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Abstract

We present a general vision transformer backbone, called as Orthogonal Trans-1

former, in pursuit of both efficiency and effectiveness. A major challenge for2

vision transformer is that self-attention, as the key element in capturing long-range3

dependency, is very computationally expensive for dense prediction tasks (e.g.,4

object detection). Coarse global self-attention and local self-attention are then5

designed to reduce the cost, but they suffer from either neglecting local correlations6

or hurting global modeling. We present an orthogonal self-attention mechanism7

to alleviate these issues. Specifically, self-attention is computed in the orthogonal8

space that is reversible to the spatial domain but has much lower resolution. The9

capabilities of learning global dependency and exploring local correlations are10

maintained because every orthogonal token in self-attention can attend to the entire11

visual tokens. Remarkably, orthogonality is realized by constructing an endoge-12

nously orthogonal matrix that is friendly to neural networks and can be optimized13

as arbitrary orthogonal matrices. We also introduce Positional MLP to incorporate14

position information for arbitrary input resolutions as well as enhance the capacity15

of MLP. Finally, we develop a hierarchical architecture for Orthogonal Transformer.16

Extensive experiments demonstrate its strong performance on a broad range of17

vision tasks, including image classification, object detection, instance segmentation18

and semantic segmentation.19

1 Introduction20

Recently, transformer [45] has made a tremendous success in the field of natural language processing21

(NLP). Benefiting from the self-attention (SA) mechanism, it has a strong capacity in building22

long-range dependencies in sequential data. Since long-range modeling is also essential for a wide23

range of vision tasks, transformer has been adapted into computer vision by converting an image into24

a sequence of patches [13] (called as tokens) and achieved competitive performance compared to25

CNN [42, 43]. Moreover, self-attention has a quadratic computational complexity to the number of26

tokens, resulting in intolerably expensive computational cost for dense prediction tasks, e.g., object27

detection and segmentation.28

Many efforts have been made to design efficient self-attention mechanisms for vision transformer.29

PVT [49] employs a pyramid architecture with downsampled key and value tokens to reduce the30

computation of global attention. Swin [34] performs self-attention in a local region with shifted31

window to allow cross-region connection. GG-Transformer [62] and CrossFormer [51] present dilated32

self-attention to learn large-scale features efficiently. As shown in Fig. 1 (a-c), the aforementioned33

attention mechanisms can reduce the number of tokens conveniently. However, the penalty is losing34

fine-level details for coarse global self-attention (including downsampled and dialted ones) or hurting35

long-range modeling for local self-attention [40, 51, 41].36
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Figure 1: Illustration of different kinds of efficient self-attention mechanisms.

This paper presents an orthogonal self-attention (OSA) mechanism to capture global dependency37

without losing fine-level details. As shown in Fig. 1 (d), we orthogonalize tokens within local38

regions, permute them into token groups and perform group-wise self-attention in the orthogonal39

space. We apply Orthogonal Transformation (OT) for the tokens for the following reasons. Firstly,40

tokens has a lower resolution in the orthogonal space than in the original visual space, thus reducing41

the computational cost. Secondly, the orthogonal space is reversible to the visual space without42

information loss (thus outperforming downsampled self-attention), and can be easily reversed back43

since the inverse matrix A′ is just the transpose of the orthogonal matrix A, i.e., A′ = AT. Thirdly,44

OT can separate tokens into linearly independent groups. Thereby computing self-attention in such45

groups helps to explore different properties in representation. Lastly, OT also builds connections46

among adjacent tokens explicitly and is more capable of modeling local correlations than dilated47

partition.48

Despite of these benefits, it often needs complex optimization algorithms [30, 31] or imposing49

extra penalties on the loss functions [57, 47] to enforce orthogonality. In this work, we construct50

an endogenously orthogonal matrix that is friendly to neural networks with gradient optimizers.51

We build an orthogonal matrix A ∈ Rn×n by the product of n Householder transformations52

{Hi = I − 2uiu
T
i |i = 0, .., n − 1}, where ui ∈ Rn is a learnable unit vector. In this way, A is53

naturally orthogonal and can be optimized as arbitrary orthogonal matrices. In particular, the dilated54

self-attention can be viewed as a degeneration of OSA when A = I. The strong capacity in exploring55

diverse transformations makes OSA more essential for the model to achieve competitive performance.56

Based on the orthogonal self-attention mechanism, we propose a new Orthogonal Transformer in57

this work. As shown in Fig. 2, it follows the hierarchical design [49, 34] and serves as a general-58

purpose backbone for computer vision. We stack window self-attention (WSA) and orthogonal59

self-attention (OSA) alternatively to capture both global and local dependencies. Note that although60

our OSA is superior in preserving local details, combing it with WSA can further enhance Orthogonal61

Transformer. To improve the flexibility for arbitrary resolutions, we adopt convolutional position62

embedding to incorporate position information. Specifically, Positional MLP (PMLP) is introduced63

by equipping MLP with a depth-wise convolution (DConv) after the non-linear activation. Such64

a simple design not only enables the network to generate position information flexibly, but also65

enhance the capacity of MLP. Besides, it also allows for downsampling within the transformer block66

with strided DConv. We empirically show that downsampling within the block can achieve better67

performance than outside.68

Extensive experiments demonstrate the strong performance of Orthogonal Transformer on a wide69

range of vision tasks. For example, without extra training data or supervision (such as token label-70
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ing [25] and distillation [42]), our large model Ortho-L achieves 85.4 top-1 accuracy on ImageNet-1K71

image classification, surpassing the previous state-of-the-art Swin Transformer [34] by +1.2 with72

similar model size and FLOPs. Our base model Ortho-B achieves 53.0 box AP and 45.9 mask AP73

on the COCO detection task, 49.8 mIOU on the ADE20K semantic segmentation task, surpassing74

the Swin Transformer counterpart by +1.2, +1.2 and +2.2, respectively. Under a smaller setting of75

FLOPs, our Ortho-S even obtain larger performance gains, i.e., +2.1 on ImageNet classification with76

224× 224 resolution, +1.8 box AP, +1.6 mask AP on COCO detection and +4.0 mIoU on ADE20K77

segmentation.78

2 Related Work79

Vision Transformers. Transformer network is firstly proposed in the natural language processing80

(NLP) field and achieves superior performance in many NLP tasks [45, 26]. Recently, there emerges81

a trend towards incorporating the transformer into computer vision tasks, which are previously82

dominated by CNNs [18, 39]. ViT [13] is the pioneering work of vision transformers. After that,83

there are a large number of works focusing on designing a general vision Transformer backbone [9,84

16, 34, 5, 49, 14, 64, 62, 60, 12, 51, 59, 25] for different vision tasks. To adapt transformer to the85

image inputs, hierarchical architectures [34, 49], efficient self-attentions [34, 62, 24] and diverse86

positional encodings [45, 37, 10, 12] are proposed. Vision transformers are also applied to different87

downstream vision tasks, such as object detection [4, 67], semantic segmentation [38, 65, 52], image88

restoration [6, 46], and video processing [32, 1]. We propose a new vision transformer backbone to89

tackle various vision tasks efficiently and effectively.90

Efficient Self-Attentions. Many efficient self-attention mechanisms [29, 28, 8, 2, 48, 36] have been91

proposed in the field of NLP to efficiently handle long sequences. Since the image resolution is usually92

high in many vision tasks, the global self-attention can be applied only for a few times and in the93

low resolution feature space. Early approaches, such as ViT [13] and DeiT [42], employ large image94

patches to restrict the number of tokens. PVT [49] and Twins [9] use downsampled tokens to compute95

self-attention. Many works adopt local self-attention to limit the token number by attending only sub-96

regions of the input, such as the window attention [34], axis attention [20], and criss-cross attention97

[24]. Inspired by dilated convolution [61], GG Transformer [62] and CrossFormer [51] introduce98

dilated self-attention to capture long-distance dependency. Unlike existing methods, our orthogonal99

self-attention can attend to the entire tokens at a low computational cost. Global dependency can be100

captured without losing local details.101

Positional Encodings. Recently, researchers propose to add different kinds of position information to102

the token feature or self-attention process. Absolute positional encoding (APE) [45] is the first work103

to add position encodings to the Transformer inputs. Relative positional encoding (RPE) [34, 37]104

considers the relative distance between two tokens instead of the absolute position. Conditional105

positional encoding (CPE) [10] takes feature as inputs and generates position information via a106

convolution layer. We follow CPE but compensate position information inside the MLP module. This107

design enables MLP to explore local correlations, thus enhancing the model performance.108

Orthogonality. Orthogonality has been widely used in neural networks to regularize neurons [57,109

23, 47] or learning disentangled representations [53]. In contrast to existing works, we employ110

orthogonality to group visual tokens for efficient self-attention. Besides, most of previous works111

depend on complex optimization algorithms, such as singular value decomposition [30] and iterative112

approximation [31], or imposing extra regularization terms on the loss functions [57, 47]. Unlike113

them, we construct an endogenously orthogonal matrix that is more friendly to neural networks with114

gradient optimizers.115

3 Method116

3.1 Overall Architecture117

An overview of the Orthogonal Transformer architecture is illustrated in Fig. 2. For an input image118

x ∈ RH×W×3, we follow [56] and adopt several stacked convolution layers to obtain H
4 ×

W
4 patch119

tokens. Similar to Swin [34], the transformer blocks are divided into 4 stages to produce hierarchical120

representations. We stack blocks of window self-attention (WSA) and orthogonal self-attention121

(OSA) alternatively for better capacity of global and local modeling. For the Orthogonal Transformer122
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Figure 2: The architecture of Orthogonal Transformer. Orthogonal self-attention (OSA) and window
self-attention (WSA) are used successively, where the tokens are grouped via window partition (WP)
or orthogonal transformation (OT). WP−1 and OT−1 denote the respective reverse processes.

blocks (OTBs), we introduce Positional MLP (PMLP) with an additional depth-wise convolution123

(DConv) after GELU in MLP to provide position information. Based on PMLP, we design two124

kinds of OTBs, one with transition and one without. OTBs with transition aim to reduce the spatial125

resolution by strided DConv and a residual strided convolution. The first three stages are composed126

of stacked OTBs without transition following by a singe OTB with transition, while the last stage127

only consists of OTBs without transition.128

3.2 Orthogonal Self-Attention129

Orthogonal self-attention (OSA) is proposed to enable the transformer layers to encode high-resolution130

images efficiently. Unlike previous works [34, 49, 9, 62], OSA performs self-attention in the131

orthogonal space to capture global dependency without neglecting local correlations. It can cover the132

same global receptive field with much less cost than standard self-attention.133

3.2.1 Orthogonal Transformation134

Orthogonal transformation (OT) corresponds to an orthogonal matrix A satisfying ATA = I, where135

I is the identity matrix. As shown in Fig. 1, we employ orthogonal transformation A to convert visual136

tokens into orthogonal tokens for self-attention computation. Since it is hard to enforce orthogonality137

in neural networks [30, 31], we first introduce a simple yet effective way to construct an endogenously138

orthogonal matrix that can be optimized as arbitrary orthogonal matrices. It is based on the following139

linear algebra theorem [44] (Proof is provided in the appendix).140

Theorem 1. Every real orthogonal n × n matrix is the product of at most n real orthogonal141

Householder transformations.142

Given n tokens, inspired from Theorem 1, we construct an orthogonal matrix A ∈ Rn×n as:143

A = H0H1 · · ·Hn−1, (1)

where Hi = I− 2uiu
T
i is Householder transformation, ui is a unit column vector. Providing a set of144

n random-initialized vectors {vi|i = 0, ..., n− 1}, the orthogonal matrix can be reformulated as:145

A = (I− 2
v0v

T
0

‖v0‖2
)(I− 2

v1v
T
1

‖v1‖2
) · · · (I− 2

vn−1v
T
n−1

‖vn−1‖2
). (2)

We set {vi|i = 0, ..., n − 1} as learnable parameters, and hence A can be optimized as arbitrary146

orthogonal matrices in neural networks with gradient optimizers. Remarkably, A can maintain147

orthogonality endogenously throughout the training process without extra regularizer.148
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3.2.2 OSA Block149

To clarify, we first define two terms:150

• Orthogonal window size mo is the size of the sub-window on which OT is performed. We151

perform OT separately for local windows to control its computation complexity.152

• Orthogonal groups no is the number of groups into which the tokens are separated by OT. Since153

the orthogonal matrix is square, no = m2
o.154

Now we elaborate how OSA works in the following three steps, token orthogonalization, self-attention155

for orthogonal tokens, token reverse.156

Token Orthogonalization. Given the input feature Z ∈ R(h×w)×c (viewed as h × w tokens with157

the dimension c), it is firstly divided into a grid of non-overlapped windows of size mo ×mo, i.e.,158

Z ∈ Rnw×no×c, where nw = h
mo
× w

mo
and no = m2

o. Z can be viewed as nw sub-windows, of159

which each consists of no tokens, i.e., Z = {Zi ∈ Rno×c|i = 0, . . . , nw − 1}. Then we perform160

OT separately for Zi by multiplying the orthogonal matrix A ∈ Rno×no and get orthogonalized161

tokens Ẑi = AZi ∈ Rno×c. Finally, we combine the nw sub-windows and permute the feature162

Ẑ ∈ Rnw×no×c into no groups of orthogonal tokens Ẑj ∈ Rnw×c (where j = 0, . . . , no − 1).163

Self-attention for orthogonal tokens. We perform standard multi-head self-attention (MSA) group-164

wisely for Ẑj . Since Ẑj has a smaller token number than the input Z (actually h
mo
× w

mo
against165

h× w), with an appropriate mo, performing self-attention in the orthogonal space can significantly166

reduce the computation cost. Besides, for OSA, local correlations can be modeled because Ẑj is167

computed from the adjacent tokens in Z, and local details are preserved due to the fact that Ẑ and Z168

are reversible to each other.169

Token reverse. After the self-attention computation, we employ AT, as the inverse of A, to recover170

the visual tokens from the enhanced orthogonal representations. The token reverse process is not171

repeated herein because it is exactly the inverse process of token orthogonalization except that the172

orthogonal matrix is AT.173

The complete process of OSA can be defined as:174

fOSA(Z) = ATfMSA(fLN (AZ)) + Z. (3)
We simplify the process of token orthogonalization as AZ for description convenience. Note that175

when mo = 1, OSA equals to the global self-attention.176

Complexity Analysis. The computation complexity of the standard global self-attention is177

Ω(GSA) = 4hwC2 + 2(hw)2C. (4)
For our OSA, the computational complexity is178

Ω(OSA) = 4hwC2 +
1

no
2(hw)2C + 2nohwC. (5)

The third term is produced by OT but can be ignored when no �
√
hw (this is usually true for179

high-resolution vision tasks). Compared to the standard global self-attention, OSA’s computation180

cost is reduced significantly from O((hw)2) to O( 1
no

(hw)2) for high-resolution vision tasks.181

3.3 Window Self-Attention182

Since Orthogonal Transformer is composed of stacked window self-attentions (WSAs) and OSAs,183

we give a brief review of WSA here. WSA first employ window partition (WP) to split the input184

feature Z ∈ R(h×w)×c into h
mw
× w

mw
non-overlapped windows of size mw ×mw, then performs185

MSA within each window, and finally reconstruct the tokens from the enhanced representation. The186

complete process of WSA is defined as:187

fWSA(Z) = f−1WP (fMSA(fLN (fWP (Z)))) + Z, (6)

where fWP and f−1WP denote window partition and its reverse, respectively. WSA has a linear188

computational complexity to token number hw:189

Ω(WSA) = 4hwC2 + 2m2
whwC. (7)
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Table 1: Configurations of Orthogonal Transformer. The FLOPs are measured at resolution 224×224.

Model Blocks Channels Heads Ratio Params (M) FLOPs (G)

Ortho-T [2, 2, 6, 2] [32, 64, 160, 256] [1, 2, 5, 8] 3 3.9 0.7
Ortho-S [3, 5, 13, 3] [64, 128, 256, 512] [2, 4, 8, 16] 4 24 4.5
Ortho-B [3, 5, 19, 4] [80, 160, 320, 640] [2, 4, 8, 16] 4 50 8.6
Ortho-L [4, 6, 24, 5] [96, 192, 384, 768] [3, 6, 12, 24] 4 88 15.4

3.4 Positional MLP190

Earlier ViTs adopt absolute position embedding (APE) [45] or relative position embedding (RPE)191

[34, 37] to handle the position information but they cannot be well adapted for arbitrary input192

resolutions [10]. Recently, convolution position embedding (CPE) [10] is proposed to generate193

position information by convolutional layers. In detail, CPE adds position encodings into the input194

tokens outside the transformer blocks. We follow CPE [10] but apply it in a different way. As shown195

in Fig. 2, we introduce Positional MLP (PMLP) to tackle position information in the MLP module.196

We equip PMLP with a depth-wise convolution (DConv) after the non-linear GELU. This design197

can not only provide position information, but also enhance the capacity of MLP in exploring local198

correlations. Based on it, we further develop PMLP with transition by setting the stride of DConv as199

2 and adding a residual strided convolution. PMLP without transition is defined as:200

fPMLP (Z) = fFC(f
(s1)
DConv(fGELU (fFC(fLN (Z))))) + Z, (8)

while PMLP with transition is defined as201

f
(t)
PMLP (Z) = fFC(f

(s2)
DConv(fGELU (fFC(fLN (Z))))) + f

(s2)
Conv(fLN (Z)), (9)

where f
(s1)
DConv and f

(s2)
DConv denote depth-wise convolutions with stride 1 and stride 2, respectively,202

and f
(s2)
Conv denote a convolution with stride 2.203

3.5 Architecture Variants204

As shown in Table 1, we build four different Orthogonal Transformer backbones by changing the205

block number and channel number in each stage. Specifically, Ortho-S, Ortho-B and Ortho-L are206

designed to have a similar setting of FLOPs and model size with their Swin Transformer counterparts.207

For all the models, we set the orthogonal window sizes mo for OSA in the four stages as 8, 4, 2,208

1, respectively, and the window size for WSA as 7. The expansion ratios in MLP are set as 3 for209

Ortho-T and 4 for the other three variants. For the convolutional patch embedding, we borrow early210

convolutions from [56] and apply 5 convolutions with the same setting of [56]. For the transformer211

blocks, we set the last one in each of the first 3 stages as OTB with transition. The second FC and212

residual convolution change the feature channels. The convolutions reduce the spatial resolution with213

the stride of 2. The kernel sizes of DConv and the residual convolution are set to be 5× 5 and 3× 3,214

respectively. More details are in the Appendix.215

4 Experiments216

We conduct experiments on a wide range of vision tasks: image classification on ImageNet-1K [11],217

object detection and instance segmentation on COCO 2017 [33], and semantic segmentation on218

ADE20K [66]. We also take ablation studies to validate the importance of each component. More219

details about experimental settings and extra ablation studies are in the Appendix.220

4.1 Image Classification on ImageNet-1K221

Experimental Settings. We benchmark our Orthogonal Transformer on ImageNet-1K [11] image222

classification. We follow the same training strategy in DeiT [42] and adopt the strong data augmenta-223

tion and regularization, except for repeated augmentation [21] that does not improve performance.224

For a fair comparison, we do not use extra training data or extra supervision techniques, such as token225

labeling [25] and distillation [42], because most of previous works didn’t use them. All our models226

are trained from scratch for 300 epochs with the input size of 224 × 224. An AdamW optimizer227
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Table 2: Comparison with the state-of-the-art on ImageNet-1K classification.

Model #Param
(M)

FLOPs
(G)

Acc.
(%)

DeiT-Ti [42] 5.7 1.3 72.2
PVTv2-b0 [50] 3.7 0.6 70.5
T2T-7 [63] 4.3 1.1 71.7
QuadTree-B-b0 [40] 3.5 0.7 72.0
Ortho-T 3.9 0.7 74.0
RegNetY-4G [35] 21 4.0 80.0
DeiT-S [42] 22 4.6 79.9
PVT-S [49] 25 3.8 79.8
T2T-14 [63] 22 5.2 80.7
Swin-T [34] 29 4.5 81.3
Twins-SVT-S [9] 24 2.9 81.7
CvT-13 [54] 20 4.5 81.6
CaiT-xs24 [43] 27 5.4 81.8
Focal-T [60] 29 4.9 82.2
CrossFormer-S [51] 31 4.9 82.5
RegionViT-S [5] 31 5.3 82.6
Container [15] 22 8.1 82.7
QuadTree-B-b2 [40] 24 4.5 82.7
Ortho-S 24 4.5 83.4
CvT-13↑ 384 [54] 20 16.3 83.0
CaiT-xs24↑ 384 [43] 27 19.3 83.8
Ortho-S↑ 384 24 14.3 84.8

Model #Param
(M)

FLOPs
(G)

Acc.
(%)

PVT-L [49] 61 9.8 81.7
T2T-24 [63] 64 13.2 82.2
Swin-S [34] 50 8.7 83.0
CvT-21 [54] 32 7.1 82.5
CaiT-s24 [43] 47 9.4 82.7
Focal-S [60] 51 9.1 83.5
CrossFormer-B [51] 52 9.2 83.4
RegionViT-M [5] 41 7.4 83.1
Ortho-B 50 8.6 84.0
CvT-21↑ 384 [54] 32 25.0 84.9
CaiT-s24↑ 384 [43] 47 32.2 84.3
Ortho-B↑ 384 50 26.6 85.2
DeiT-B [42] 86 17.5 81.8
Swin-B [34] 88 15.4 83.3
CaiT-s48 [43] 90 18.6 83.5
Focal-B [60] 90 16.0 83.8
CrossFormer-L [51] 92 16.1 84.0
RegionViT-B [5] 73 13.0 83.2
Ortho-L 88 15.4 84.2
Swin-B↑ 384 [34] 88 47.0 84.2
CaiT-s48↑ 384 [43] 90 63.8 85.1
Ortho-L↑ 384 88 47.4 85.4

Table 3: Object detection and instance segmentation with Mask R-CNN on COCO val2017. FLOPs
are measured at resolution 800×1280. All the models are pre-trained on ImageNet-1K.

Backbone #Param FLOPs Mask R-CNN 1× schedule Mask R-CNN 3× + MS schedule
(M) (G) AP b AP b

50 AP b
75 APm APm

50 APm
75 AP b AP b

50 AP b
75 APm APm

50 APm
75

Res50 [19] 44 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-S [49] 44 245 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Twins-S [9] 44 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
Swin-T [34] 48 264 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
ViL-S [64] 45 218 44.9 67.1 49.3 41.0 64.2 44.1 47.1 68.7 51.5 42.7 65.9 46.2
Focal-T [60] 49 291 44.8 67.7 49.2 41.0 64.7 44.2 47.2 69.4 51.9 42.7 66.5 45.9
RegionViT-S [5] 51 183 44.2 - - 40.8 - - 47.6 - - 43.4 - -
Ortho-S 44 277 47.0 69.4 51.3 42.5 66.1 45.7 48.7 70.5 53.3 43.6 67.3 47.3
Res101 [19] 63 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
X101-32 [58] 63 340 41.9 62.5 45.9 37.5 59.4 40.2 44.0 64.4 48.0 39.2 61.4 41.9
PVT-M [49] 64 302 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Twins-B [9] 76 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
Swin-S [34] 69 354 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6
Focal-S [60] 71 401 47.4 69.8 51.9 42.8 66.6 46.1 48.8 70.5 53.6 43.8 67.7 47.2
RegionViT-B [5] 93 307 45.4 - - 41.6 - - 48.3 - - 43.5 - -
Ortho-B 69 372 48.3 70.5 53.0 43.3 67.3 46.5 49.9 71.4 54.8 44.3 68.6 47.9

with a cosine decay learning rate scheduler and 5 epochs of linear warm-up is employed. The initial228

learning rate, weight decay, and batch-size are 0.001, 0.05, and 1024, respectively. For Ortho-T, we229

use a smaller weight decay of 0.01. The maximum rates of increasing stochastic depth [22] are set230

as 0.1/0.2/0.4/0.5 for the models from tiny to large. For the results of 384× 384, we fine-tune the231

models for 30 epochs with learning rate of 1e-5, weight decay of 1e-8 and bach-size of 512.232

Results. Table 2 reports the image classification results on ImageNet-1K. It clearly shows that our233

Orthogonal Transformer has a stronger performance than previous models under similar settings234

of FLOPs and model size. Specifically, the tiny model Ortho-T achieves a 74.0% Top-1 accuracy235

with only 0.7G FLOPs, surpassing QuadTree-B-b0, T2T-7 and PVTv2-b0 by 2%, 2.3% and 3.5%,236

respectively. The small model Ortho-S achieves the same accuracy as base model CrossFormer-B237

with 51% fewer FLOPs. As for 384 × 384 input size, the large model Ortho-L achieves an accuracy238

of 85.4%, surpassing Swin-B by 1.2% with similar model size, and outperforming CaiT-s48 with239

26% fewer FLOPs. These quantitative comparisons with SOTA methods demonstrate the efficiency240

and effectiveness of Orthogonal Transformer.241
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Table 4: Object detection and instance segmentation with Cascade Mask R-CNN on COCO val2017.

Method #Params FLOPs 3× + MS schedule
(M) (G) AP b AP b

50 AP b
75 APm APm

50 APm
75

DeiT [42] 80 889 48.0 67.2 51.7 41.4 64.2 44.3
Swin-T [34] 86 745 50.5 69.3 54.9 43.7 66.6 47.1
Focal-T [60] 87 770 51.5 70.6 55.9 - - -
Ortho-S 81 755 52.3 71.3 56.8 45.3 68.6 49.2
X101-32 [58] 101 819 48.1 66.5 52.4 41.6 63.9 45.2
Swin-S [34] 107 838 51.8 70.4 56.3 44.7 67.9 48.5
Ortho-B 107 851 53.0 72.0 57.4 45.9 69.4 49.9

Table 5: Semantic segmentation with Semantic FPN and Upernet on ADE20K. The FLOPs are
measured at resolution 512×2048.

Backbone
Semantic FPN 80k

#Param
(M)

FLOPs
(G)

mIoU
(%)

Res50 [19] 29 183 36.7
PVT-S [49] 28 161 39.8
TwinsP-S [9] 28 162 44.3
Swin-T [34] 32 182 41.5
Ortho-S 28 195 48.2
Res101 [19] 48 260 38.8
PVT-L [49] 65 283 42.1
TwinsP-L [9] 65 283 46.4
Swin-S [34] 53 274 45.2
Ortho-B 53 297 49.0

Backbone
Upernet 160k

#Param
(M)

FLOPs
(G)

mIoU
(%)

MS mIoU
(%)

TwinsP-S [9] 55 919 46.2 47.5
Twins-S [9] 54 901 46.2 47.1
Swin-T [34] 60 945 44.5 45.8
Focal-T [60] 62 998 45.8 47.0
Ortho-S 54 956 48.5 49.9
Res101 [19] 86 1029 - 44.9
Twins-B [9] 89 1020 47.7 48.9
Swin-S [34] 81 1038 47.6 49.5
Focal-T [60] 85 1130 48.0 50.0
Ortho-B 81 1057 49.8 51.2

4.2 Object Detection on COCO242

Experimental Settings. Experiments on object detection and instance segmentation are conducted243

on COCO 2017 dataset [33]. Following [34], we use our transformer models as the backbone network,244

and use Mask-RCNN [17] and Cascaded Mask R-CNN [3] as the detection and segmentation heads.245

For both tasks, the backbones are pretrained on ImageNet-1K, and fine-tuned on the COCO training246

set with AdamW optimizer. We take experiments on two common settings: "1×" (12 training epochs)247

and "3 × +MS" (36 training epochs with multi-scale training). The configurations follow the setting248

of [34] and are implemented with MMDetection [7].249

Results. Table 3 and Table 4 show the results with Mask R-CNN and Cascade Mask R-CNN,250

respectively. The results show that our method achieves the best performance in all comparisons. For251

vision transformers with Mask R-CNN framework, our Ortho-S outperforms Focal-T (having similar252

model size and computational cost) by +2.2 box AP, +1.5 mask AP with the 1× schedule and +1.5253

box AP, +0.9 mask AP with the 3× multi-scale learning schedule. The results with Cascade Mask254

R-CNN also show that our Orthogonal Transformer exceeds the counterparts by evident margins.255

4.3 Semantic Segmentation on ADE20K256

Experimental Settings. Experiments on semantic segmentation are conducted on the ADE20K257

dataset[66]. We employ Semantic FPN [27] and Upernet [55] as the segmentation heads and replace258

the backbones with our Orthogonal Transformer. For a fair comparison, we follow the same setting259

of PVT [49] to train Semantic FPN 80k iterations and apply the setting of Swin [34] to train Upernet260

for 160k iterations. More details are provided in the Appendix.261

Results. The results on semantic segmentation are listed in Table 5. Our method obtains large262

performance gain over other vision transformers. For methods that using Semantic FPN as the263

segmentation head, Orthogonal Transformer surpasses Twins by +3.9, +2.6 on mIOU. The results264

with Upernet indicate that Orthogonal Transformer achieves +2.9, +1.2 absolutely higher Multi-265
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Table 6: Ablation Study on three benchmarks using the Ortho-S backbone.

ImageNet-1K COCO ADE20K
#Param (M) FLOPs (G) Acc. (%) APb APm mIoU

window sa 24.0 4.5 82.6 46.2 42.0 47.5
dilated sa 24.0 4.5 82.9 46.2 41.7 46.6
ortho. sa 24.0 4.6 83.2 47.0 42.3 48.0
window/ortho. sa 24.0 4.5 83.4 47.0 42.5 48.2
no pos. 23.4 4.4 82.2 44.0 40.4 44.6
abs. pos. 23.4 4.4 82.2 44.1 40.6 44.4
rel. pos. 23.4 4.4 82.4 43.4 40.1 44.6
conv. pos. 24.0 4.5 83.4 47.0 42.5 48.2
w/o early convs 23.9 4.2 82.6 46.5 41.9 47.1
early convs 24.0 4.5 83.4 47.0 42.5 48.2
outside transition 24.0 4.6 83.1 46.7 42.4 48.0
inside transition 24.0 4.5 83.4 47.0 42.5 48.2

Scale(MS) mIOU than Focal Transformer, and reports 51.2 MS mIOU with 81M parameters. The266

comparisons on downstream tasks further validate the superiority of our method.267

4.4 Ablation Study268

In this section, we conduct ablation study to inspect the respective roles of each part in Orthogonal269

Transformer, using ImageNet-1K image classification, Mask R-CNN (1×) on COCO object detection,270

and Semantic FPN on ADE20K semantic segmentation.271

Self-Attention Mechanism. Ablations of the orthogonal self-attention (SA) are reported in Table 6.272

Orthogonal SA outperforms window SA and dilated SA consistently on the three tasks. Since window273

SA and dilated SA belong to fine-grained local SAs and coarse-grained global SAs respectively,274

the results may validate the superiority of orthogonal SA in capturing global dependency while275

preserving local details. Besides, replacing half of orthogonal SA with window SA can lead to slight276

performance gain with 0.1G decrease of FLOPs, justifying the design of Orthogonal Transformer.277

Position Encoding. Comparisons of different position embedding methods are reported in Table 6.278

Convolution position embedding (CPE) in PMLP performs better than those without position encoding279

and those with APE or RPE. The gains are specifically large on downstream high-resolution tasks,280

indicating that the design of our CPE is more suitable for arbitrary large input resolutions.281

Patch Embedding. We borrow the idea of early convolutions from [56] to perform overlapped patch282

embedding. The results in Table 6 indicate that Ortho-S with early convolutions outperforms the283

counterpart with non-overlapped patch embedding.284

Transition. Most of previous works using hierarchical architectures [34, 49] perform the transition285

of token number and feature dimension between stages. In this work, we adopt a different manner286

and employ the strided convolutions in PMLP to perform transition in the transformer block. The287

results in Table 6 imply that Ortho-S with inside transition can yield performance gain as well as288

computation reduction compared to the counterpart with outside transition.289

5 Conclusion290

We present a new vision transformer, called as Orthogonal Transformer, to serve as a strong general291

backbone for computer vision. The orthogonal self-attention mechanism is introduced to capture292

global information while exploring local correlations. Positional MLP is developed to handle position293

information within the transformer block for arbitrary input resolutions. Orthogonal Transformer294

achieves state-of-the-art performance in various vision tasks, including image classification, ob-295

ject detection, instance segmentation and semantic segmentation. We expect to apply Orthogonal296

Transformer for more vision tasks, such as image processing and video prediction.297
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