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Abstract

Neural Architecture Search (NAS) is receiving growing at-
tention as the need to remove the human bias from neural
network models rises. There is extensive research in trying
to beat state-of-the-art NAS algorithms. However, these ad-
vances do not focus directly on the search space these algo-
rithms explore. Here, we propose a framework that encodes
the structure of a convolutional neural network, respecting
the arithmetical relation of the kernel and stride sizes with
the input and output shapes. This framework consists of a
formula with constraints that, if given the structure of the
problem (input and output shapes), can produce specification
properties of a neural architecture through a solver. We show
that this methodology can assemble networks with arbitrary
sizes and structures, that make for unique and uniform search
spaces. To compare the resulting architectures, a metric that
computes dissimilarity in terms of architectural structure is
proposed. We empirically show that generating dissimilar ar-
chitectures, implies dissimilarities in performance. In accor-
dance, similar architectures are similar in performance.

1 Introduction
Recently, there have been advances in NAS (Liu et al. 2018;
Zoph and Le 2016; Li and Talwalkar 2020; Ying et al. 2019),
where neural architectures (NAs) are either scrapped from
previous works (Kandasamy et al. 2018) or manually built
by the user (Elsken et al. 2019), forming a NAS search
space,A, that is explored to find the best architecture. How-
ever, the liability of these approaches is that the architec-
tures, which assemble the NAS space, are limited and bi-
ased. In this work, NAs are generated by an algorithm, ca-
pable of producing a non biased and uniform architecture
space, as it is built automatically by an algorithm as opposed
to a human. This is achieved using constraint programming,
more specifically, with Satisfiable Modulo Theory (SMT)
and Boolean Satisfiability techniques.

The main idea of this work is to take advantage of
the arithmetic of convolutional layers (Dumoulin and Visin
2016) and use the kernel, k, and stride, s, for the relation

O =
I − k
s

+ 1⇔ I = (O − 1)× s+ k, (1)
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to generate NAs. Consider the following setup: the input
shape, I , and the output shape,O, are known. And one wants
to build a function that maps I to O. One way of solving
this is to simply apply an affine transformation. However,
there are cases where one does not want to do the latter, be it
because of: memory limitations (the memory cost of a con-
volution is O(channels × k), and an affine transformation
O(I×O)); interpretability of latent activations (Zhang, Wu,
and Zhu 2018); or preservation of the input representation.
The other way, is to use an SMT solver to retrieve solutions
for k and s, which represent a convolutional NA, as illus-
trated in Figure 1.

Encoding

Figure 1: An encoding, of NAs, given an input, I , and an
output, O, provides a solution set, S, of NAs. For the exam-
ple illustrated, I = 28× 28 and O = 8× 8, all solutions, ci,
are in accordance with ci : R28×28 → R8×8.

The contributions of this work are:

1. show that the kernel and stride sizes of convolutional
neural networks (CNNs) can be integrated in a formula,
relating them with the input and output shapes, used to
sample NAs with an arbitrary depth of downsampling
layers (see Section 3);

2. integration of a family of hash functions (based on XOR
constraints, see Section 4), shown by Chakraborty, Meel,
and Vardi (2013) to sample diverse solutions from a for-
mula. This results in an NA space with uniform and
unique samples (see Section 6.2);

3. show that the proposed framework not only is capable of
generating CNNs, but also able to mutate already exist-
ing architectures that are assembled with downsampling
blocks, e.g., Resnet-18 (He et al. 2016) (see Section 5.2);



4. show that the structural dissimilarity of the generated
NAs increases the exploratory factor of a NAS algorithm
(see Section 6.3) in the solution space of the proposed
formula, consequently increasing the likelihood of find-
ing a good architecture.

The methodology proposed is integrated with the DARTS
algorithm (Liu, Simonyan, and Yang 2018), showing that the
framework can be easily integrated in a NAS setting. In ac-
cordance with (Elsken et al. 2019), we focus on exploring
the space, A, a NAS algorithm works on.

2 Problem Description
Consider an input space, RI , output space, RO, and an in-
stance ~x ∈ RI . I and O are K-Dimensional spaces, that is
I = I(1) × · · · × I(K). Similarly O = O(1) × · · · × O(K),
with K ∈ N\{0}. The k-th dimension of I is referred to as
I(k). A convolutional layer, Ll, is seen as a mapping func-
tion, fLl , between two spaces. A CNN, L, is a set of N
layers, L = {L1, . . . , LL}, which is also seen as a map-
ping function, fL. The latter is a chain of mapping functions,
fL : RI → RO, fL = fLN (. . . fL1

(~x) . . . ) ∈ RO. Now let
I and O be part of a formula F with |V | variables, being V
the set of variables, and S the set ofN assignments to V that
satisfy F . Each element of S = {c1, . . . , cN} is a function
such that ∀i ∈ {1, . . . , N}, ci : RI → RO.

3 Problem Formalization
Convolutional operations can be applied in 1-Dimensional
(e.g. signal), 2-Dimensional (e.g. images), 3-Dimensional
(e.g. videos) spaces and so on. For the sake of simplicity,
consider two 1-Dimensional spaces, RI and RO, which are
referred to as Input Space and Output Space, respectively.

The input and output of a convolutional layer1 are related
with the kernel size, k, and stride, s, respectively, obeying
Equation 1 ∀I,O ∈ N : I ≥ O iff k > 0 ∧ s > 0. A CNN
in its simplest form2 can be seen as a set of N ∈ N convo-
lutional layers, L = {L1, . . . , LN}. Every layer is charac-
terised by its kernel size and stride,

∀n ∈ {1, . . . , N} : Ln = (kn, sn).

A CNN transformation from an input space, I , to an out-
put space, O, is represented as: fL : RI 7→ RO. Similarly,
a convolutional layer, Li ∈ L, transformation is defined as
fLi : RIi 7→ ROi , with I = I1 ≤ . . . Ii ≤ Oi · · · ≤ ON =
O. Consider the special case of L0 : ~x = fL0(~x) being a
layer that represents the input, I . Then with a setup formu-
lated with fL0

(.) ∈ RI ∧· · ·∧fLi(.) ∈ ROi ∧· · ·∧fLN (.) ∈
RO and ∀i ∈ {0, . . . , N − 1} : Oi = Ii+1, this can be
represented as a SMT formula,

1Convolutions have more parameters that are not described in
this document, such as number of channels and padding. These
parameters are not considered in this description, because they are
not being used in the context of this work.

2In the machine learning community CNN studies also call net-
works with more types of layers, in addition to convolutions, CNNs
(e.g. networks with convolutional layers and fully connected lay-
ers).

(ON = O) ∧
N∧
l=1

(Ol ≤ Ol−1 ∧ kl > 0 ∧ sl > 0) .

An SMT solver gives us a set of N tuples of (k, s) char-
acterizing convolutional layers by solving:(

IN − kN
sN

+ 1 = O

)
∧

N∧
l=1

(
Il − kl
sl

+ 1 ≤ Ol−1 ∧ kl > 0 ∧ sl > 0

)
.

K-Dimensional Setting - to extend the problem to K di-
mensions one just needs to apply the previous equation to
all K dimensions. With x(k) corresponding to the k-th di-
mension of an instance x in a K-Dimensional space, such a
setting is represented as

r = k
(k)
l > 0 ∧ s(k)l > 0,

Ho =

(
I
(k)
N − k(k)N

s
(k)
N

+ 1 = O(k)

)
,

Hh =

(
I
(k)
l − k(k)l

s
(k)
l

+ 1 ≤ O(k)
l−1 ∧ r

)
,

K∧
k=1

Ho ∧
N∧
l=1

Hh.

Ho refers to an output layer and Hh refers to a hidden
layer. An SMT solver would explore a space of infinite sat-
isfiable solutions, since (k, s) = (1, 1) characterises a con-
volutional layer that does not mutate the dimensions from
the input to the output. To avoid this, the number of layers
to be accounted for is lower, n, and upper, N , bounded.

Pseudo boolean optimization - to enumerate solutions
that satisfy an SMT formula with lower and upper bounds
for the number of layers, one needs to have auxiliary vari-
ables that define which constraints are participating, i.e.
which lth kernel and stride are eligible for the solution. For
that pseudo-Boolean (Roussel and Manquinho 2009) vari-
ables, X , are introduced, where X = {x1, . . . , xN , xN+1}.
All x ∈ X should obey ∀2 ≤ i ≤ N : xi = 1 ⇒ xi−1 = 1
and ∀1 ≤ i ≤ N − 1 : xi = 0 ⇒ xi+1 = 0. The
first means if xi = 1 then all the previous layers are acti-
vated, therefore it implies xi−1 = 1 and the same goes for
xi−1 until x1. For the second statement, if xi = 0, mean-
ing the ith layer is not activated and does not participate in
the solution, then the same goes for xi+1 which is 0, un-
til xN . In addition, xN+1 = 0. Every time one wants a
solution of l layers, a constraint, c, should be true, where
c = {

∑N
i=1 xi = l} equivalent to (∀1 ≤ i ≤ l : xi =

1) ∧ (∀l < i ≤ N : xi = 0) or simply xl = 1 ∧ xl+1 = 0.
With this and considering Hox = (¬xn ∨ xn+1 ∨Ho) and
Hhx = (¬xn ∨ ¬xn+1 ∨Hh), F is defined as



∀n = 1, . . . , N :

K∧
k=1

[Hox ∧Hhx ] .

Solution enumeration - to enumerate all solutions that
satisfy the SMT formula, one needs to specify the SMT
solver to not give us a specific solution again. This is done
by adding the solution to the SMT formula in the form of
negation. If, for a given xi, the formula is no longer satis-
fiable, then xi+1 = 1, while i < N . All the solutions are
enumerated if i = N and the formula is no longer satisfi-
able.

4 The Uniform Solution Enumeration
Problem

The goal is to generate a limited number of reasonably dif-
ferent architectures. However, F , solved by a well known
Solver (Z3-Python (de Moura and Bjørner 2008)), follows a
bias that makes consecutively enumerated solutions (CES)
very similar. For instance, if n = 2 and N = 5, the enu-
merated solutions will have the following order: first all so-
lutions of 2 layers will be enumerated, then all solutions of 3
layers will be enumerated, so on and so forth. In addition, F
has a exponential growing number of solutions (see Figure
4) making A (recall A as the set of NAs explored in a NAS
algorithm) very large.

A workaround is to limit the solutions sampled using the
natural enumeration bias of a solver. This would cause A to
lack uniformity, which in consequence makes the algorithm
that explores A to have a small exploration trait in the solu-
tion space, S , of F . Please note that S is the set of all the
solutions of F , whereas, A is a subset of S, where the NAS
algorithm operates. For instance, consider a solution space
S =

⋃9
i=1 ci, where ci, ci+1 are highly similar, whereas

ci, cj , with j � i, having a higher degree of difference. To
enumerate 3 solutions from S, we define two approaches: a
biased approach, that once a solver finds the first solution,
it performs atomic changes to a minimum set of variables
to give a different solution, this is the behaviour described
in Figure 2a; and a near-uniform approach, that uses tech-
niques to uniformly sample solutions from a solution space,
as described in Figure 2b. In the rest of this Section, we de-
scribe the technique that is able to do the latter.

(a) A distribution of 3 solutions among a solution space, fol-
lowing the biased enumeration mechanism of a SAT solver.

(b) A near-uniform distribution of 3 solutions among a so-
lution space.

Figure 2: Comparison between sampling from a solution
space according to a biased versus uniformly sampling.

Chakraborty, Meel, and Vardi (2013) proposed the Uni-
Wit algorithm that is able to enumerate uniformly distant so-

lutions. This algorithm uses XOR constraints to restrict the
solution space, S, of a formula, F , and randomly chooses
a solution on the restricted solution space. The XOR con-
straints enable the sampling of solutions with a near uni-
form distribution among S (Gomes, Sabharwal, and Sel-
man 2007). UniWit starts by defining a pivot variable, p =

2|V | 1k , with V being the set of variables in F and k a
constant, recommended by the original work to be set to
k = 2. It then iteratively envolves more variables in XOR
constraints that all together make an hash function,

h =

i−l∧
j=1

((
n⊕
h=1

(V [j] ∧ a[j + h− 1])⊕ b[j]

)
⇔ α[j]

)
.

The variables involved in this equation, α, a, b ∈ {0, 1},
are uniformly generated with length i − l, |V | + i − l − 1,
i − l, respectively. In addition, auxiliary variables, l, i, are
initialized with 1

k log2|V | and l − 1, respectively.
UniWit iteratively increments i and generates an hash

function, h, until the formula F ∧ h has a solution space,
S, with total number of solutions lesser than p, |S| < p.
When |S| < p ∧ |S| > 0 the algorithm stops and returns
a random choice from S. If |S| < 1 the algorithm returns
a null solution. This corresponds to sampling one solution
from F , therefore to sampleM near-uniform solutions from
F this process is repeated at mostM times (UniWit may fail
and return a null solution). For more details please refer to
the original work (Chakraborty, Meel, and Vardi 2013). Due
to the solving time bottleneck for the sampling of each solu-
tion, the total time to gatherM solutions increases, as shown
in Section 6.4.

5 Evaluation
In Section 6, we provide an experimental comparison on
three methods:

• All: Solutions are enumerated until F is unsat, using the
internal enumeration bias of Z3-Solver.

• Limited-M : Solutions enumerated, using the internal
enumeration bias of Z3-Solver. Solutions are enumerated
until, either M solutions are enumerated or the formula,
F , becomes unsat.

• Limited Uniform-M : Solutions are enumerated until, ei-
therM solutions are enumerated or F ∧h becomes unsat
(recall h the hash function defined in Section 4). The or-
der in which solutions are enumerated, ends up following
a uniform solution picking among the solution space of
F as described in Section 4.

In this section, two evaluation methodologies are intro-
duced. One assesses the dissimilarity between CES. The
other evaluates the generated search space using a state-of-
the-art NAS algorithm (Liu, Simonyan, and Yang 2018).

5.1 Uniformity evaluation metric
In order to evaluate how similar are CESs, a bit-wise logical
xor is used,



adj T =
1

M − 1

M−1∑
m=0

[∑
cm ⊕ cm+1

]
. (2)

The term cm ⊕ cm+1 refers to a bit-wise logical xor.
The sum of all positions of the bit-array,

∑
cm ⊕ cm+1, is

the manhattan distance between two vectors, cm, cm+1 ∈
{0, 1}. To assess the similarity of CES, the mean distance of
all CES (cm, cm+1) is taken.

5.2 Automatic generation based on Resnet-18
Resnet-18 (He et al. 2016) is used to address the quality of
the generated architectures from both limited approaches. It
is an attractive and well known architecture, and it does not
consume as much computational power as its bigger ver-
sions. The way this architecture was used for automatic gen-
eration is the following: by analyzing the mutation of shapes
from layer to layer, one can observe that it goes from shape
8 × 8 to the final shape 1 × 1 (specific for input with shape
28 × 28), being mutated by a total of 3 times correspond-
ing to 8 × 8 → 4 × 4 → 2 × 2 → 1 × 1. Resnet-18 has
a total of 18 layers, however the shape is only mutated in
3 of them. As such, we specify, in F (recall from Section
3), n = 3 ∧ N = 3 ∧ I = 8 × 8 ∧ O = 1 × 1. Given
a limited number of solutions, the kernel and stride values
∀l ∈ [0, N ] : kl, sl are used to obtain a modification of the
Resnet-18.

The changes of the residual block are shown in Figure 3.
The input, x, is split in two flows, with one being processed
by a convolution with k = 1 ∧ s = 2 followed by a convo-
lution with k = 3 ∧ s = 1 that keeps the dimensions of the
input (same padding scheme (Dumoulin and Visin 2016))
and the other only being processed by a convolution with
k = 1 ∧ s = 2. Each convolution is followed by either a
bn layer (stands for Batch Normalization (Ioffe and Szegedy
2015)) or relu activation (Rectified Linear Unit (Nair and
Hinton 2010)) or both, with relu always following bn and
the latter the convolution operation. In the end, both flows
are joined in an addition operation followed by a relu acti-
vation.

5.3 Assessing the quality of the generated NA
space

In addition to comparing the final test accuracy of each gen-
erated network and the original Resnet, it is pertinent to
see how they evolve along the training session. As such,
the method proposed in (Liu, Simonyan, and Yang 2018) is
used. It consists on treating all of the NAs as a single model
that outputs a prediction. Let:
• c0 be the original Resnet-18;
• ∀i ∈ {1, . . . ,M} : ci be the set of M generated NAs

by one of the limited approaches (Limited-M or Lim-
ited Uniform-M );

• α ∈ RM+1 the weights attributed to the NAs predictions.
Then as defined in (Liu, Simonyan, and Yang 2018),

ŷ =

M∑
i=0

eαi∑M
j=0 e

αj
ci(x), (3)

given an image, x ∈ RL×W , with label y ∈ {0, 1}C ,
being L the height of the image, W the width and C the
number of classes of the classification problem, an NA per-
forms a mapping ci : RL×W → RC , whose output is
ci(x). With such a setting, Equation 3 can be interpreted
as the sum of the softmax normalized αi multiplied with
ci(x). The softmax activation provides a probability value

eαi∑M
j=0 e

αj
∈ [0, 1] that can be interpreted by how much im-

portance the ci(x) prediction has for the final ŷ. By optimiz-
ing α with a gradient descent method: NAs, with poor pre-
dictions, are assigned probability eαi∑M

j=0 e
αj
→ 0, whereas

the best NAs have probability eαi∑M
j=0 e

αj
→ 1. The best NA

is derived from α, by taking the argmaxα at the end of the
training session.

Due to limited GPU availability, we only take zero or-
der gradients, i.e. given a loss function, L : [RC ,RC ] →
R, α is optimized with respect to ci(x) by taking gra-
dients ∇αL(y, ŷ) and the weights, wi, of each NA, ci,
are optimized with respect to the input, x, with gradients
∇wiL(y, ci(x)). The chosen loss function, L, is the nega-
tive log likelihood.

It is worth noting that, in contrast with (Liu, Simonyan,
and Yang 2018), we are performing NAS in a space that has
different geometric architectures, instead of different local
operations (e.g. check which operation between max pooling
and average pooling is best). Please refer to the original work
for more details (Liu, Simonyan, and Yang 2018).

6 Results
In this Section, we provide the results regarding the follow-
ing experiments: the number of solutions of the formula de-
fined in Section 3; quality of the CES of Limited-M and
Limited Uniform-M according to the metric described in
Equation 2; a performance comparison between Limited-
M and Limited Uniform-M in a classification task setting;
and an analysis of the time performance related to the ap-
proaches defined in the beginning of Section 5.

6.1 Number solutions
In Figure 4, one can see how the number of solutions in-
creases with the difference between the input and output,
I − O. The generated NAs setup a search space for a NAS
algorithm, and as with any algorithm, the bigger the search
space the harder it is to converge, especially when evaluat-
ing a state takes a long time, which is the case in NAS. As
a consequence, the full solution space, S, can not be fully
explored, but a subset, A, with M solutions can.

6.2 Quality
Adding to the need of selecting a limited number of solu-
tions from F , the chosen subset of solutions, A, should be
representative of S. In this Section, we show the results on
two approaches that select a limited number of solutions:
Limited-M and Limited Uniform-M . The first follows the
standard bias of the Z3-Solver and the second uses XOR
constraints to promote a uniform sampling of solutions. We
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(a) Original Resnet block.
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(b) Redefined block to fit our framework.

Figure 3: Comparison between the original Resnet block and the redefined block. All of the architectures submitted to evaluation
have the redefined block of Figure 3b. It is considered as the original Resnet, a neural network that integrates the redefined block
with k = 1 ∧ s = 2 in the downsampling blocks.

Table 1: Adj T metric for both limited approaches. Entries are formatted as Limited-M /Limited Uniform-M for a better com-
parison. For all settings, Limited Uniform-M had the bigger Adj T , producing a uniform like CES.

Number Layers 1D 2D 3D
2 3.375/4.125 3.895/7.632 5.684/10.789
3 3.579/5.000 3.632/10.053 3.211/13.842
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Figure 4: Number Solutions All. I − O refers to the differ-
ence between the input and output. All input, I , dimensions
had value of 30, however the exact value of I does not im-
pact the number of solutions, but the I −O does.

compare the two with the evaluation metric described in
Equation 2, that is capable of evaluating how distant are
CES. Results are reported in Table 1.

Results were gathered for 1D, 2D and 3D dimensional set-
tings with I = 30 and O = 20. The number of layers con-
sidered was N = {2, 3}. More settings were not considered
as the average sampling time increased, for a higher number
of layers and dimensions, becoming unfeasible to run in real
time, as shown in Section 6.4. In Table 2 is shown the same
comparison of Table 1, but with the addition of pooling lay-
ers after each convolution, i.e. after each layer, a layer with
k = 2 and s = 1 is added, emulating a pooling layer. This
setting is widely used in computer vision and inserting al-
ready setup layers in the middle of the convolutional layers,
decreased significantly the solving time. This made feasible
in real time the generation of neural networks with as much

as 5 convolutional layers, each one of them followed by a
pooling layer (giving a total of 10 layers).

We observe that Limited-M had a slighty bigger distance
of CES than Limited Uniform-M in the 1D case for 2 and 3
layers. In the other cases, 2D and 3D for 2, 3 and 4 layers
the Limited Uniform-M showed that it promotes CES with
a higher degree of dissimilarity than Limited-M .

6.3 Classification using Resnet as a generation
baseline

To address the quality of the generated architectures, the
setup, introduced in Section 5.2, is used to evaluate the al-
gorithm with the MNIST (LeCun and Cortes 2010) dataset.
The experiments were ran with M = 20. All networks, in-
cluding the weights, α, were trained with a learning rate of
0.0001, batch size of 512, 0.0001 weight decay and trained
for 10 epochs. Recall that the zero order gradient propaga-
tion, defined by Liu, Simonyan, and Yang (2018), was used
for optimization. Table 3 shows the results gathered from the
experiments.

The original Resnet version achieved an accuracy of
0.9843. In comparison, the generated architectures, using
the Limited Uniform-M approach, achieved an average ac-
curacy of 0.9856 with 0.0028 standard deviation. The best
and worst architecture had accuracies 0.9903 and 0.9801,
respectively, meaning a +0.0060 and −0.0042 difference
against the original Resnet. As for the Limited-M approach,
an average accuracy of 0.9865 with 0.0019 standard de-
viation. The best and worst architecture achieved 0.9909
and 0.9835, respectively, with a +0.0086 and +0.0012 dif-
ference against the original Resnet. Limited Uniform-M
had higher accuracy standard deviation than Limited-M ,
with 0.0028 against 0.0019. The latter indicates unifor-
mity in performance, however the differences between Lim-



Table 2: Adj T metric for both limited approaches, with pooling layers following each convolutional layer. Entries are for-
matted as Limited-M /Limited Uniform-M for a better comparison. For 5 layers the formula only has one solution, |S| = 1,
consequently Adj T = 0.

Number Layers 1D 2D 3D
2 4.286/3.286 3.750/7.150 4.600/10.350
3 3.933/4.267 3.500/7.750 4.450/11.400
4 3.600/3.200 3.800/6.000 5.400/9.300

Table 3: Comparison of the results of Resnet-18, Limited Uniform-M and Limited-M .

Number Layers Dataset Accuracy Best Worst α deviation
Resnet MNIST 0.9843 NA NA NA

Limited Uniform-M MNIST 0.9856 0.9903 0.9801 0.0028
Limited-M MNIST 0.9865 0.9909 0.9835 0.0019

ited Uniform-M and Limited-M , at least in accuracy, are not
statistically significant.
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Figure 5: αi deviation from the original Resnet-18. The plot
shows that the Limited Uniform-M generated architectures
increase deviation with the epochs, which is not seen with
the Limited-M architectures that stay with the same devia-
tion against the Resnet-18.

Figure 5 shows the weight deviation along the epochs,
during the training session. The weight deviation against the

Resnet is defined as
√∑M

i=1(αi−α0)2

M−1 , where α0 is the weight
related to the original Resnet-18 and ∀i ∈ {1, . . . ,M} : αi,
the weights associated to the generated architectures. The
Limited Uniform-M deviation strictly increased along the
epochs, whereas Limited-M stayed constant.

6.4 Time
Table 4 reports the total time it took to gather M = 20 so-
lutions, with I = 30, O = 20 and pooling layers (similar
to Table 2) for the Limited Uniform-M amd Limited-M ap-
proaches.

Limited-M is much faster than Limited Uniform-M ,
which was expected due to the solving time bottleneck for
each solution sampled, whereas Limited-M performs atomic
changes at the bottom leafs of the search tree to provide the
next solution.

Solving time refers to the time spent solving a formula,
F , i.e. the time the solver takes until returning the first so-
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Figure 6: Solving time All

lution that satisfies F . As seen in Figure 6, the solving time
increases exponentially with the increase of dimensions.

The higher the difference between the input and output
space, the more complex the problem gets and therefore
the solving time increases as well. In Figure 6, the times
refer to All, however since all approaches solve the same
formula, the solving time is the same for Limited-M and a
sub-estimate for Limited Uniform-M (the hash function in-
troduced increases the solving time).

Finally, we analyze the average sampling time of the Lim-
ited Uniform-M approach, which is shown in Table 5. The
setting is the same that was used for Table 2.

The results show that Limited Uniform-M is not able to
generate deep neural networks (networks with a high num-
ber of layers) that have a high gap between the input and out-
put space, I − O. However, a neural network does not have
to be deep to have a good performance, in fact (Guo et al.
2019) shows that compressing neural networks not only in-
creases the computation time, but in some cases promotes
better efficacy.

7 Related Work
There are various approaches the research community has
done in NAS. In this section, a description of some of the
most recent works is given. Sukthanker et al. (2020) define a



Table 4: Total time (seconds) to gather M = 20 solutions for both limited approaches, with pooling layers following each
convolutional layer. Entries are formatted as Limited-M /Limited Uniform-M for a better comparison.

Number Layers 1D 2D 3D
2 0.262/0.789 0.676/6.293 0.983/13.676
3 0.611/5.418 1.821/99.775 1.645/1204.123
4 1.731/6.888 17.338/508.337 394.587/11509.547
5 123.670/35.412 497.815/14.912 1885.051/66.540

Table 5: Average sampling time (seconds) of the Limited Uniform-M approach.

Number Layers 1D 2D 3D
2 0.0493 0.255 0.619
3 0.288 4.9219 60.128
4 0.606 25.344 575.392
5 34.252 5.526 50.457

continuous space of semi positive definite matrices, where a
neural network layer/operation is represented as a point. The
defined space respects defined rules in order to associate a
layer to it. The chosen operation is retrieved by discretizing
(taking the argmin of all operations) to the closest (defined
distance) defined operation in that space. All candidate ar-
chitectures are optimized using the relaxation of the softmax
(Liu, Simonyan, and Yang 2018). Zhao et al. (2021) explore
the use of supernets in NAS, which consists on using a neu-
ral architecture that encompasses a representation of all net-
works in a search space. By picking multiple supernets from
a search space, one can apply a search algorithm on this sub-
set of architectures, that automatically takes less time than
exploring the entire space. Although, the methodology re-
duces by many orders the search, there is still a bottleneck to
where/how are the architectures from/generated3. Nayman
et al. (2021) perform search in a space configured with dif-
ferent convolutions, i.e., different kernels (strides are fixed).
However, they do not explore all the combinations, which in
consequence do not account with different dimension explo-
ration (always apply a square shaped convolution). In terms
of search algorithm, they propose a space of one hot vari-
ables, that once optimized, the optimal architecture is drawn
by taking the argmax. The optimization is done using gra-
dient descent methods on the relaxed the one hot variables,
that in consequence act as probability distributions. At each
step of the optimization procedure, an architecture is sam-
pled from the distributions. The objective of Nayman et al.
(2021) was to restrict the resource usage, which was done in
accordance with the convolution properties and depth of the
network. Kandasamy et al. (2018) approach the problem of
NAS using Bayesian optimization (Snoek, Larochelle, and
Adams 2012). This is feasible through the definition of an
acquisition function. This function chooses the network that
is most similar to the best network acquired, until a cer-
tain timestep of the optimization process. The similarity is
computed through a distance proposed in (Kandasamy et al.

3The NAS-Bench-101 was used as the neural architecture
search space.

2018). Grathwohl et al. (2018) much like Liu, Simonyan,
and Yang (2018), explore the concept of NAS with gradi-
ent based optimization. Our work differs from these, since
they do not incorporate the notion of different convolutional
structures (kernel and stride size).

8 Conclusion
In this work, SAT and SMT techniques were used to pro-
duce a framework capable of generating NAs automatically,
specifically chained neural architectures. However, it was
shown one can also use it to adapt already existing networks,
as was done with the Resnet-18 architecture. The dimension-
ality of the solution space and the enumeration bias present
in the Z3-Solver restrict the use cases of the encoding for-
mula. To tackle it, XOR constraints, that are known to re-
strict a solution space and perform a near uniform solution
sampling, were used. In the results section, it was shown
that the framework is capable of generating NAs that are
relatively distant from each other, in other words a sparse
and near uniform set of NAs. In terms of quality, the Lim-
ited Uniform-M space of architectures was evaluated in the
MNIST dataset and it showed uniformity in terms of accu-
racy when compared with the Limited-M approach. Conse-
quently, the uniform sampling of architectures from the so-
lution space, produces networks that are uniform in terms of
performance.

9 Reproducibility
Since the evaluation process introduced in Section 5.2 is
very exhaustive, the results presented in this work are not
able to claim statistical significance, as only one run was
made. To reproduce them please use the Tensorflow library
(Abadi et al. 2016) and set the seed to 42, as was done in our
experiments. A public Github repository4 is available with
the source code of the authors. We used a NVIDIA GeForce
RTX 208 GPU (8GB) and the Limited Uniform-20 MNIST
experiments took ≈45 days.

4https://github.com/DCalhas/auto-nas-space
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