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Abstract

This paper tackles post-hoc interpretability for audio processing networks. Our goal1

is to interpret decisions of a trained network in terms of high-level audio objects2

that are also listenable for the end-user. To this end, we propose a novel interpreter3

design that incorporates non-negative matrix factorization (NMF). In particular,4

a regularized interpreter module is trained to take hidden layer representations5

of the targeted network as input and produce time activations of pre-learnt NMF6

components as intermediate outputs. Our methodology allows us to generate7

intuitive audio-based interpretations that explicitly enhance parts of the input signal8

most relevant for a network’s decision. We demonstrate our method’s applicability9

on popular benchmarks, including a real-world multi-label classification task.10

1 Introduction11

Deep learning models, while state-of-the-art for several tasks in domains such as computer vision,12

natural language processing and audio, are typically not interpretable. Their increasing use, especially13

in decision-critical domains, necessitates interpreting their decisions. A good interpretation is often14

characterized by its understandability for the end users (see for instance [16]). More importantly,15

attributes that aid understandability may largely be dependent on the data modality. In this paper, our16

aim is to generate post-hoc human–understandable interpretations for deep networks that process the17

audio modality. Here, post-hoc interpretability refers to the problem of interpreting decisions of a18

fixed pre–trained network.19

Traditional approaches generate interpretations through input attribution, either directly on the20

raw input features or on a given simplified representation [30, 37, 35, 27]. To generate more21

understandable interpretations, a small number of approaches consider other means, such as logical22

rules [36], sentences [19] and high-level concepts [15].23

Most existing post-hoc interpretability methods are primarily designed for application to images and24

tabular data. This limits their applicability to other data modalities such as audio. Although many25

audio processing networks operate on spectrogram-like representations, which can be seen as 2D26

time-frequency images, a visualization or attribution in this space is not as meaningful to a common27

user as it is for images [26].28

This leads us to build an interpretation system that takes into account audio–specific understandability29

features. We motivate these features through an example: suppose an audio event detection network30

deployed in a house recognizes an “alarm” sound event. An ideal interpreter for this classification31

decision would have the ability to “show” that it was indeed an alarm sound that triggered this32

decision. To do so, it must be able to localize the alarm amid other events in the house (for e.g. dog33

barks, baby cries, background noise etc.) and make it listenable for the end–user. It is important to34

highlight here the role of listenable interpretations for better understanding of an audio network’s35

decisions – note that it would be much less meaningful for a human to see the alarm sound as36
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highlighted parts of a spectrogram. Thus making the following aspects important for our system37

design: (i) generating interpretations in terms of high–level audio objects that constitute a scene, (ii)38

segmenting parts of the input signal most relevant for a decision and providing it as listenable audio.39

It’s worth emphasizing that audio interpretability is not the same as classical tasks of separation or40

denoising. These tasks involve recovering complete object of interest in the output audio. On the41

other hand, a classifier network might focus more on salient regions. When interpreting its decision42

and making it listenable we expect to uncover such regions and not necessarily the complete object43

of interest.44

To this end, we propose a novel post–hoc interpreter for audio that employs a popular signal decom-45

position technique called Non–negative Matrix Factorization (NMF; Lee and Seung [25]). NMF46

seeks to decompose an audio signal into constituent spectral patterns and their temporal activations.47

Unlike principal component analysis, NMF is known to provide part–based decompositions [12].48

Owing to these properties, we first use NMF to pre-learn a spectral pattern dictionary on our train-49

ing data. This dictionary is then incorporated as a fixed decoder within our interpretation module.50

Specifically, we train our system to determine an intermediate encoding that performs two roles: (i)51

is able to reconstruct the input through the fixed NMF dictionary decoder, thus corresponding to time52

activations for dictionary components, (ii) at the same time, a function of this encoding is able to53

mimic the classifier’s output. Training with these constraints allows us to generate, for any classifier54

decision, importance values over spectral patterns in our dictionary. Listenable interpretations are55

readily produced by inverting most important NMF spectral patterns back to the time domain.56

In summary, we make the following contributions:57

• We propose a novel NMF-based interpreter module for post-hoc interpretability that gen-58

erates interpretations in terms of meaningful high–level audio objects, listenable for the59

end–user.60

• We present an original formulation that constrains the interpreter encoding through two loss61

functions, one for input reconstruction through NMF dictionary and the other for fidelity to62

the network’s decision. From a learning perspective, we show a new way to link NMF with63

deep neural networks, especially for generating interpretations.64

• We extensively evaluate on two popular audio event analysis benchmarks, tackling both65

multi–class and multi–label classification tasks. The dataset for the latter is very challenging66

due to its collection in noisy real–world setting. Our method’s design allows us to simulate67

feature removal and perform faithfulness evaluation.68

2 Related Works69

In this section, we position our work in relation to: (i) interpretability methods for audio, (ii) methods70

for concept–based interpretability and, (iii) use of NMF within the audio community, in particular,71

attempts to link it with deep networks.72

Interpretability methods for audio Some approaches [5, 42] have shown usability of atten-73

tion/visualization techniques for interpreting audio processing networks or generated instance-wise74

feature importance [44] for time-series data [39]. However, we focus here more on methods that75

attempt to address audio interpretability beyond image-based visualizations or raw input attribution.76

A few works have applied the popular LIME algorithm with a simplified input representation more77

suited for audio. In particular, SLIME [28, 29] proposes to segment the input along time or frequency.78

The input is perturbed by switching "on/off" the individual segments. AudioLIME [18, 10] proposes79

to separate input using predefined sources to create the simplified representation. AudioLIME ar-80

guably generates more meaningful interpretations than SLIME as it relies on audio objects readily81

listenable for end-user. However, it can only be applied for limited applications as it requires existence82

of known and meaningful predefined sources that compose the input audio. APNet [45] takes another83

promising direction by extending interpretable prototypical networks for audio input. However, they84

propose an interpretable system by-design. They don’t tackle the problem of post-hoc interpretation.85

Concept-based interpretability Our method relies on high-level objects for interpretation. In86

this sense, it is most closely related to post–hoc concept-based methods [21, 15]. An interesting87

approach is that of post-hoc version of FLINT [31] with whom we share the idea of utilizing the88

hidden layers and loss functions to encourage interpretability. However we crucially differ from89
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Figure 1: System overview: The interpretation module (right block) accesses hidden layer outputs
of the network being interpreted (left block). These are used to predict an intermediate encoding.
Through regularization terms, we encourage this encoding to both mimic the classifier’s output and
also serve as the time activations of a pre-learnt NMF dictionary.

FLINT and other related approaches in concept representation and their applicability for audio90

interpretations. FLINT represents concepts by a dictionary of attribute functions over input space.91

The learnt concepts are not obviously comprehensible to a user, requiring a separate visualization92

pipeline to get insights. Approaches based on TCAV [21], such as ACE [15], ConceptSHAP [43],93

define concept using a set of images and learn a representation for it in terms of hidden layers of the94

network, termed as concept activation vector (CAV). These designs for concepts are not related to our95

NMF-inspired dictionary representation. Importantly, none of the above mentioned approaches can96

generate listenable interpretations which is key for understandability of audio processing networks.97

NMF for audio has been widely used for numerous tasks ranging from separation to transcription98

[38, 40, 11, 6]. Its traditional usage as a supervised dictionary or feature learning method involves99

learning class-wise dictionaries over training data [12]. Time activations, which are the so-called100

features, are generated for any data point by projecting it onto the learnt dictionaries. Extracted101

features can subsequently be used for downstream tasks such as classification. Bisot et al. [7] couple102

NMF-based features with neural networks to boost performance of acoustic scene classification.103

NMF has also been successfully employed with audio–visual deep learning models for separation104

[13] and classification [32]. Another line of research explored unfolding iterations of different NMF105

optimization algorithms as a deep neural network [23, 41]. These systems, commonly known as106

Deep NMF, have primarily been used for audio source separation tasks.107

While these works share with us the idea of combining neural networks and NMF, there is no overlap108

between our goals and methodologies. Unlike aforementioned studies, we wish to investigate a109

classifier’s decision in a post-hoc manner using NMF as a regularizer. Furthermore, to our best110

knowledge, attempting to regress temporal activations of a fixed NMF dictionary by accessing111

intermediate layers of an audio classification network is novel even within the NMF literature.112

3 System Design113

We begin this section with a brief note on data notation and NMF. Subsequently, in Sec. 3.1, we discuss114

interpreter module’s design and learning. This is followed by a description of our interpretation115

generation methodology in Sec. 3.2. An overview of the proposed system is presented in Fig. 1.116

Data notation. We denote a training dataset by S := (x, y)Ni=1, where x is the time domain audio117

signal and y, a label vector. The label vector could be a one-hot or binary encoding depending118

upon a multi-class or multi-label dataset, respectively. Since multiple audio representations are used119

in this paper, a note on their notation is in order. Very often, audio signals are processed in the120

frequency domain through a short-time Fourier transform (STFT) on x called spectrogram. Log-mel121

spectrograms are a popular input to audio classification networks [33], which is also the one we use122

in this paper. To keep notation simple, we refer to input of the network with x. For NMF however, we123

favor a representation of x that can be easily inverted back to the time-domain and use a log–magnitude124
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spectrogram X that is computed by applying an element-wise transformation x0 → log(1 + x0) on125

the magnitude spectrogram. This is preferred over using magnitude spectrograms as it corresponds126

more closely to human perception of sound intensity [17].127

NMF basics. NMF is a popular technique for unsupervised decomposition of audio signals [3].128

Given any positive time–frequency representation X ∈ RF×T
+ consisting of F frequency bins and T129

time frames, NMF decomposes it into a product of two non-negative matrices, such that,130

X ≈WH

Here, W = [w1,w2, . . . ,wK ] ∈ RF×K
+ is interpreted as the spectral pattern or dictionary matrix131

containing K components and H = [h1,h2, . . . ,hK ]⊺ ∈ RK×T
+ a matrix containing the correspond-132

ing time activations. Typically, a β-divergence measure between X and WH is minimized and133

multiplicative updates are used for estimating W and H [25]. Note that it is possible to reconstruct134

signal corresponding to each or a group of spectral components. This is typically done using a135

procedure called soft–masking. For a single component k, this is written as,136

Xk =
wkhk

⊺

WH
⊙X

Both ./. and ⊙ are element-wise operations. If X is an invertible representation of the magnitude137

spectrogram, time domain signal for Xk is easily recovered using the inverse STFT operation. We138

extensively utilize this procedure for generating listenable interpretations. NMF can also be used139

for dictionary learning, by estimating W on a training dataset matrix Xtrain. As discussed later, we140

use a variant of NMF called Sparse-NMF [24] to pre-learn dictionary for subsequent usage in the141

interpretation module.142

3.1 Interpreter Design143

As depicted in Fig. 1 the interpreter module I contains two components: an interpreter network144

and a NMF dictionary decoder. The so-called interpreter network computes the following function145

x 7→ Θ◦Ψ◦fI(x) where Ψ is the function responsible for generating an intermediate encoding from146

hidden layer representations of the classification network, and Θ attempts to mimic the classifier’s147

output given the intermediate representation. The NMF decoder based on a pre-trained dictionary148

plays two roles: (i) during training, it constrains the intermediate representation to correspond to149

time activations of a pre-learnt spectral pattern dictionary and (ii) when interpreting a classifier’s150

prediction, it is used to build listenable interpretation. To the best of our knowledge, this is an original151

usage of NMF that allows us to interpret a network’s decisions in terms of a fixed dictionary.152

Design of Ψ. The function Ψ processes outputs of a set of hidden layers of the classifier, given by153

fI(x). It’s output, Ψ(fI(x)) ∈ RK×T
+ produces an intermediate encoding of the interpreter. For154

simplicity, we will denote this intermediate encoding as HI(x) = Ψ ◦ fI(x), a function over input x.155

In practice, Ψ is modelled as a neural network that takes as input convolutional feature maps from156

different layers of f . To concatenate and perform joint processing on them, each feature map is first157

appropriately transformed to ensure same width and height dimensions. Two important aspects were158

kept in mind while designing subsequent layers of Ψ. Firstly, audio feature maps for spectrogram-like159

inputs naturally contain the notion of time and frequency along the width and height dimensions.160

Secondly, through appropriate regularization we wish to produce an intermediate encoding that also161

serves as time activations of the pre-learnt NMF dictionary, a matrix of dimensions K × T . To162

achieve this, we continuously downsample on the frequency axis and upsample the time axis to T163

frames. Similarly, the number of input feature maps is re-sampled to reach a size of K, equal to the164

number of components in dictionary W. All learnable parameters of Ψ are denoted by VΨ.165

Design of Θ. HI(x), the intermediate encoding output by Ψ is then fed to Θ, which aims to166

mimic output of the classifier. This directly helps in learning a representation which can interpret167

f(x). Its design consists of two parts. The first part pools activations HI(x) across time. While168

this pooling can be implemented in multiple ways, we opt for attention–based pooling [20], i.e.,169

z =
∑T

t=1 HI(x)a, where a ∈ RT are the attention weights and z ∈ RK is the pooled vector. The170

pooled representation vector is passed through a linear layer. This is followed by an appropriate171

activation function to convert its output to probabilities, that is, softmax for multi-class classification172

and sigmoïd for multi-label classification. All learnable parameters of Θ are denoted by VΘ.173
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Fidelity loss. Generalized cross–entropy between interpreter’s output Θ(HI(x)) and classifier’s174

output f(x) is minimized to encourage interpreter to mimic the classifier. For multi-class classification175

this loss function is written as,176

LFID(x, VΨ, VΘ) = −f(x)⊺ log(Θ(HI(x))) (1)
On the other hand, for multi-label classification this loss reads,177

LFID(x, VΨ, VΘ) = −
∑

f(x)⊙ log(Θ(HI(x))) + (1− f(x))⊙ log(1−Θ(HI(x))). (2)

Here ⊙ denotes element-wise multiplication.178

NMF dictionary decoder and regularization. We additionally constrain the intermediate encoding,179

such that, when fed to a decoder it is able to reconstruct the input audio. As already discussed, we180

choose this decoder to be a pre-learnt NMF dictionary, W. Formally, through LNMF we require181

HI(x) to approximate log-magnitude spectrogram X of input audio x as X ≈WHI(x):182

LNMF(x, VΨ) = ∥X−WHI(x)∥22. (3)
This allows us to consider HI(x) as a time activation matrix for W.183

Training loss. In addition to LFID and LNMF, we impose ℓ1 regularization on HI(x) to encourage184

well-behavedness, especially for large dictionary sizes [24]. The complete training loss function over185

our training dataset S can thus be given as:186

L(VΨ, VΘ) =
∑
x∈S
LFID(x, VΨ, VΘ) + αLNMF(x, VΨ) + β||HI(x)||1 (4)

where α, β ≥ 0 are loss hyperparameters. All the parameters of the system are constituted in the187

functions Ψ,Θ and dictionary W. Since W is pre-learnt and fixed, the training loss L is optimized188

only w.r.t VΨ, VΘ. As a reminder, when training the interpreter for post-hoc analysis, the classifier189

network is kept fixed.190

Algorithm 1 Learning algorithm

1: Input: Classifier f , Training data S, parameters V = {VΨ, VΘ}, hyperparameters {α, β, µ},
number of batches B, number of training epochs Nepoch

2: W← PRE-LEARN NMF DICTIONARY (S, µ) {// Sparse-NMF algorithm}
3: Random initialization of parameters V0

4: V̂ ← TRAIN (f,S,W, V0, α, β,B,Nepoch) {// Train with L in Eq. 4}
5: Output: V̂ = {V̂Ψ, V̂Θ}

Learning algorithm. The complete learning pipeline is presented in Algorithm 1. The learnable191

parameters of the interpreter module are given by V = {VΨ, VΘ}. The pre-specified dictionary (Step192

2 in Algorithm 1) is learnt using Sparse-NMF [24]. The reader is referred to supplement Sec. A.1.1193

for more details regarding Sparse-NMF optimization problem and its application in our experiments.194

3.2 Interpretation generation195

Finally, to generate audio that interprets the classifier’s decision for a sample x and a predicted class196

c, we follow a two-step procedure: The first step consists of selecting the components which are197

considered “important" for the prediction. This is determined by estimating their relevance using198

the pooled time activations in Θ and the weights for linear layer, and then thresholding it. Precisely,199

given a sample x, the pooled activations are computed as z =
∑T

t=1 HI(x)a. Denoting the weights200

for class c in the linear layer as θwc , the relevance of component k is estimated as rk,c,x =
(zkθ

w
c,k)

maxl |zlθw
c,l|

.201

This is essentially the normalized contribution of component k in the output logit for class c. Given a202

threshold τ , the selected set of components are computed as Lc,x = {k : rk,c,x > τ}.203

The second step consists of estimating a time domain signal for each relevant component k ∈ Lc,x204

and also for set Lc,x as a whole. In this paper, we refer to the latter as the generated interpretation205

audio, xint. For certain classes, it may also be meaningful to listen to each individual component, xk.206

As discussed earlier under NMF basics, estimating time domain signals from spectral patterns and207

their activations typically involves a soft–masking and inverse STFT procedure. We detail this step208

with appropriate equations in Algorithm 2.209
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Algorithm 2 Audio interpretation generation

1: Input: log-magnitude spectrogram X, input phase Px components W = {w1, . . . ,wK}, time
activations HI(x) = [hI

1 (x), . . . ,h
I
K(x)]⊺, set of selected components Lc,x = {k1, . . . , kB}.

2: for all k ∈ Lc,x do
3: Xk ← wkh

I
k (x)

⊺∑K
l=1 wlhI

l (x)
⊺ ⊙X {// Soft masking}

4: xk = INV(Xk,Px) {// Inverse STFT}
5: end for
6: Xint ←

∑
k∈Lc,x

Xk

7: xint = INV(Xint,Px)

8: Output: {xk1
, . . . , xkB

}, xint

4 Experiments210

We experiment with two popular audio event analysis benchmarks, namely ESC-50 [34] and SONYC-211

UST [9]. While the former is a multiclass environmental sound classification dataset, the latter212

appeared for DCASE 2019 and 2020 multi-label urban sound tagging task. We quantitatively and213

qualitatively evaluate different aspects of our interpretations, including a subjective evaluation carried214

out on SONYC-UST. This section is organized as follows: quantitative metrics and baselines are215

discussed in Sec. 4.1 followed by implementation details in Sec. 4.2. Experiments on ESC-50 and216

SONYC-UST are detailed in Sec. 4.3 and Sec. 4.4, respectively.217

4.1 Quantitative metrics and baselines218

Metrics. We quantitatively evaluate our interpretations in two ways. First, by evaluating how well it219

agrees with the classifier’s output. For multi-class classification, this is done by computing fraction220

of samples where the class predicted by f is among the top-k classes predicted by the interpreter. We221

refer to this as the top-k fidelity. To compute fidelity on multi-label classification tasks, we compute222

Area Under Precision-Recall Curve (AUPRC) based metrics between the classifier output f(x) and its223

approximation by interpreter Θ(HI(x)). We compute macro-AUPRC, micro-AUPRC. Additionally,224

we report the maximum micro F1-score over different thresholds for the interpreter’s output.225

We also conduct a faithfulness evaluation for our interpretations. In general for any interpretability226

method, faithfulness tries to assess if the features identified to be of high relevance are truly important227

in classifier’s prediction [1]. Since a “ground-truth" importance measure for features is rarely228

available, attribution based methods evaluate faithfulness by performing feature removal (generally229

by setting feature value to 0) and observing the change in classifier’s output [1]. However, it is230

hard to conduct such evaluation for non-attribution or concept based interpretation methods on data231

modalities like image/audio, as simulating feature removal from input is not evident in these cases.232

Interestingly, our interpretation module design allows us to simulate removal of a set of components233

from the input. Given any sample x with predicted class c, we remove the set of relevant components234

Lc,x = {k : rk,c,x > τ} by creating a new time domain signal x2 = INV(X2,Px), where235

X2 = X−
∑

l∈Lc,x
Xl. We define faithfulness of the interpretation to classifier f for sample x with:236

237

FFx = f(x)c − f(x2)c (5)
where f(x)c, f(x2)c denote the output probabilities for class c. For multi-class datasets, we opt for238

measuring absolute drop in logit value instead of absolute drop in probability. This is because class239

probabilities are also affected by changes in logit values for other classes. It should be noted that240

this strategy to simulate removal may introduce artifacts in the input that can affect the classifier’s241

output unpredictably. Also, interpretations on samples with poor fidelity can lead to negative FFx.242

Both of these observations point to the potential instability and outlying values for this metric. Thus,243

we report the final faithfulness of the system as median of FFx over test set, denoted by FFmedian. A244

positive FFmedian would signify that interpretations generally tend to be faithful to the classifier.245

Evaluated systems. We denote our proposed Listen to Interpret (L2I) system, with attention based246

pooling in Θ by L2I + ΘATT. The most suitable baselines to benchmark its fidelity are post-hoc247

methods that approximate the classifier over input space with a single surrogate model. We select248
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Fidelity (in %)

System top-1 top-3 top-5

L2I + ΘATT 65.7 ± 2.8 81.8 ± 2.2 88.2 ± 1.7
L2I + ΘMAX 73.3 ± 2.3 87.8 ± 1.8 92.7 ± 1.2

FLINT [31] 73.5 ± 2.3 89.1 ± 0.4 93.4 ± 0.9
VIBI [4] 27.7 ± 2.3 45.4 ± 2.2 53.0 ± 1.8

System Threshold τ FFmedian

L2I + ΘATT

τ = 0.9 0.21
τ = 0.7 0.42
τ = 0.5 0.89
τ = 0.3 1.29

Random Baseline τ = 0.3 0.00

Table 1: Quantitative results on ESC-50 environmental sound classification test data. (Left) top-k
fidelity (in %). FLINT and VIBI help benchmark fidelity but are not themselves suitable for audio
interpretations. (Right) Faithfulness results (absolute drop in logit value) for different thresholds, τ .
We report FFmedian for proposed L2I + ΘATT and the Random Baseline.

two state-of-the-art systems, FLINT [31] and VIBI [4]. A variant of our own proposed method, L2I +249

ΘMAX, is also evaluated. Herein, attention is replaced with 1D max-pooling operation. Implementation250

details of the baselines are discussed in supplement Sec. A.1.6.251

Faithfulness benchmarking: As already discussed, it is not possible to measure faithfulness for252

concept-based post-hoc interpretability approaches. While measurement for input attribution based253

approaches is possible, the interpretations themselves and the feature removal strategies are different,254

making comparisons with our system significantly less meaningful. We thus compare our faithfulness255

against a Random Baseline, wherein the less-important components, those not present in Lc,x, are256

randomly removed. To compare fairly, we remove the same number of components that are present257

in Lc,x on average. This would validate that, if the interpreter selects truly important components for258

the classifier’s decision, then randomly removing the less important ones should not cause a drop in259

the predicted class probability/logit.260

We also emphasize at this point that works related to audio interpretability (see Sec. 2), are not261

suitable for comparison on these metrics. Particularly, APNet [45] is not designed for post-hoc262

interpretations. AudioLIME [18] is not applicable on our tasks as it requires known predefined audio263

sources. Moreover, SLIME [29] and AudioLIME still rely on LIME [35] for interpretations. It is a264

feature-attribution method that approximates a classifier for each sample separately. As discussed265

before, these characteristics are not suitable for comparison on our metrics.266

4.2 Implementation details267

Classification network. We interpret a VGG-style convolutional neural network proposed by Kumar268

et al. [22]. This network was chosen due to its popularity and applicability for various audio scene and269

event classification tasks. It can process variable length audio and has been pretrained on AudioSet270

[14], a large-scale weakly labeled dataset for sound events. Further details about the network and its271

fine-tuning can be found in supplement Sec. A.1.2.272

Hyperparameters and training. The hidden layers input to the interpreter module are selected273

from the convolutional block outputs. As is often the case with CNNs, the latter layers are expected274

to capture higher-order features. We thus select the last three convolutional block outputs as input275

to the network Ψ. For ESC-50, we pre-learn the dictionary W with K = 100 components and276

for SONYC-UST, we learn with K = 80 components. Reasons for choice of K are discussed in277

supplement Sec. A.1.3. Ablation studies for other hyperparameters are in supplement Sec. A.1.4.278

4.3 Experiments on ESC-50279

Dataset. ESC-50 [34] is a popular benchmark for environmental sound classification task. It is a280

multi-class dataset that contains 2000 audio recordings of 50 different environmental sounds. The281

classes are broadly arranged in five categories namely, animals, natural soundscapes/water sounds,282

human/non-speech sounds, interior/domestic sounds, exterior/urban noises. Each clip is five-seconds283

long and has been extracted from publicly available recordings on the freesound.org project. The284

dataset is prearranged into 5 folds.285

Classifier performance. The classifier achieves an accuracy of 82.5± 1.9% over the 5 folds, higher286

than the average human accuracy of 81.3% on ESC-50.287
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Quantitative results. Mean and standard deviation of top-k fidelity is calculated over the 5 folds.288

We show these results in Table 1 (Left) for k = 1, 3, 5. Among the four systems, VIBI performs the289

worst in terms of fidelity. This is very likely because it treats the classifier as a black-box, while290

the other three systems access its hidden representations. This strongly indicates that accessing291

hidden layers can be beneficial for fidelity of interpreters. FLINT achieves the highest fidelity, very292

closely followed by L2I + ΘMAX and then L2I + ΘATT. This experiment serves as a sanity check for293

our system, that while achieving fidelity performance comparable to state-of-the-art, we hold the294

advantage of providing listenable interpretations in terms of pre–learnt spectral patterns.295

In Table 1 (Right), we report median faithfulness FFmedian (absolute drop in logit value) on fold-1296

for our primary system L2I + ΘATT at different thresholds τ . Smaller τ corresponds to higher |Lc,x|,297

which denotes the number of components being used for generating interpretations. Thus, for Random298

Baseline, we report FFmedian at the lowest threshold τ = 0.3, to ensure removal of maximal number299

of components. To recall the definition of Random Baseline, please refer to Sec. 4.1. FFmedian for300

L2I + ΘATT is positive for all thresholds. It is also significantly higher than the Random Baseline,301

indicating faithfulness of interpretations.302

Audio corruption experiment: an interpretability illustration. We qualitatively illustrate that the303

interpretations are capable of emphasizing the object of interest and are insightful for an end-user304

to understand the classifier’s prediction. To do so, we generate interpretations after corrupting the305

testing data for fold–1 in two different ways (i) either with white noise at 0dB SNR (signal-to-noise306

ratio), (ii) or mixing it with sample of different class. It should be noted that in both these cases307

the system is exactly the same as before and not trained with corrupted samples. Some examples,308

covering both types of corruptions are shared on our companion website.1. A detailed qualitative309

analysis of this experiment can be found in supplement Sec. A.1.5.310

4.4 Experiments on SONYC-UST311

We now discuss experiments for the urban sound tagging task from the well known Detection and312

Classification of Acoustic Scenes and Events (DCASE) challenge 2019 & 2020 edition.313

Dataset. The DCASE task used a very challenging real-world dataset called SONYC-UST [8]. It314

contains audio collected from multiple sensors placed in the New York City to monitor noise pollution.315

It consists of eight coarse-level and 20 fine-level labels. We opt for the coarse-level labeling task316

that involves multi-label classification into: ‘engine’, ‘machinery-impact’, ‘non-machinery-impact’,317

‘powered-saw’, ‘alert-signals’, ‘music’, ‘human-voice’, ‘dog’. This task is highly challenging for318

several reasons: (i) since it is real-world audio, the samples contain a very high level of background319

noise, (ii) the audio sources corresponding to the classes are often weak in intensity, as they are not320

necessarily close to the sensors, (iii) some classes may also be highly localized in time and more321

challenging to detect, (iv) lastly, noisy audio also makes it difficult to annotate, leading to labeling322

noise. This is especially true for training data that was labeled by volunteers.323

Classifier performance. Our fine-tuned classifier achieves a macro-AUPRC (official metric for324

DCASE 2020 challenge) of 0.601. This is higher than the DCASE baseline performance of 0.510325

and comparable to the best performing system macro-AUPRC of 0.649 [2]. Note that it is obtained326

without use of data augmentation or additional strategies to improve performance.327

Quantitative results. In Table 2, we report the macro-AUPRC, micro-AUPRC and max-F1 for the328

interpreter output w.r.t classifier. For fairness, we ignore the class ‘non-machinery impact’ from all329

class-wise evaluations involved in fidelity (i.e. macro-AUPRC) or faithfulness. This is because the330

classifier predicts only one sample in test set with positive label for this class, causing AUPRC scores331

to vary widely for different interpreters. VIBI has the worst performance on all three metrics for this332

dataset as well. In contrast to ESC-50, here the best performing system is L2I + ΘATT followed by L2I333

+ ΘMAX, and FLINT performing worse than both. The fidelity results on ESC-50 and SONYC-UST334

jointly demonstrate that our interpreter can generate high-fidelity post-hoc interpretations. Moreover,335

its design is flexible w.r.t different pooling functions.336

The results for class-wise faithfulness are illustrated in Fig. 2a. We show FFmedian (absolute drop337

in probability) for our system and the Random Baseline. The results indicate that, for most classes,338

interpretations can be considered faithful, with a significantly positive median compared to random339

baseline results, which are very close to 0.340

1https://listen2interpret.000webhostapp.com/
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(a) (b)

Figure 2: (a) Faithfulness (absolute drop in probability value) results for SONYC-UST arranged
class-wise for threshold, τ = 0.1 (b) Subjective evaluation results. Average scores for L2I and
SLIME and fraction of votes in favour of each system are reported.

Fidelity

System macro-AUPRC micro-AUPRC max-F1

L2I + ΘATT 0.909 ± 0.011 0.917 ± 0.008 0.847 ± 0.010
L2I + ΘMAX 0.866 ± 0.014 0.913 ± 0.012 0.840 ± 0.012

FLINT 0.816 ± 0.013 0.907 ± 0.011 0.825 ± 0.012
VIBI 0.608 ± 0.027 0.575 ± 0.019 0.549 ± 0.020

Table 2: Fidelity results on SONYC-UST multi-label urban sound tagging task. We report AUPRC-
based metrics and max F1 score for the interpreter w.r.t classifier’s output (over three runs).

Qualitative observations. Qualitatively, we observe good interpretations for classes ‘alert-signal’,341

‘dog’ and ‘music’. For them, the background noise is significantly suppressed and the interpretations342

mainly focus on the object of interest. Interpretations for class ‘human’ are also able to suppress343

noise to a certain extent and focus on parts of human voices. However, for this class, we found344

presence of some signal from other audio sources too. For the remaining classes, namely ‘Engine’,345

‘Powered-saw’ and ’Machinery-impact’ the quality of the interpretation is more sample dependent.346

This is due to their acoustic similarity with the background noise. We provide example interpretations347

for SONYC-UST on our companion website.1 We present an additional visualization to demonstrate348

coherence of our interpretations in supplement Sec. A.1.5.349

Subjective evaluation. We perform a user study (15 participants) to evaluate quality and understand-350

ability of interpretations for L2I against SLIME on SONYC-UST test data. As discussed in Sec. 4.1,351

SLIME is not suitable for comparison on our quantitative metrics. Nevertheless, it is the only relevant352

baseline for qualitative study of listenable interpretations. Details about SLIME implementation are353

in supplement Sec. A.1.6. A participant was provided with 10 input samples, a predicted class by the354

classifier for each sample and the corresponding interpretation audios from SLIME and L2I. They355

were asked to rate the interpretations on a scale of 0-100 for the following question: “How well does356

the interpretation correspond to the part of input audio associated with the given class?". The 10357

samples were randomly selected from a set of 36 (5-6 random test examples per class). For each358

sample, we ensured that the predicted class was both, present in the ground-truth and audible in input.359

Class-wise preference results and average ratings are shown in Fig. 2b. L2I is preferred for ’music’,360

’dog’ & ’alert-signal’, SLIME is preferred for ’machinery-impact’, no clear preference for others.361

5 Conclusion362

To sum up, we have presented a system for post-hoc interpretation of networks that process audio. We363

posit that generating interpretations in terms of high-level audio objects and making them listenable364

are important attributes to aid understanding. Novel usage of NMF within our interpreter helps us365

satisfy both aforementioned requirements. Our original loss function formulation enables linking366

a classifier’s decision to importance values over pre-learnt NMF spectral dictionary through an367

intermediate encoding. We perform extensive evaluation over popular audio event analysis datasets.368

We present a first-of-its-kind faithfulness evaluation for our non–attribution based method. Finally, a369

user study confirms usefulness of our listenable interpretations. Modular design of our system calls370

for further experimenting with decoder and other block architectures. We hope our work facilitates371

future research into designing modality-specific interpreters that aid understanding.372
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