep Graph Library graph abstraction, consuming more
memory. For LWD, we see good results for graphs up to 500 000 vertices, but cannot verify the
scalability up to 2 000 000 vertices of the original paper10.

3.4 WEIGHTED GRAPHS

Having analyzed the solvers on unweighted graphs, we briefly want to see how the solvers perform on
weighted graphs. Intuitively, the weighted problem is harder, because each vertex can have a different
value; hence specialized reduction techniques have to be developed. Lamm et al. (2019) were the
first to present such rules also for the weighted case that are implemented in KAMIS, however, only
integer weights are currently supported. The results and details on the weighted graph generation are
given in Appendix A in Table 4; note that INTEL-TREESEARCH does not support the weighted case,
and while Ahn et al. (2020) evaluate LWD for MWIS, they do not provide the code to do so.

We observe that on HK, WS, and HRG graphs, where KAMIS is able to utilize its reduction
techniques, it is able to instantaneously solve the weighted problem as well. However, on ER graphs,
the reduction times out, showing that the suitability of the algorithmic techniques is graph-dependent.
In the weighted case on ER graphs, the DGL-TREESEARCH with queue pruning enabled finds the
best result. GUROBI finds solutions of similar quality to KAMIS very quickly. Overall, we see that
the vanilla tree search has the advantage of being problem-agnostic, i.e., an extension to the weighted
case was easily possible, while for the algorithmic solver, new reductions are needed, that currently
cannot deal with some graphs. However, on graphs where the reductions are successful, KAMIS
finds solutions of the highest quality, showing the trade-off between general and specialized solvers.

10As Ahn et al. (2020) do not explicitly state the hyperparameter configuration for their large-scale experiments
and random graph generation, these experiments might not be directly comparible

8

Under review as a conference paper at ICLR 2022

4 RELATED WORK

In this section, we briefly discuss some related work.

Solvers for Maximum Independent Set. Li et al. (2018) propose the INTEL-TREESEARCH, a
supervised framework that determines an MIS over several steps while being guided in its choice of
vertices by a GCN. As an alternative unsupervised approach, Khalil et al. (2017) propose S2V-DQN,
in which they use Q-learning to solve the minimum vertex cover problem11. Building on their work,
Ahn et al. (2020) propose LEARNING WHAT TO DEFER (LwD), a reinforcement learning approach
with a focus on scalability on large graphs. Similar to the tree search, LwD can mark multiple vertices
as part of the MIS in a single step, which makes it faster compared to S2V-DQN, that only labels a
single vertex in each step. A solver that does not utilize machine learning is KAMIS (Lamm et al.,
2017; 2019; Hespe et al., 2019); we mention the recent publication by Hespe et al. (2021) introducing
some new reduction rules. Note that all of these solvers are heuristics and hence only solve MIS
approximately; exact solvers have been proposed by Jain & Seshadhri (2020); Xiao & Nagamochi
(2017); Tomita et al. (2010), for example, and theory has been working on understanding why and in
what models MIS poses to be difficult (Censor-Hillel et al., 2017).

Solvers for Other NP-hard Problems. Of course, other NP-hard problems that, unlike minimum
vertex cover, are not closely related to maximum independent set, have also been subject to intensive
research. The evolutionary computation community, for example, has researched various NP-
hard routing problems, like the VEHICLE ROUTING PROBLEM (Berger & Barkaoui, 2003; Potvin,
2009) and the MULTIPLE ROUTES problem (Böther et al., 2021). Another routing problem, the
TRAVELLING SALESMAN PROBLEM (TSP), has already been tackled using neural networks in the
1980s (Hopfield & Tank, 1985). There have been two notable approaches by Bello et al. (2017)
and Kool et al. (2019) that propose neural network-based solutions that are tailored towards the TSP.
This means, that unlike the tree search approach, their solutions focus more on the problem at hand
and cannot easily be generalized to other NP-hard problems. Last, we note the recent work by Nair
et al. (2021) which aims at solving Mixed Integer Programs using Deep Learning.

5 CONCLUSION AND FUTURE WORK

We present our comprehensive, open-source benchmark environment for the MAXIMUM
(WEIGHTED) INDEPENDENT SET problem. Using this environment, we run several experiments on
both real-world and synthetic graphs of different sizes. Our analysis shows that guided tree searches,
such as the INTEL-TREESEARCH by Li et al. (2018), owe their good results not to the trained neural
network, but instead to the various techniques used to make a “better” brute-force algorithm. To
verify this, we show that the GCN that guides the search can be replaced by random values without a
noticeable performance impact. Furthermore, we are not able to reproduce the results of previous
work in the default configuration of the algorithm and claim that without algorithmic techniques, the
tree search algorithms are not able to solve hard MIS instances. We believe this to be an important
insight for the community researching at the intersection of combinatorial optimization and machine
learning. The benchmark suite lays the ground fur future reproducible evaluations for new MIS
solvers, and the promising results for LEARNING WHAT TO DEFER indicate that reinforcement
learning is superior to supervised approaches. This might be kept in mind when developing solving
techniques using machine learning in the future.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and declare that we have no conflicts of interest. We tried to
contact the authors of the related work, as stated in the respective sections.

REPRODUCIBILITY STATEMENT

As our results contradict previous work, we try to be as transparent as possible about our process.
The solvers we use are documented in Section 2. The changes we apply to LWD and INTEL-

11MVC is very related to the maximum independent set, as one can just flip the assignment.

9

Under review as a conference paper at ICLR 2022

TREESEARCH are supplied as a git patch with our benchmark suite that can be accessed via the
anonymous repository12 or in the supplementary material in OpenReview. The datasets we use are
listed in Appendix D; we supply the code required to preprocess the datasets.

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In Proceedings of the 37th International Conference on Machine Learning (ICML), volume
119 of Proceedings of Machine Learning Research, 2020.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1), 2002. doi: 10.1103/revmodphys.74.47.

Anaconda Inc. Anaconda software distribution, 2020. URL https://docs.anaconda.com/.

Monya Baker. 1, 500 scientists lift the lid on reproducibility. Nature, 533(7604), 2016. doi:
10.1038/533452a.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In Proceedings of the 5th International Conference on
Learning Representations (ICLR), 2017.

Jean Berger and Mohamed Barkaoui. A hybrid genetic algorithm for the capacitated vehicle routing
problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
2003, 2003. doi: 10.1007/3-540-45105-6 80.

Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Anton Krohmer, and Jonathan Striebel.
Towards a systematic evaluation of generative network models. In Proceedings of the International
Workshop on Algorithms and Models for the Web Graph (WAW), 2018. doi: 10.1007/978-3-319-
92871-5 8.

Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck, and
Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic random
graphs. In Proceedings of the 27th Annual European Symposium on Algorithms (ESA), 2019. doi:
10.4230/LIPICS.ESA.2019.21.

Geoff Boeing. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex
street networks. Computers, Environment and Urban Systems, 65, 2017. doi: 10.1016/j.compenvu
rbsys.2017.05.004.

Maximilian Böther, Leon Schiller, Philipp Fischbeck, Louise Molitor, Martin S. Krejca, and Tobias
Friedrich. Evolutionary minimization of traffic congestion. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2021. doi: 10.1145/3449639.3459307.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In Proceedings
of the 30th International Joint Conference on Artificial Intelligence (IJCAI), 2021. doi: 10.24963/i
jcai.2021/595.

Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds for the
congest model. In Proceedings of the 31st International Symposium on Distributed Computing
(DISC), 2017. doi: 10.4230/LIPICS.DISC.2017.10.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017. doi:
10.1109/iccv.2017.168.

Zihao Ding, Aniketh Reddy, and Aparna Joshi. Reproduciblity, 2020. URL https://blog.ml.
cmu.edu/2020/08/31/5-reproducibility/.

12https://anonymous.4open.science/r/mwis-benchmark

10

https://docs.anaconda.com/
https://blog.ml.cmu.edu/2020/08/31/5-reproducibility/
https://blog.ml.cmu.edu/2020/08/31/5-reproducibility/
https://anonymous.4open.science/r/mwis-benchmark

Under review as a conference paper at ICLR 2022

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5(1), 1960.

Majid Eskandarpour, Pierre Dejax, Joe Miemczyk, and Olivier Péton. Sustainable supply chain
network design: An optimization-oriented review. Omega, 54, 2015. doi: 10.1016/j.omega.2015.0
1.006.

Tobias Friedrich. From graph theory to network science: The natural emergence of hyperbolicity
(tutorial). In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer
Science (STACS), 2019. doi: 10.4230/LIPICS.STACS.2019.5.

Michael R. Garey and David S. Johnson. Strong NP-completeness results. Journal of the ACM, 25
(3), 1978. doi: 10.1145/322077.322090.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the 3rd Conference on Digital Libraries (DL), 1998. doi: 10.1145/2766
75.276685.

Gurobi Optimization LLC. Gurobi website, 2021. URL https://www.gurobi.com/.

Abner Guzmán-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning: Learning
to produce multiple structured outputs. In Advances in Neural Information Processing Systems
(NeurIPS), volume 25, 2012.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United
States), 2008.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 31, 2017.

Demian Hespe, Christian Schulz, and Darren Strash. Scalable kernelization for maximum independent
sets. ACM Journal of Experimental Algorithmics, 24(1), 2019. doi: 10.1145/3355502.

Demian Hespe, Sebastian Lamm, and Christian Schorr. Targeted Branching for the Maximum
Independent Set Problem. In Proceedings of the 19th International Symposium on Experimental
Algorithms (SEA), 2021. doi: 10.4230/LIPIcs.SEA.2021.17.

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering. Physical
Review E, 65(2), 2002. doi: 10.1103/physreve.65.026107.

Holger Hoos and Thomas Stützle. Satlib: An online resource for research on sat. In SAT 2000. IOS
Press, 2000.

John J. Hopfield and David W. Tank. Neural computation of decisions in optimization problems.
Biological Cybernetics, 52(3), 1985. doi: 10.1007/BF00339943.

John P. A. Ioannidis. Why most published research findings are false. PLoS Medicine, 2(8), 2005.
doi: 10.1371/journal.pmed.0020124.

Shweta Jain and C. Seshadhri. The power of pivoting for exact clique counting. In Proceedings
of the 13th International Conference on Web Search and Data Mining (WSDM), 2020. doi:
10.1145/3336191.3371839.

Sayash Kapoor and Arvind Narayanan. Irreproducibility in machine learning, 2020. URL https:
//reproducible.cs.princeton.edu/.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations. Springer US, 1972. doi: 10.1007/978-1-4684-2001-2 9.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

11

https://www.gurobi.com/
https://reproducible.cs.princeton.edu/
https://reproducible.cs.princeton.edu/

Under review as a conference paper at ICLR 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.
Hyperbolic geometry of complex networks. Physical Review E, 82(3), 2010. doi: 10.1103/physre
ve.82.036106.

Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos. Edge weight
prediction in weighted signed networks. In Proceedings of the 16th IEEE International Conference
on Data Mining (ICDM), 2016. doi: 10.1109/icdm.2016.0033.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and V.S. Subrahmanian.
REV2: fraudulent user prediction in rating platforms. In Proceedings of the 11th International
Conference on Web Search and Data Mining (WSDM), 2018. doi: 10.1145/3159652.3159729.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. Journal of Heuristics, 23(4), 2017. doi: 10.1007/s10732-0
17-9337-x.

Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang. Exactly
solving the maximum weight independent set problem on large real-world graphs. In Proceedings
of the 21st Symposium on Algorithm Engineering and Experiments (ALENEX), 2019. doi: 10.113
7/1.9781611975499.12.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. In Advances
in Neural Information Processing Systems (NeurIPS), volume 25, 2012.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceeding of the 11th ACM International Conference on
Knowledge Discovery and Data Mining (KDD), 2005. doi: 10.1145/1081870.1081893.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1), 2009. doi: 10.1080/15427951.2009.10129177.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media. In
Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI),
2010. doi: 10.1145/1753326.1753532.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31, 2018.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2), 2000. doi:
10.1023/a:1009953814988.

Raymond E. Miller and David E. Muller. A problem of maximum consistent subsets. IBM Research
Report RC-240, 1960.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks. arXiv preprint
2012.13349, 2021.

OpenStreetMap Contributors. Planet dump retrieved from https://planet.osm.org. https://www.
openstreetmap.org, 2017.

12

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Under review as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 32,
2019.

Jannik Peters, Daniel Stephan, Isabel Amon, Hans Gawendowicz, Julius Lischeid, Lennart Salabarria,
Jonas Umland, Felix Werner, Martin S. Krejca, Ralf Rothenberger, Timo Kötzing, and Tobias
Friedrich. Mixed integer programming versus evolutionary computation for optimizing a hard
real-world staff assignment problem. In Proceedings of the 29th International Conference on
Automated Planning and Scheduling (ICAPS), 2019.

Jean-Yves Potvin. State-of-the art review—evolutionary algorithms for vehicle routing. INFORMS
Journal on Computing, 21(4), 2009. doi: 10.1287/ijoc.1080.0312.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL https://networkrepository.com.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint 1707.06347, 2017.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3), 2008. doi: 10.1609/aimag.v29i3.21
57.

Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple
and faster branch-and-bound algorithm for finding a maximum clique. In Proceedings of the
International Workshop on Algorithms and Computation (WALCOM), 2010. doi: 10.1007/978-3-
642-11440-3 18.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint 1909.01315, 2019.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684), 1998. doi: 10.1038/30918.

Robert West, Hristo S. Paskov, Jure Leskovec, and Christopher Potts. Exploiting social network struc-
ture for person-to-person sentiment analysis. Transactions of the Association for Computational
Linguistics, 2, 2014. doi: 10.1162/tacl a 00184.

Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Information
and Computation, 255, 2017. doi: 10.1016/j.ic.2017.06.001.

Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint satisfaction:
Easy generation of hard (satisfiable) instances. Artificial Intelligence, 171(8-9), 2007. doi:
10.1016/j.artint.2007.04.001.

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
International Conference on Knowledge Discovery and Data Mining (KDD), 2015. doi: 10.1145/
2783258.2783417.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1), 2013. doi: 10.1007/s10115-013-0693-z.

A ADDITIONAL TABLES

In this section, you can find the tables omitted in the main paper due to space constraints.

13

https://networkrepository.com

Under review as a conference paper at ICLR 2022

Table 3: Results of the modern MIS solver KAMIS, the optimization tool GUROBI, the reinforcement-
learning based LEARNING WHAT TO DEFER, and the tree search algorithms in their full configuration,
on huge random graphs and huge real world networks. We do not test huge ER graphs due to the time
complexity of generating them, and do not test BA graphs as they are similar to HK graphs. For the
explanation of the various configuration flags, we refer to the caption of Table 1. All multithreaded
experiments in this table use 8 threads, and all threads share a single GPU. The time limit for all graphs
was set to 3 hours. For LWD, the algorithm is executed with with 128 iterations per episode (c.f. Ahn
et al. (2020)). We mark the configuration that has the best average MIS in bold. Configurations that
consumed too much VRAM or DRAM are noted as out of memory (OOM).

Intel DGL LwD KaMIS Gurobi
Graph Nodes r+ls+mt r+qp+wp+ls+mt default default default

HK

500 000 289486.00 (-) 289486.00 (-) 289486.00 (-) 289486.00 (-) 289486.00 (-)
242.91 177.12 145.40 0.27 26.86

2 000 000 1157643.00 (-) OOM OOM 1157643.00 (-) 1157643.00 (-)
1064.53 1.15 154.14

5 000 000 2892242.00 (-) OOM OOM 2892242.00 (-) 2892242.00 (-)
1207.98 3.80 446.81

WS

500 000 258887.00 (-) 258887.00 (-) 258887.00 (-) 258887.00 (-) 258887.00 (-)
219.57 171.97 61.28 0.22 5.41

2 000 000 1035715.00 (-) 1035715.00 (-) OOM 1035715.00 (-) 1035715.00 (-)
923.82 740.14 0.95 28.48

5 000 000 2589519.00 (-) OOM OOM 2589519.00 (-) 2589519.00 (-)
1128.76 2.82 76.26

HRG

500 000 210950.00 (-) 210950.00 (-) 210930.00 (-) 210950.00 (-) 210949.00 (-)
374.53 216.09 834.99 0.78 47.20

2 000 000 843618.00 (-) OOM OOM 843618.00 (-) 843616.00 (-)
1114.92 3.51 374.15

5 000 000 2110401.00 (-) OOM OOM 2110401.00 (-) 2110400.00 (-)
1866.42 8.62 897.20

DBLP 317 080 152131.00 (1.00) 152131.00 (1.00) 152131.00 (1.00) 152131.00 (1.00) 152131.00 (1.00)
142.15 (2) 112.32 (2) 236.98 (2) 0.30 (2) 7.15 (2)

roadnet-pennsylvania 1 088 092 OOM OOM OOM 533625.00 (-) 533628.00 (-)
17.49 (2) 3662.87 (2)

ego-gplus 107 614 57394.00 (-) OOM 56794.00 (-) 57394.00 (-) 57321.00 (-)
399.20 (2) 275.58 (2) 115.76 (2) 10802.52 (2)

web-google 875 713 529138.00 (1.00) OOM 528725.00 (0.99) 529138.00 (1.00) 529138.00 (1.00)
663.18 (2) 822.14 (2) 10.67 (2) 83.30 (2)

Table 4: Results of the MIS solver KAMIS, the optimization tool GUROBI, and the DGL-
TREESEARCH in various configurations on weighted random graphs. The weights have been sampled
per vertex from a normal distribution N with µ = 100, σ = 30, capped to be larger than 0, and
rounded to integer values. For the explanation of the various configuration flags, we refer to the
caption of Table 1. All multithreaded experiments in this table use 8 threads, and all threads share a
single GPU. The time limit for all graphs was set to 30 seconds. We mark the configuration that has
the best average MIS in bold, and grey out configurations for which solutions were found for less than
20 % of all graphs. Similar to the unweighted experiments, we run the solvers on 500 graphs per type.
Configurations where there was a timeout due to KAMIS’ reduction techniques are marked as TO.

DGL KaMIS Gurobi
Graph Nodes d +r +ls qp +wp +r +ls +mt default default

ER 700-800 3765.08 (-) TO TO 3792.71 (-) 3571.05 (-) TO TO TO TO 3709.68 (-)
18.80 (500) 18.01 (500) 11.65 (500) 30.01 (500)

HK 700-800 39469.48 (0.87) 42026.61 (0.93) 45034.05 (0.99) 39128.12 (0.87) 40441.76 (0.89) 42026.61 (0.93) 45034.01 (0.99) 45033.46 (0.99) 45036.91 (0.99) 45036.91 (0.99)
20.11 (364) 1.02 (500) 0.68 (500) 20.18 (329) 11.89 (500) 0.97 (500) 0.75 (500) 0.92 (500) 0.00 (500) 0.01 (500)

WS 700-800 - (-) 36010.38 (0.87) 41160.71 (0.99) 37958.50 (0.92) 36904.74 (0.89) 36010.51 (0.87) 41159.49 (0.99) 41147.84 (0.99) 41196.43 (1.00) 41196.43 (1.00)
- 3.13 (500) 5.38 (500) 14.77 (2) 15.17 (439) 3.41 (500) 6.13 (500) 10.19 (500) 0.00 (500) 0.01 (500)

HRG 700-800 23641.88 (0.70) 33366.88 (0.99) 33696.93 (0.99) 22583.27 (0.68) 24497.41 (0.72) 33366.88 (0.99) 33696.93 (0.99) 33696.93 (0.99) 33696.96 (1.00) 33696.96 (1.00)
23.25 (24) 0.62 (500) 0.57 (500) 24.89 (22) 17.64 (482) 0.60 (500) 0.54 (500) 0.57 (500) 0.00 (500) 0.01 (500)

14

Under review as a conference paper at ICLR 2022

B TREE SEARCH

In the following, we describe the guided tree search approach introduced by Li et al. (2018) in more
detail, and explain our additional modifications (e.g., the queue pruning). A pseudocode description
of the algorithm is found in Algorithm 1; for a visualization, we refer to Figure 1 of Li et al. (2018).
The core element of the tree search is a queue13 P of partial solutions S ∈ {0, 1, ?}|V | to the MIS
problem, i.e., labelings of the graph at hand marking each vertex as either included in the MIS (1),
excluded (0), or unlabeled (a decision about that vertex is still to be made, ?). To be a valid (partial)
solution to the MIS problem, each element in the queue fulfills the constraint that no two adjacent
vertices can both be included. Furthermore, all vertices adjacent to an included one must be excluded.

Given a graph G = (V,E), we start with an empty solution, i.e., f.a. v ∈ V , Sv = ?. In each step of
the tree search, a partial labeling is popped from the queue (random pop), and the residual graph
Gresidual consisting only of the unlabeled vertices is constructed (keeping only those edges between
unlabeled vertices). Next, we obtain a predefined number m of probability maps, each of which
contains a value for all vertices of the residual graph, posing the “probability of being in the MIS”.
This is done using a function gen probmaps : G→ [0, 1]|V |×m, that can take arbitrary unweighted
graphs G ∈ G as input. In the default case, this function calls the trained GCN, which outputs its
assignments from vertices to probabilities, i.e., GCN(G) ∈ [0, 1]|V |×m.

From each of these probability maps, a new partial solution is derived as follows: The probabilities
of the maps are sorted in descending order. The vertex with the highest probability gets labeled as
included, and all adjacent vertices as excluded. This step is repeated until we would have to label an
already excluded vertex as included, in which case we break, and add the partial solution to the queue.
In case all vertices are labeled we obtained a full solution, which we yield and do not add back into
the queue. This procedure is repeated for all probability maps. A non-pseudocode implementation –
like DGL-TREESEARCH – could, for example, choose the largest independent set that is yielded to
obtain a potential MIS.

Furthermore, there are several modifications (flags) discussed in Section 3.1. In the following, we
briefly discuss how these flags impact the tree search algorithm.

• Reduction. Reduction or graph kernelization is an addition that uses algorithmic techniques
to find vertices which (provably) have to be in the independent set. After determining
the residual graph, before generating the probability maps, we optionally can determine
whether some vertices can be labeled due to the reduction rules, and then continue to
determine the probability maps with an even smaller residual graph. Lamm et al. (2017)
and Hespe et al. (2019) provide reduction rules for the unweighted case, which both INTEL-
TREESEARCH and DGL-TREESEARCH access using a Python-C++ interface. Furthermore,
for the MAXIMUM WEIGHTED INDEPENDENT SET problem, DGL-TREESEARCH uses
the recently proposed reduction rules by Lamm et al. (2019).

• Local Search. A local search is an addition based on small mutations which try to fur-
ther improve a full solution before it is yielded. It can be understood as fine-tuning a
solution. The INTEL-TREESEARCH and DGL-TREESEARCH use the local search im-
plementation by Lamm et al. (2017) and Hespe et al. (2019), and for the weighted case,
DGL-TREESEARCH uses the local search by Lamm et al. (2019).

• Multithreading. To find the MIS faster, one can use multiple threads that search for
independent sets. The parallelization idea is very simple, each thread just follows the same
procedure as stated in Algorithm 1. In the INTEL-TREESEARCH, the threads share the
queue P , making push and pop operations a critical section. Because we want to avoid
this critical section, and due to issues with shared state in Python multiprocessing, in the
DGL-TREESEARCH, we give each thread its own queue, and first initialize enough partial
solutions, such that each thread has one partial solution to start on.

• Queue Pruning. As we see in Section 3.1, on difficult datasets like SATLIB, the tree search
almost cannot find any solution. Furthermore, in their experiments, Ahn et al. (2020) state
that the INTEL-TREESEARCH runs out of memory, something that we did not observe

13We use the term queue to stay consistent with other works. However, P is not a traditional LIFO queue, but
a list (infinite-sized array).

15

Under review as a conference paper at ICLR 2022

Algorithm 1: Guided Treesearch Algorithm to find MIS (adjusted from Li et al. (2018)). For
a solution S and vertex u ∈ V , we denote by Su the current status of u (included, excluded,
unlabeled). For a more detailed description, we refer to Appendix B.

Input: Graph G = (V,E), Function gen probmaps : G→ [0, 1]|V |×m.
Output: Independent sets Si ⊆ V .

1 P ← {(?, ?, . . . , ?) ∈ {0, 1, ?}|V |};
2 while P is not empty do
3 S ← random pop(P);
4 Vresidual ← {u ∈ V | Su = ?};
5 Gresidual ← (Vresidual, {(u, v) ∈ E | u, v ∈ Vresidual});
6 for M ∈ gen probmaps(Gresidual) do
7 S′ ← S;
8 for u ∈ Vresidual sorted by descending probability in M do
9 if S′u = 0 then

10 break;
11 S′u ← 1;
12 for v ∈ Vresidual adjacent to u do
13 S′v ← 0;

14 if ∀u ∈ V : S′u 6= ? then
15 yield S′;
16 else
17 append S′ to P ;

for medium-sized graphs. Queue pruning is a technique used to tackle these two issues.
Unfortunately, we could not obtain the information on how the queue pruning approach
by Ahn et al. (2020) is implemented via private communication, hence we propose our own
solution. We set a maximum number of elements on our queue P , and after appending a
new partial solution to the queue, we remove the oldest elements (at position 0) from the
queue, until the queue is small enough again. The intuition is that we find more solutions
faster, because there is a higher chance to pop an almost labeled (more recent) solution from
the queue, and we also limit the memory used. Queue pruning was not proposed in the
original paper by Li et al. (2018).

• Weighted Queue Pop. By default, the random pop used in Algorithm 1 chooses an element
from the queue uniformly at random. Weighted Queue Pop, on the other hand, shifts the
probability of each element to be chosen according to how many unlabeled vertices are left
in it, favoring fewer unlabeled vertices. Similar to queue pruning, the intuition is to find fully
labeled solutions faster while keeping some randomness in the popping behavior. It can be
freely combined with queue pruning or used on its own. To the best of our knowledge, no
other paper has proposed this addition to the tree search algorithm yet.

• Random Values as Probability Maps. This flag changes gen probmaps to a random
generator, effectively replacing the GCN output with probability values chosen uniformly at
random.

We note that the original implementation by Li et al. (2018) does not exactly follow our description
and Algorithm 1. We note differences between their paper and the published code in the next section.

C REMARKS ON THE INTEL-TREESEARCH IMPLEMENTATION

In this section, we note some important facts to keep in mind when dealing with the original tree
search implementation, next to the rather difficult understandability and maintainability of the code.
First, for difficult instances, with reduction and local search both disabled, the search queue appears
to grow indefinitely without ever finding a single solution. To circumvent this effect and to be able to
find solutions, it might be necessary to limit the search queue to a fixed maximum size, as observed

16

Under review as a conference paper at ICLR 2022

by Ahn et al. (2020). They furthermore stress the importance of pruning to limit memory usage. We
discuss our approach to queue pruning in Appendix B.

Second, in the paper, it is stated that the GCN is trained for 200 epochs. However, in the implementa-
tion, one epoch iterates over just 2000 randomly chosen samples of the 38000 samples in the training
set14. This is not what you would expect given the term “epoch”. Furthermore, the original code has
some hardcoded values (e.g., sometimes it expects the number of input graphs to be flexible, and
sometimes it is hardcoded within the same file). Our patch provided in the benchmark suite fixes
these issues.

Third, the multi-threaded variant of the algorithm (demo parallel.py) uses just one randomly
chosen probability map of the GCN outputs instead of all. This makes this variant’s performance in
terms of search steps per second, appear to scale superlinearly, and furthermore is not documented in
the paper15, and needs to be kept in mind for evaluation.

D DATASETS

In this section, we give some details on the datasets, groups of datasets, and random graphs models
used in this paper. For all datasets, we treat all graphs as undirected. The data generation module
of our benchmarking suite integrates the download/generation and conversion of these graphs. We
delete all self-loops, if there are any, because the solvers deal with self-loops differently (for example,
with silent failures, errors, or just ignoring the vertex).

Erdős-Rényi. This well-known random graph model by Erdős & Rényi (1960) connects each pair
of vertices with probability p. We use p = 0.15 and for testing, generate 500 graphs with 50 to 100
vertices and 100 graphs with 700 to 800 vertices.

Barabási-Albert. This random graph model by Albert & Barabási (2002) iteratively adds nodes,
connecting them to m already existing nodes. We use m = 2 and for testing, generate 500 graphs
with 50 to 100 vertices and 100 graphs with 700 to 800 vertices.

Holme-Kim. A random graph model by Holme & Kim (2002) similar to the BA-model, with an
extra step for each randomly created edge that creates a triangle with probability p. We use m = 2
and p = 0.05 and for testing, generate 500 graphs with 50 to 100 vertices and 100 graphs with 700
to 800 vertices. For the large-scale experiments, we test on one graph per fixed amount of vertices,
c.f. Table 3.

Watts-Strogatz. A random graph model by Watts & Strogatz (1998) that starts with a well-
structured ring-lattice with mean degree k and in the following step replaces each edge with probability
p with another edge sampled uniformly at random. This way it tries to keep “small-world properties”
while maintaining a random structure similar to Erdős-Rényi graphs. We use k = 2 and p = 0.15.
For the large-scale experiments, we test on one graph per fixed amount of vertices, c.f. Table 3.

Hyperbolic Random Graph. A random graph model by Krioukov et al. (2010), which generates
graphs by randomly putting nodes in a disk in the hyperbolic plane, and connecting them if their
(hyperbolic) distance is below a certain threshold. Recent works have it described to be the best
model for modeling real-world networks, due to their heterogeneity and interdependency (Friedrich,
2019). As generation parameters, we use α = 0.75, T = 0.1, deg = 10 and for testing, generate
500 graphs with 50 to 100 vertices and 100 graphs with 700 to 800 vertices. For the large-scale
experiments, we test on one graph per fixed amount of vertices, c.f. Table 3.

SATLIB. This is a well-known set of SAT instances in CNF commonly used as a benchmark for
SAT solvers (Hoos & Stützle, 2000). A SAT instance can easily be reduced to a graph, which has
a MIS as large as the number of clauses, should the SAT instance be satisfiable. In short, for each

14https://github.com/isl-org/NPHard/blob/5fc770ce1b1daee3cc9b318046f2361
611894c27/train.py#L92

15Algorithm 3 in Appendix C.1 of the paper contains an unbound variable m responsible for this ambiguity.

17

https://github.com/isl-org/NPHard/blob/5fc770ce1b1daee3cc9b318046f2361611894c27/train.py#L92
https://github.com/isl-org/NPHard/blob/5fc770ce1b1daee3cc9b318046f2361611894c27/train.py#L92

Under review as a conference paper at ICLR 2022

clause a clique is created, each node of which stands for a variable or its negation, e.g., x or ¬x.
Afterwards, for each variable x, all its nodes are connected to nodes referring to its negation ¬x.
We use the “Random-3-SAT Instances with Controlled Backbone Size” dataset16, which consists of
40 000 instances, of which we train on 39 500 and test on 500. Each instance has between 403 to 449
clauses.

PPI. The PPI dataset, introduced by Hamilton et al. (2017), contains of 24 graphs whose nodes
describe proteins and edges describe interactions between them. They contain 591 to 3 480 nodes. We
use the data set provided by DGL17, as it provides a more easily understandable separation between
the graphs than the original source by GraphSAGE18.

REDDIT. The REDDIT datasets, introduced by Yanardag & Vishwanathan (2015), contain graphs
constructed from online discussion threads on Reddit19. Vertices represent users and edges represent
at least one response by one of the users to the other. The difference between REDDIT-BINARY,
REDDIT-MULTI-5K, and REDDIT-MULTI-12K is how many subreddits have been crawled, and
whether the classification task that is usually associated with these datasets is binary or multi-class
classification. We obtain the data from TU Dortmund’s data set collection20. For each dataset, we
sample 500 graphs for testing, and they contain 41-3 648 nodes.

as-Caida. The as-Caida dataset of autonomous systems, introduced by Leskovec et al. (2005),
consists of 122 graphs derived from a set of RouteViews BGP table snapshots. They contain 8 020 to
26 475 nodes. We obtain the data from Stanford’s SNAP repository21.

Citation. The Citation dataset consists of the three citation network graphs Cora (McCallum
et al., 2000), Citeseer (Giles et al., 1998) and PubMed (Sen et al., 2008). We obtain all data from
NetworkRepository (Rossi & Ahmed, 2015).

DBLP-Coauthorship. This dataset contains the com-DBLP22 (Yang & Leskovec, 2013) graph.
Vertices represent authors and an edge exists if two authors have published at least one paper together.

Road Networks. The Road Networks dataset contains two road networks of different sizes. The net-
work roadNet-PA obtained from SNAP23 represents the state of Pennsylvania (Leskovec et al., 2009).
The other network maps the city of Berlin, Germany, and is extracted from OpenStreetMap (Open-
StreetMap Contributors, 2017) using OSMnx (Boeing, 2017).

Social Networks. The Social Networks dataset contains of 6 social network graphs we gathered.
Vertices represent users and edges represent some kind of relationship between them. The exact
kind of relationship depends on the graph. The ego-Facebook24 and ego-Gplus25 graphs represent
“friendships” between users (Leskovec & Mcauley, 2012). The bitcoin-otc26 and bitcoin-alpha27

graphs represent Bitcoin’s web-of-trust network (Kumar et al., 2016; 2018). The wiki-Vote28 and
wiki-RfA29 graphs are derived from interactions in the governing process of Wikipedia (Leskovec
et al., 2010; West et al., 2014).

16https://www.cs.ubc.ca/˜hoos/SATLIB/Benchmarks/SAT/CBS/descr CBS.html
17https://docs.dgl.ai/en/0.6.x/ modules/dgl/data/ppi.html
18http://snap.stanford.edu/graphsage/ppi.zip
19https://reddit.com
20https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
21https://snap.stanford.edu/data/as-caida.html
22https://snap.stanford.edu/data/com-DBLP.html
23https://snap.stanford.edu/data/roadNet-PA.html
24https://snap.stanford.edu/data/ego-Facebook.html
25https://snap.stanford.edu/data/ego-Gplus.html
26https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
27https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
28https://snap.stanford.edu/data/wiki-Vote.html
29https://suitesparse-collection-website.herokuapp.com/SNAP/wiki-RfA

18

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
https://docs.dgl.ai/en/0.6.x/_modules/dgl/data/ppi.html
http://snap.stanford.edu/graphsage/ppi.zip
https://reddit.com
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://snap.stanford.edu/data/as-caida.html
https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/roadNet-PA.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Gplus.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/wiki-Vote.html
https://suitesparse-collection-website.herokuapp.com/SNAP/wiki-RfA

Under review as a conference paper at ICLR 2022

VC-Benchmark (VC-BM). A dataset consisting of 40 graphs of different sizes from 450 to 1 534
nodes, on which finding the maximum independent set is synthetically made hard (Xu et al., 2007).
Li et al. (2018) call this dataset BUAA-MC. As the original download30 is not available anymore, we
use a GitHub mirror31.

30http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm
31https://unsat.github.io/npbench/vertexcovering.html

19

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
https://unsat.github.io/npbench/vertexcovering.html

	Introduction
	Independent Set Solvers
	Evaluation
	Analysis of the Tree Search
	Comparing Tree Search Solvers to Other Solvers
	Large-Scale Graphs
	Weighted Graphs

	Related Work
	Conclusion and Future Work
	Additional Tables
	Tree Search
	Remarks on the Intel-TreeSearch Implementation
	Datasets

