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ABSTRACT

One of the most common ways children learn when unfamiliar with the environment
is by mimicking adults. Imitation learning concerns an imitator learning to behave
in an unknown environment from an expert’s demonstration; reward signals remain
latent to the imitator. This paper studies imitation learning through causal lenses
and extends the analysis and tools developed for behavior cloning (Zhang, Kumor,
Bareinboim, 2020) to inverse reinforcement learning. First, we propose novel
graphical conditions that allow the imitator to learn a policy performing as well as
the expert’s behavior policy, even when the imitator and the expert’s state-action
space disagree, and unobserved confounders (UCs) are present. When provided
with parametric knowledge about the unknown reward function, such a policy
may outperform the expert’s. Also, our method is easily extensible and allows
one to leverage existing IRL algorithms even when UCs are present, including
the multiplicative-weights algorithm (MWAL) (Syed & Schapire, 2008) and the
generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016). Finally, we
validate our framework by simulations using real-world and synthetic data.

1 INTRODUCTION

Reinforcement Learning (RL) has been deployed and shown to perform extremely well in highly
complex environments in the past decades (Sutton & Barto, 1998; Mnih et al., 2013; Silver et al.,
2016; Berner et al., 2019). One of the critical assumptions behind many of the classical RL algorithms
is that the reward signal is fully observed, and the reward function could be well-specified. In many
real-world applications, however, it might be impractical to design a suitable reward function that
evaluates each and every scenario (Randløv & Alstrøm, 1998; Ng et al., 1999). For example, in the
context of human driving, it is challenging to design a precise reward function, and experimenting in
the environment could be ill-advised; still, watching expert drivers operating is usually feasible.

In machine learning, the imitation learning paradigm investigates the problem of how an agent should
behave and learn in an environment with an unknown reward function by observing demonstrations
from a human expert (Argall et al., 2009; Billard et al., 2008; Hussein et al., 2017; Osa et al., 2018).
There are two major learning modalities that implements IL – behavioral cloning (BC) (Widrow,
1964; Pomerleau, 1989; Muller et al., 2006; Mülling et al., 2013; Mahler & Goldberg, 2017) and
inverse reinforcement learning (IRL) Ng et al. (2000); Ziebart et al. (2008); Ho & Ermon (2016);
Fu et al. (2017). BC methods directly mimic the expert’s behavior policy by learning a mapping
from observed states to the expert’s action via supervised learning. Alternatively, IRL methods first
learn a potential reward function under which the expert’s behavior policy is optimal. The imitator
then obtains a policy by employing standard RL methods to maximize the learned reward function.
Under some common assumptions, both BC and IRL are able to obtain policies that achieve the
expert’s performance (Kumor et al., 2021; Swamy et al., 2021). Moreover, when additional parametric
knowledge about the reward function is provided, IRL may produce a policy that outperforms the
expert’s in the underlying environment (Syed & Schapire, 2008; Li et al., 2017; Yu et al., 2020).

For concreteness, consider a learning scenario depicted in Fig. 1a, describing trajectories of human-
driven cars collected by drones flying over highways (Krajewski et al., 2018; Etesami & Geiger, 2020).
Using such data, we want to learn a policy X ← π(Z) deciding on the acceleration (action) X ∈
{0, 1} of the demonstrator car based on velocities and locations Z of surrounding cars. The driving
performance is measured by a latent reward signal Y . Consider an instance where Y ← (1−X)Z +
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Figure 1: Causal diagrams where X represents an action (shaded red) and Y represents a latent
reward (shaded blue). Input covariates of the policy scope S are shaded in light red.

X(1−Z) and values of Z are drawn uniformly over {0, 1}. A human expert generates demonstrations
following a behavior policy such that P (X = 1 | Z = 0) = 0.6 and P (X = 0 | Z = 1) = 0.4.
Evaluating the expert’s performance gives E[Y ] = P (X = 1, Z = 0) + P (X = 0, Z = 1) = 0.5.
Now we apply standard IRL algorithms to learn a policy X ← π(Z) so that the imitator’s driving
performance, denoted by E[Y | do(π)], is at least as good as the expert’s performance E[Y ]. Detailed
derivations of IRL policy are shown in Appendix A. Note that E[Y |z, x] = x + z − 2xz belongs
to a family of reward functions fY (x, z) = αx + βz − γxz, where 0 < α < γ. A typical IRL
imitator solves a minimax problem minπ maxfY E [fY (X,Z)]− E [fY (X,Z) | do(π)]. The inner
step “guesses” a reward function being optimized by the expert; while the outer step learns a policy
maximizing the learned reward function. Applying these steps leads to a policy π∗ : X ← ¬Z with
the expected reward E[Y | do(π∗)] = 1, which outperforms the sub-optimal expert.

Despite the performance guarantees provided by existing imitation methods, both BC and IRL rely
on the assumption that the expert’s input observations match those available to the imitator. More
recently, there exists an emerging line of research under the rubric of causal imitation learning
that augments the imitation paradigm to account for environments consisting of arbitrary causal
mechanisms and the aforementioned mismatch between expert and imitator’s sensory capabilities
(de Haan et al., 2019; Zhang et al., 2020; Etesami & Geiger, 2020; Kumor et al., 2021). Closest to our
work, Zhang et al. (2020); Kumor et al. (2021) derived graphical criteria that completely characterize
when and how BC could lead to successful imitation even when the agents perceive reality differently.
Still, it is unclear how to perform IRL-type training if some expert’s observed states remain latent to
the imitator, which leads to the presence of unobserved confounding (UCs) in expert’s demonstrations.
Perhaps surprisingly, naively applying IRL methods when UCs are present does not necessarily lead
to satisfactory performance, even when the expert itself behaves optimally.

To witness, we now modify the previous highway driving scenario to demonstrate the challenges of
UCs. In reality, covariates Z (i.e., velocities and location) are also affected by the car horn U1 of
surrounding vehicles and the wind condition U2. However, due to the different perspectives of drones
(recording from the top), such critical information (i.e, U1, U2 ) is not recorded by the camera and thus
remains unobserved. Fig. 1b graphically describes this modified learning setting. More specifically,
consider an instance where Z ← U1 ⊕ U2, Y ← ¬X ⊕ Z ⊕ U2; ⊕ is the exclusive-or operator;
and values of U1 and U2 are drawn uniformly over {0, 1}. An expert driver, being able to hear the
car horn U1, follows a behavior policy X ← U1 and achieves the optimal performance E[Y ] = 1.
Meanwhile, observe that E[Y |z, x] = 1 belongs to a family of reward functions fY (x, z) = α (where
α > 0). Solving minπ maxfY E [fY (X,Z)]− E [fY (X,Z) | do(π)] leads to an IRL policy π∗ with
expected reward E[Y |do(π∗)] = 0.5, which is far from the expert’s optimal performance E[Y ] = 1.

After all, a question that naturally arises is, under what conditions an IRL imitator procedure can
perform well when UCs are present, and there is a mismatch between the perception of the two agents?
In this paper, we answer this question and, more broadly, investigate the challenge of performing IRL
through causal lenses. In particular, our contributions are summarized as follows. (1) We provide a
novel, causal formulation of the inverse reinforcement learning problem. This formulation allows one
to formally study and understand the conditions under which an IRL policy is learnable, including in
settings where UCs cannot be ruled out a priori. (2) We derive a new graphical condition for deciding
whether an imitating policy can be computed from the available data and knowledge, which provides
a robust generalization of current IRL algorithms to non-Markovian settings, including GAIL (Ho
& Ermon, 2016) and MWAL (Syed & Schapire, 2008). (3) Finally, we move beyond this graphical
condition and develop an effective IRL algorithm for structural causal models (Pearl, 2000) with
arbitrary causal relationships. Due to the space constraints, all proofs are provided in Appendix B. For
a more detailed survey on imitation learning and causal inference, we refer readers to Appendix E.
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1.1 PRELIMINARIES

We use capital letters to denote random variables (X) and small letters for their values (x). DX

represents the domain of X and PX the space of probability distributions over DX . For a set X ,
let |X| denote its dimension. The probability distribution over variables X is denoted by P (X).
Similarly, P (Y |X) represents a set of conditional distributions P (Y |X = x) for all realizations
x. We use abbreviations P (x) for probabilities P (X = x); so does P (Y = y |X = x) = P (y |
x). Finally, indicator function 1{Z = z} returns 1 if Z = z holds true; otherwise 0.

The basic semantic framework of our analysis rests on structural causal models (SCMs) (Pearl,
2000, Ch. 7). An SCM M is a tuple ⟨U ,V ,F , P (U)⟩ with V the set of endogenous, and U
exogenous variables. F is a set of structural functions s.t. for fV ∈ F , V ← fV (paV ,uV ), with
PAV ⊆ V ,UV ⊆ U . Values of U are drawn from an exogenous distribution P (U), inducing
distribution P (V ) over endogenous variables V . Since the learner can observe only a subset of
endogenous variables, we split V into a partition O ∪L where variable O ⊆ V are observed and
L = V \O remain latent to the leaner. The marginal distribution P (O) is thus referred to as the
observational distribution. An atomic intervention on a subset X ⊆ V , denoted by do(x), is an
operation where values of X are set to constants x, replacing the functions fX = {fX : ∀X ∈X}
that would normally determine their values. For an SCM M , let Mx be a submodel of M induced by
intervention do(x). For a set Y ⊆ V , the interventional distribution P (s|do(x)) induced by do(x)
is defined as the distribution over Y in the submodel Mx, i.e., PM (Y |do(x)) ≜ PMx(Y ). We leave
M implicit when it is obvious from the context.

Each SCM M is associated with a causal diagram G which is a directed acyclic graph where (e.g.,
see Fig. 1) solid nodes represent observed variables O, dashed nodes represent latent variables L,
and arrows represent the arguments PAV of each function fV ∈ F . Exogenous variables U are
not explicitly shown; a bi-directed arrow between nodes Vi and Vj indicates the presence of an
unobserved confounder (UC) affecting both Vi and Vj . We will use family abbreviations to represent
graphical relationships such as parents, children, descendants, and ancestors. For example, the set of
parent nodes of X in G is denoted by pa(X)G = ∪X∈Xpa(X)G ; ch , de and an are similarly defined.
Capitalized versions Pa,Ch,De,An include the argument as well, e.g. Pa(X)G = pa(X)G ∪X .
For a subset X ⊆ V , the subgraph obtained from G with edges outgoing from X / incoming into X
removed is written as GX /GX respectively. G[X] is a subgraph of G containing only nodes X and
edges among them. A path from a node X to a node Y in G is a sequence of edges, which does not
include a particular node more than once. Two sets of nodes X,Y are said to be d-separated by a
third set Z in a DAG G, denoted by (X ⊥⊥ Y |Z)G , if every edge path from nodes in X to nodes in
Y is “blocked” by nodes in Z. The criterion of blockage follows (Pearl, 2000, Def. 1.2.3). For a
more detailed survey on SCMs, we refer readers to (Pearl, 2000; Bareinboim et al., 2022).

2 CAUSAL INVERSE REINFORCEMENT LEARNING

We investigate the sequential decision-making setting concerning a set of actions X , a series of
covariates Z, and a latent reward Y in an SCM M . An expert (e.g., a physician, driver), operating in
SCM M , selects actions following a behavior policy, which is the collection of structural functions
fX = {fX | X ∈ X}. The expert’s performance is evaluated as the expected reward E[Y ]. On
the other hand, a learning agent (i.e., the imitator) intervenes on actions X following an ordering
X1 ≺ · · · ≺ Xn; each action Xi is associated with a set of features PA∗

i ⊆ O \ {Xi}. A policy π
over actions X is a sequence of decision rules π = {π1, . . . , πn}. Each decision rule πi(Xi | Zi)
is a probability distribution over an action Xi ∈ X , conditioning on values of a set of covariates
Zi ⊆ PA∗

i . Such policies π are also referred to as dynamic treatment regimes (Murphy et al., 2001;
Chakraborty & Murphy, 2014), which generalize personalized medicine to time-varying treatment
settings in healthcare, in which treatment is repeatedly tailored to a patient’s dynamic state.

A policy intervention on actions X following a policy π, denoted by do(π), entails a submodel
Mπ from a SCM M where structural functions fX associated with X (i.e., the expert’s behavior
policy) are replaced with decision rules Xi ∼ πi(Xi | Zi) for every Xi ∈X . A critical assumption
throughout this paper is that submodel Mπ does not contain any cycles. Similarly, the interventional
distribution P (V | do(π)) induced by policy π is defined as the joint distribution over V in Mπ .
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Throughout this paper, detailed parametrizations of the underlying SCM M are assumed to be
unknown to the agent. Instead, the agent has access to the input: (1) a causal diagram G associated
with M , and (2) the expert’s demonstrations, summarized as the observational distribution P (O).
The goal of the agent is to output an imitating policy π∗ that achieves the expert’s performance.
Definition 1. For an SCM M = ⟨U ,V ,F , P (U)⟩, an imitating policy π∗ is a policy such that its
expected reward is lower bounded by the expert’s reward, i.e., EM [Y | do(π∗)] ≥ EM [Y ].

In words, the right-hand side is the expert’s performance that the agent wants to achieve, while the
left-hand side is the real reward experienced by the agent. The challenge in imitation learning arises
from the fact that the reward Y is not specified and latent, i.e., Y ̸∈ O. This precludes approaches that
identify E[Y |do(π)] directly from the demonstration data (e.g., through the do- or soft-do-calculus
Pearl (2000); Correa & Bareinboim (2020)).

There exist methods in the literature for finding an imitating policy in Def. 1. Before describing their
details, we first introduce some necessary concepts. For any policy π, we summarize its associated
state-action domain using a sequence of pairs of variables called a policy scope S.
Definition 2 (Lee & Bareinboim (2020)). For an SCM M , a policy scope S (for short, scope) over
actions X is a sequence of tuples {⟨Xi,Zi⟩}ni=1 where Zi ⊆ PA∗

i for every Xi ∈X .

We will consistently use π ∼ S to denote a policy π associated with scope S . For example, consider
a policy scope S = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩} over actions X1, X2 in Fig. 1c. A policy π ∼ S is a
sequence of distributions π = {π1(X1 | Z1), π2(X2 | Z2)}.
Zhang et al. (2020); Kumor et al. (2021) provide a graphical condition that is sufficient for learning
an imitating policy via behavioral cloning (BC) provided with a causal diagram G. For a policy
scope S = {⟨Xi,Zi⟩}ni=1, let G(i), i = 1, . . . , n, denote a manipulated graph obtained from G by the
following steps: for all j = i+1, . . . , n, (1) remove arrows coming into every action Xj ; and (2) add
direct arrows from nodes in Zj to Xj . Formally, the sequential π-backdoor criterion is defined as:
Definition 3 (Kumor et al. (2021)). Given a causal diagram G, a policy scope S = {⟨Xi,Zi⟩}ni=1
is said to satisfy the sequential π-backdoor criterion in G (for short, π-backdoor admissible) if at
each Xi ∈ X , one of the following conditions hold: (1) Xi is not an ancestor of Y in G(i), i.e.,
X ̸∈ An(Y )G(i) ; or (2) Zi blocks all backdoor path from Xi to Y in G(i), i.e., (Y ⊥⊥ Xi|Zi) in G(i)Xi

.

(Kumor et al., 2021) showed that whenever a π-backdoor admissible scope S is available, one could
learn an imitating policy π∗ ∼ S by setting π∗

i (xi | zi) = P (xi | zi) for every action Xi ∈ X .
For instance, consider the causal diagram G in Fig. 1c. Scope S = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩} is
π-backdoor admissible since (X1 ⊥⊥ Y |Z1) and (X2 ⊥⊥ Y |Z2) hold in G, which is a super graph
containing both manipulated G(1) and G(2). An imitating policy π∗ = {π∗

1 , π
∗
2} is thus obtainable

by setting π∗
1(X1 | Z1) = P (X1 | Z1) and π∗

2(X2 | Z2) = P (X2 | Z2). While impressive, a
caveat of their results is that the performance of the imitator is restricted by that of the expert, i.e.,
E[Y | do(π∗)] = E[Y ]. In other words, causal BC provides an efficient way to mimic the expert’s
performance. If the expert’s behavior is far from optimal, the same will hold for the learning agent.

2.1 MINIMAL SEQUENTIAL BACKDOOR CRITERION

To circumvent this issue, we take a somewhat different approach to causal imitation by incorporating
the principle of inverse reinforcement learning (IRL) principle. Following the game-theoretic
approach (Syed & Schapire, 2008), we formulate the problem as learning to play a two-player
zero-sum game in which the agent chooses a policy, and the nature chooses an SCM instance. A key
property of this algorithm is that it allows us to incorporate prior parametric knowledge about the latent
reward signal. When such knowledge is informative, our algorithm is about to obtain a policy that
could significantly outperform the expert with respect to the unknown causal environment, while at
the same time are guaranteed to be no worse. Formally, let M = {∀M | GM = G, PM (O) = P (O)}
denote the set of SCMs compatible with both the causal diagram G and the observational distribution
P (O). Fix a policy scope S. Now consider the optimization problem defined as follows.

ν∗ = min
π∼S

max
M∈M

EM [Y ]− EM [Y | do(π)]. (1)

The inner maximization in the above equation can be viewed as an causal IRL step where we attempt
to “guess” a worst-case SCM M̂ compatible with G and P (O) that prioritizes the expert’s policy.
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That is, the gap in the performance between the expert’s and the imitator’s policies is maximized.
Meanwhile, since the expert’s reward EM [Y ] is not affected by the imitator’s policy π, the outer
minimization is equivalent to a planning step that finds a policy π∗ optimizing the learned SCM
M̂ . Obviously, the solution π∗ is an imitating policy if gap ν∗ = 0. In cases where the expert is
sub-optimal, i.e., EM̂ [Y ] < EM̂ [Y | do(π)] for some policies π, we may have ν∗ < 0. That is, the
policy π∗ will dominate the expert’s policy fX regardless of parametrizations of SCM M in the
worst-case scenario. In other words, π∗ to some extent ignores the sub-optimal expert, and instead
exploits prior knowledge about the underlying model.

Despite the clear semantics in terms of causal models, the optimization problem in Eq. (1) requires
the learner to search over all possible SCMs compatible with the causal diagram G and observational
distribution P (O). In principle, it entails a quite challenging search since one does not have access to
the parametric forms of the underlying structural functions F nor the exogenous distribution P (U).
It is not clear how the existing optimization procedures can be used.

In this paper, we will develop novel methods to circumvent this issue, thus leading to effective
imitating policies. Our first algorithm relies on a refinement of the sequential π-backdoor, based on
the concept of minimality. A subscope S ′ of a policy scope S = {⟨Xi,Zi⟩}ni=1, denoted by S ′ ⊆ S ,
is a sequence {⟨Xi,Z

′
i⟩}

n
i=1 where Z ′

i ⊆ Zi for every Xi ∈ X . A proper subscope S ′ ⊂ S is a
subscope in S other than S itself. The minimal π-backdoor admissible scope is defined as follows.
Definition 4. Given a causal diagram G, a π-backdoor admissible scope S is said to be minimal if
there exists no proper subscope S ′ ⊂ S satisfying the sequential π-backdoor in G.

Theorem 1. Given a causal diagram G, if there exists a minimal π-backdoor admissible scope
S = {⟨Xi,Zi⟩}ni=1 in G, consider the following conditions:

1. Let effective actions X∗ = X ∩An(Y )GS and effective covariates Z∗ =
⋃

Xi∈X∗ Zi;
2. For i = 1, . . . , n+ 1, let X∗

<i = {∀Xj ∈X∗ | j < i} and Z∗
<i =

⋃
Xj∈X∗

<i
Zj .

Then, for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as:

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (2)

where the occupancy measure ρπ(x∗, z∗) =
∏

Xi∈X∗ P
(
zi | x∗

<i, z
∗
<i

)
πi(xi | zi).

To illustrate, consider again the causal diagram G in Fig. 1c; the manipulated diagram G(2) = G
and G(1) is obtained from G by removing Z2 ↔ X2. While scope S1 = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}
satisfies the sequential π-backdoor, it is not minimal since (X1 ⊥⊥ Y ) in G(1)X1

. On the other hand,
S2 = {⟨X1, ∅⟩, ⟨X2, {Z2}⟩} is minimal π-backdoor admissible since (X2 ⊥⊥ Y | Z2) holds true in
G(2)X2

; and the covariate set {Z2} is minimal due to the presence of the backdoor path X2 ← Z2 → Y .

Let us focus on the minimal π-backdoor admissible scope S2. Note that GS2
is a subgraph obtained

from G by removing the bi-directed arrowZ2 ↔ X2. We must have effective actions X∗ = {X1, X2}
and effective covariates Z∗ = {Z2}. Therefore, Z∗

<1 = Z∗
<2 = ∅ and Z∗

<3 = {Z2}. For any policy
π ∼ S2, Thm. 1 implies E[Y | do(π)] =

∑
x1,x2,z2

E[Y | x1, x2, z2]P (z2|x1)π2(x2|z2)π(x1). On
the other hand, the same result in Thm. 1 does not necessarily hold for a non-minimal π-backdoor ad-
missible scope. For instance, consider again the non-minimal scope S1 = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}.
The expected reward E[Y | do(π)] of a policy π ∼ S2 is not computable from Eq. (2), and is
ultimately not identifiable from distribution P (O, Y ) in G (Tian, 2008).

2.2 IMITATION VIA INVERSE REINFORCEMENT LEARNING

Once a minimal π-backdoor admissible scope S is found, there exist effective procedures to solve for
an imitating policy in Eq. (1). Let R be a hypothesis class containing all expected rewards EM [Y |
x∗, z∗] compatible with candidate SCMs M ∈ M , i.e., R = {EM [Y | x∗, z∗] | ∀M ∈M }. Ap-
plying the identification formula in Thm. 1 reduces the optimization problem in Eq. (1) as follows:

ν∗ = min
π∼S

max
r∈R

∑
x∗,z∗

r(x∗, z∗) (ρ(x∗, z∗)− ρπ(x∗, z∗)) (3)
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where the expert’s occupancy measure ρ(x∗, z∗) = P (x∗, z∗) and the agent’s occupancy measure
ρπ(x

∗, z∗) is given by Eq. (2). The above minimax problem is solvable using standard IRL algorithms.
The identification result in Thm. 1 ensures that the learned policy applies to any SCM compatible with
the causal diagram and the observational data, thus robust to the unobserved confounding bias in the
expert’s demonstrations. Henceforth, we will consistently refer to Eq. (3) as the canonical equation
of causal IRL. In this paper, we solve for an imitating policy π∗ in Eq. (3) using state-of-the-art
IRL algorithms, provided with common choices of parametric reward functions. These algorithms
include the multiplicative-weights algorithm (MWAL) (Syed & Schapire, 2008) and the generative
adversarial imitation learning (GAIL) (Ho & Ermon, 2016). We refer readers to Algs. 3 and 4 in
Appendix C for more discussions on the pseudo-code and implementation details.

Causal MWAL (Abbeel & Ng, 2004; Syed & Schapire, 2008) study IRL in Markov decision
processes where the reward function r(x∗, z∗) is a linear combination of k-length feature expectations
vectors ϕ(x∗, z∗). Particularly, let r(x∗, z∗) = w · ϕ(x∗, z∗) for a coefficient vector w contained
in a convex set Sk =

{
w ∈ Rk | ∥w∥1 = 1 and w ⪰ 0

}
. Let ϕ(i) be the i-th component of feature

vector ϕ and let deterministic policies with scope S be ordered by π(1), . . . ,π(n). The canonical
equation in Eq. (3) is reducible to a two-person zero-sum matrix game under linearity.
Proposition 1. For a hypothesis class R = {r = w · ϕ | w ∈ Sk}, the solution ν∗ of the canonical
equation in Eq. (3) is obtainable by solving the following minimax problem:

ν∗ = min
π∼S

max
w∈Sk

w⊤Gπ, (4)

where G is a k × n matrix given by G(i, j) =
∑

x∗,z∗ ϕ(i)(x∗, z∗) (ρ(x∗, z∗)− ρπ(j)(x∗, z∗)).

There exist effective multiplicative weights algorithms for solving the matrix game in Eq. (4),
including MW (Freund & Schapire, 1999) and MWAL (Syed & Schapire, 2008).

Causal GAIL (Ho & Ermon, 2016) introduces the GAIL algorithm for learning an imitating policy
in Markov decision processes with a general family of non-linear reward functions. In particular,
r(x∗, z∗) takes values in the real space R, i.e., r ∈ RX∗,Z∗

where RX∗,Z∗
= {r : DX∗ ×DZ∗ 7→

R}. The complexity of reward function r is penalized by a convex regularization function ψ(r), i.e.,

ν∗ = min
π∼S

max
r∈RX×Z

∑
x∗,z∗

r(x∗, z∗) (ρ(x∗, z∗)− ρπ(x∗, z∗))− ψ(r) (5)

Henceforth, we will consistently refer to Eq. (5) as the penalized canonical equation of causal IRL. It
is often preferable to solve its conjugate form. Formally,
Proposition 2. For a hypothesis class R = {r : DX∗ ×DZ∗ 7→ R} regularized by ψ, the solution
ν∗ of the penalized canonical equation in Eq. (5) is obtainable by solving the following problem:

ν∗ = min
π∼S

ψ∗ (ρ− ρπ) (6)

where ψ∗ be a conjugate function of ψ and is given by ψ∗ = maxr∈RX×Z a⊤r − ψ(r).

Eq. (6) seeks a policy π which minimizes the divergence of the occupancy measures between
the imitator and the expert, as measured by the function ψ∗. The computational framework of
generative adversarial networks (Goodfellow et al., 2014) provides an effective approach to solve
such a matching problem, e.g., the GAIL algorithm (Ho & Ermon, 2016).

3 CAUSAL IMITATION WITHOUT SEQUENTIAL BACKDOOR

In this section, we investigate causal IRL beyond the condition of minimal sequential π-backdoor.
Observe that the key to the reduction of the canonical causal IRL equation in Eq. (3) lies in the
identification of expected rewards E[Y | do(π)] had the latent reward Y been observed. Next we
will study general conditions under which E[Y | do(π)] is uniquely discernible from distribution
P (O, Y ) in the causal diagram G, called the identifiability of causal effects (Pearl, 2000, Def. 3.2.4).
Definition 5 (Identifiability). Given a causal diagram G and a policy π ∼ S, the expected reward
E[Y | do(π)] is said to be identifiable from distribution P (O, Y ) in G if E[Y | do(π)] is uniquely
computable from P (O, Y ) in any SCM M compatible with G.
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We say a policy scope S is identifiable (from P (O, Y ) in G) if for all policies π ∼ S , the correspond-
ing expected rewards E[Y | do(π)] are identifiable from P (O, Y ) in G. Our next result shows that
whenever an identifiable policy scope S is found, one could always reduce the causal IRL problem to
the canonical optimization equation in Eq. (3).

Theorem 2. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and
only if for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (7)

where subsets X∗ ⊆ X , Z∗ ⊆ O \X; and the imitator’s occupancy measure ρπ(x∗, z∗) is a
function of the observational distribution P (O) and policy π.

X Z Y

(a) G
X Z Y

(b) GS

Figure 2: Frontdoor

Thm. 2 suggests a general procedure to learn an imitating policy via causal IRL.
Whenever an identifiable scope S is found, the identification formula in Eq. (7)
permits one to reduce the optimization problem in Eq. (1) to the canonical
equation in Eq. (3). One could thus obtain an imitating policy π ∼ S by
solving Eq. (3) where the expert’s occupancy measure ρ(x∗, z∗) = P (x∗, z∗)
and the imitator’s occupancy measure ρπ(x∗, z∗) is given by Eq. (7). As an
example, consider the frontdoor diagram described in Fig. 2a and a policy scope
S = {⟨X, ∅⟩}. The expected reward E[Y | do(π)] =

∑
x′ E[Y | do(x′)]π(x′)

and E[Y | do(x′)] is identifiable from P (X,Y, Z) using the frontdoor adjustment formula (Pearl,
2000, Thm. 3.3.4). The expected reward E[Y | do(π)] of any policy π(X) could be written as:

E[Y | do(π)] =
∑
z,x

E[Y | x, z]P (x)
∑
x′

P (z|x′)π(x′). (8)

Let occupancy measures ρ(x, z) = P (x, z) and ρπ(x, z) = P (x)
∑

x′ P (z|x′)π(x′). We could thus
learn an imitating policy in the frontdoor diagram by solving the canonical equation given by:

ν∗ = min
π∼S

max
r∈R

∑
x,z

r(x, z) (ρ(x, z)− ρπ(x, z)) , (9)

where R is a hypothesis class of the reward function r(x, z) ≜ E[Y | x, z]. The solution π∗(X) is
an imitating policy performing at least as well as the expert’s behavior policy if the gap ν∗ ≤ 0.

Next, we will describe how to obtain the identification formula in Eq. (7) provided with an identifiable
scope S . Without loss of generality, we will assume that the reward Y is the only endogenous variable
that is latent in the causal diagram G, i.e., V = O ∪{Y }.1 We will utilize a special type of clustering
of nodes in the causal diagram G, called the confounded component (for short, c-component).

Definition 6 (C-component (Tian & Pearl, 2002)). For a causal diagram G, a subset C ⊆ V is a
c-component if any pair Vi, Vj ∈ C is connected by a bi-directed path in G.

For instance, the frontdoor diagram in Fig. 2a contains two c-components C1 = {X,Y } and
C2 = {Z}. We will utilize a sound and complete procedure IDENTIFY (Tian, 2002; 2008) for
identifying causal effects E[Y | do(π)] of an arbitrary policy π ∼ S . Particularly, IDENTIFY takes as
input the causal diagram G, a reward Y , and a policy scope S . It returns an identification formula for
E[Y | do(π)] from P (O, Y ) if expected rewards of all policies π ∼ S are identifiable. Otherwise,
IDENTIFY(G, Y,S) = “FAIL”. Details of IDENTIFY are shown in (Zhang et al., 2020, Appendix
B). Recall that GS is the causal diagram of submodel Mπ induced by policy π ∼ S. Fig. 2b shows
diagram GS obtained from the frontdoor graph G and scope S = {⟨X, ∅⟩} described in Fig. 2a. Let
ZY = An(Y ) be ancestors of Y in GS . Our next result shows that IDENTIFY(G, Y,S) is ensured to
find an identification formula of the form in Eq. (7) when it is identifiable.

Lemma 1. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and only
if IDENTIFY(G, Y,S) ̸= “FAIL”. Moreover, IDENTIFY(G, Y,S) returns an identification formula
of the form in Eq. (7) where X∗ = Pa(CY ) ∩X and Z∗ = Pa(CY ) \ ({Y } ∪X); and CY is a
c-component containing reward Y in subgraph G[An(ZY )].

1Otherwise, one could always simplify the diagram G and project other latent variables L \ {Y } using the
projection algorithm (Tian, 2002, Sec. 4.5), without affecting the identifiability of target query E[Y | do(π)].
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For example, for the frontdoor diagram G in Fig. 2a, the manipulated diagram GS with scope S =
{⟨X, ∅⟩} is described in Fig. 2b. Since ZY = An(Y )GS = {X,Z, Y }, CY is thus given by {X,Y }.
Lem. 1 implies that X∗ = Pa({X,Y }) ∩ {X} = {X} and Z∗ = Pa({X,Y }) \ {X,Y } = {Z}.
Applying IDENTIFY(G, Y, {⟨X, ∅}) returns the frontdoor adjustment formula in Eq. (8).

3.1 SEARCHING FOR IDENTIFIABLE POLICY SCOPES

The remainder of this section describes an effective algorithm to find identifiable policy scopes S had
the latent reward signal Y been observed. Let S denote the collection of all identifiable policy scopes
S from distribution P (O, Y ) in the causal diagram G. Our algorithm LISTIDSCOPE, described in
Alg. 1, enumerates elements in S. It takes as input a causal diagram G, a reward signal Y , and subsets
L = ∅ and R =

⋃n
i=1 PA

∗
i . More specifically, LISTIDSCOPE maintains two scopes Sl ⊆ Sr (Step

2). It performs backtrack search to find identifiable scopes S in G such that Sl ⊆ S ⊆ Sr. It aborts
branches that either (1) all subscopes in Sr are identifiable (Step 3); or (2) all subscopes containing
Sl are non-identifiable (Step 6). The following proposition supports our aborting criterion.
Lemma 2. Given a causal diagram G, for policy scopes S ′ ⊆ S , S ′ is identifiable from distribution
P (O, Y ) in G if S is identifiable from P (O, Y ) in G.

Algorithm 1: LISTIDSCOPE

1: Input: G, Y and subsets L ⊆ R
2: Output: a set of identifiable policy scopes S
3: Let scopes Sr = {⟨Xi,R ∩PA∗

i ⟩}
n
i=1 and

Sl = {⟨Xi,L ∩PA∗
i ⟩}

n
i=1.

4: if IDENTIFY(G, Y,Sr) ̸= “FAIL′′ then
5: Output Sr.
6: end if
7: if IDENTIFY(G, Y,Sl) ̸= “FAIL′′ then
8: Pick an arbitrary V ∈ R \L.
9: LISTIDSCOPE(G, Y,L ∪ {V },R).

10: LISTIDSCOPE(G, Y,L,R \ {V }).
11: end if

At Step 7, LISTIDSCOPE picks an arbitrary vari-
able V that is included in input covariates R but
not in L. It then recursively returns all identifi-
able policy scopes S in G: the first recursive call
returns scopes taking V as an input for some
actions Xi ∈ X and the second call return all
scopes that do not consider V when selecting
values for all actions X . We say a policy π
is associated with a collection of policy scopes
S, denoted by π ∼ S, if there exists S ∈ S so
that π ∼ S. It is possible to show that LIS-
TIDSCOPE produces a collection of identifiable
scopes that is sufficient for the imitation task.
Theorem 3. For a causal diagram G and a re-
ward Y , LISTIDSCOPE(G, Y, ∅,

⋃n
i=1 PA

∗
i ) enumerates a subset S∗ ⊆ S so that for any π ∼ S,

there is π∗ ∼ S∗ where E[Y | do(π)] = E[Y | do(π∗)].

Moreover, LISTIDSCOPE outputs identifiable policy scopes with a polynomial delay. This follows
from the observation that LISTIDSCOPE searches over a tree of policy scopes with height at most
|
⋃n

i=1 PA
∗
i | and IDENTIFY(G, Y,S) terminates in polynomial steps w.r.t. the size of diagram G.

4 EXPERIMENTS

In this section, we demonstrate our framework on various imitation learning tasks, ranging from
synthetic causal models to real-world datasets, including highway driving (Krajewski et al., 2018) and
images (LeCun, 1998). We find that our approach is able to incorporate parametric knowledge about
the reward function and achieve effective imitating policies across different causal diagrams. For all
experiments, we evaluate our proposed Causal-IRL based on the canonical equation formulation
in Eq. (3). As a baseline, we also include: (1) standard BC mimicking the expert’s nominal behavior
policy; (2) standard IRL utilizing all observed covariates preceding every Xi ∈X while being blind
to causal relationships in the underlying model; and (3) Causal-BC (Zhang et al., 2020; Kumor
et al., 2021) that learn an imitating policy with the sequential π-backdoor criterion. We refer readers
to Appendix D for additional experiments and more discussions on the experimental setup.

Backdoor Consider an SCM instance compatible with Fig. 1c including binary observed vari-
ables Z1, X1, Z2, X2, Y ∈ {0, 1}. Causal-BC utilizes a sequential π-backdoor admissible scope
{⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}; while Causal-IRL utilizes the scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩} satisfying
the minimal sequential π-backdoor. Simulation results, shown in Fig. 3a, reveal that Causal-IRL
consistently outperforms the expert’s policy and other imitation strategies by exploiting additional
parametric knowledge about the expected reward E[Y | X1, X2, Z2]; Causal-BC is able to achieve
the expert’s performance. Unsurprisingly, neither BC nor IRL is able to obtain an imitating policy.

8



Under review as a conference paper at ICLR 2023

BC IRL
Causal BC

Causal IRL
0.0

0.2

0.4

0.6

0.8

1.0
Expert

(a) Backdoor

BC IRL
Causal BC

Causal IRL
0.0

0.2

0.4

0.6

0.8

1.0
Expert

(b) Highway Driving

BC IRL
Causal BC

Causal IRL
0.0

0.2

0.4

0.6

0.8

1.0
Expert

(c) MNIST Digits

BC IRL
Causal BC

Causal IRL
0.0

0.2

0.4

0.6

0.8

1.0
Expert

(d) Infinite MDPUC

Figure 3: Simulation results (a, b, c, d) for our experiments, where y-axis represents the expected
reward of learned policies in the actual causal model; the grey dashed line denotes the expert’s reward.

Highway Driving We consider a learning scenario where the agent learns a driving policy from
the observed trajectories of a human expert. Causal diagram of this example is provided in Fig. 4
(Appendix D) where X1 is the accelerations of the ego vehicle at the previous step; Z1 is both
longitudinal and lateral historical accelerations of the ego vehicle two steps ago; X2 is the velocity
of the ego vehicle; Z2 is the velocity of the preceding vehicle; W indicates the information from
surrounding vehicles. Values of X1, X2, Z1, Z2 are drawn from a real-world driving dataset HighD
Krajewski et al. (2018). The reward Y is decided by a non-linear function fY (X2, Z2, UY ). Both
Causal-IRL and Causal-BC utilize the scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩}. Causal-IRL also ex-
ploits the additional knowledge that the expected reward E[Y | X1, X2, Z2] is a monotone function
via reward augmentation (Li et al., 2017). Simulation results are shown in Fig. 3b. We found that
Causal-IRL performs the best among all strategies. Causal-BC is able to achieve the expert’s
performance. BC and IRL perform the worst among all and fail to obtain an imitating policy.

MNIST Digits Consider again the frontdoor diagram in Fig. 2a. To evaluate the performance of our
proposed approach in high-dimensional domains, we now replace variable Z with sampled images
drawn from MNIST digits dataset (LeCun, 1998). The reward Y is decided by a linear function
taking Z and an unobserved confounder UX,Y as input. The Causal-IRL formulates the imitation
problem as a two-person zero-sum game through the frontdoor adjustment described in Eq. (9), which
can be solved by the MW algorithm (Freund & Schapire, 1999; Syed & Schapire, 2008). As shown in
Fig. 3c, simulation results reveal that Causal-IRL outperforms Causal-BC and BC; while IRL
performs the worst among all the algorithms.

Infinite MDPUC To demonstrate our proposed framework in the sequential decision-making
setting with an infinite horizon, we consider a generalized Markov decision process incorporating
unobserved confounders (Ruan & Di, 2022), called the MDPUC (Zhang & Bareinboim, 2022). This
sequential model simulates real-world driving dynamics. By exploiting the Markov property over
time steps, we are able to decompose the causal diagram over the infinite horizon into a collection of
sub-graphs, one for each time step i = 1, 2, . . . . Fig. 1d shows the causal diagram spanning time steps
i = 1, 2, 3. As a comparison, BC and IRL still utilize the stationary policy {⟨Xi, {Zi}⟩}. By applying
Thm. 1 at each time step, we obtain a π-backdoor admissible policy scope {⟨Xi, {Zi, Xi−1, Zi−1}⟩}
for Causal-IRL and Causal-BC. Simulation results are shown in Fig. 3d. One could see by
inspection that Causal-IRL performs the best and achieves the expert’s performance.

5 CONCLUSION

This paper investigates imitation learning via inverse reinforcement learning (IRL) in the semantical
framework of structural causal models. The goal is to find an effective imitating policy that performs
at least as well as the expert’s behavior policy from combinations of demonstration data, qualitative
knowledge the data-generating mechanisms represented as a causal diagram, and quantitative knowl-
edge about the reward function. We provide a graphical criterion (Thm. 1) based on the sequential
backdoor, which allows one to obtain an imitating policy by solving a canonical optimization equation
of causal IRL. Such a canonical formulation addresses the challenge of the presence of unobserved
confounders (UCs), and is solvable by leveraging standard IRL algorithms (Props. 1 and 2). Finally,
we move beyond the backdoor criterion and show that the canonical equation is achievable whenever
expected rewards of policies are identifiable had the reward also been observed (Thms. 2 and 3).
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ETHICS STATEMENT

This paper investigates the theoretical framework of causal inverse RL from the natural trajectories
of an expert demonstrator, even when the reward signal is unobserved. Input covariates used by
the expert to determine the original values of the action are unknown, introducing unobserved
confounding bias in demonstration data. Our framework may apply to various fields in reality,
including autonomous vehicle development, industrial automation, and chronic disease management.
A positive impact of this work is that we discuss the potential risk of training IRL policy from
demonstrations with the presence of unobserved confounding (UC). Our formulation of causal IRL is
inherently robust against confounding bias. For example, solving the causal IRL problem in Eq. (1)
requires the imitator to learn an effective policy that maximizes the reward in a worst-case causal
model where the performance gap between the expert and imitator is the largest possible. More
broadly, automated decision systems using causal inference methods prioritize safety and robustness
during their decision-making processes. Such requirements are increasingly essential since black-box
AI systems are prevalent, and our understandings of their potential implications are still limited.

REPRODUCIBILITY STATEMENT

The complete proof of all theoretical results presented in this paper, including Thms. 1 and 2, is
provided in Appendix B. Details on the implementation of the proposed algorithms are included
Appendix C. Finally, Appendix D provides a detailed description of the experimental setup. Readers
could find all appendices as part of the supplementary text after “References” section. We provided
references to all existing datasets used in experiments, including HIGHD (Krajewski et al., 2018) and
MNIST (LeCun, 1998). Other experiments are synthetic and do not introduce any new assets.
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Léon Bottou, Jonas Peters, Denis Xavier Charles, Max Chickering, Elon Portugaly, Dipankar Ray,
Patrice Y Simard, and Ed Snelson. Counterfactual reasoning and learning systems: the example of
computational advertising. Journal of Machine Learning Research, 14(1):3207–3260, 2013.

Bibhas Chakraborty and EE Moodie. Statistical methods for dynamic treatment regimes. Springer-
Verlag. doi, 10:978–1, 2013.

Bibhas Chakraborty and Susan A Murphy. Dynamic treatment regimes. Annual review of statistics
and its application, 1:447, 2014.

10



Under review as a conference paper at ICLR 2023

J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal effect identification and
surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New
York, NY, 2020. AAAI Press.

Juan D Correa and Elias Bareinboim. From statistical transportability to estimating the effect of
stochastic interventions. In IJCAI, pp. 1661–1667, 2019.

A. Philip Dawid and Vanessa Didelez. Identifying the consequences of dynamic treatment strategies:
A decision-theoretic overview. Statist. Surv., 4:184–231, 2010. doi: 10.1214/10-SS081. URL
https://doi.org/10.1214/10-SS081.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. In
Advances in Neural Information Processing Systems, pp. 11693–11704, 2019.

Jalal Etesami and Philipp Geiger. Causal transfer for imitation learning and decision making under
sensor-shift. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY,
2020. AAAI Press.

Michael Fix, Raymond Struyk, et al. Clear and convincing evidence: Measurement of discrimination
in america. Technical report, The Field Experiments Website, 1993.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Bryan Higgs, Montasir Abbas, and Alejandra Medina. Analysis of the wiedemann car following
model over different speeds using naturalistic data. In Procedia of RSS Conference, pp. 1–22,
2011.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

R.A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA, 1960.

Y. Huang and M. Valtorta. Identifiability in causal bayesian networks: A sound and complete
algorithm. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI
2006), pp. 1149–1156. AAAI Press, Menlo Park, CA, 2006.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 2118–2125, 2018. doi: 10.1109/ITSC.2018.8569552.

Daniel Kumor, Junzhe Zhang, and Elias Bareinboim. Sequential causal imitation learning with
unobserved confounders. Advances in Neural Information Processing Systems, 2021.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Sanghack Lee and Elias Bareinboim. Characterizing optimal mixed policies: Where to intervene and
what to observe. Advances in Neural Information Processing Systems, 33, 2020.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. Advances in Neural Information Processing Systems, 30, 2017.

Jeffrey Mahler and Ken Goldberg. Learning deep policies for robot bin picking by simulating robust
grasping sequences. In Conference on robot learning, pp. 515–524, 2017.

11

https://doi.org/10.1214/10-SS081


Under review as a conference paper at ICLR 2023

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road obstacle avoidance through
end-to-end learning. In Advances in neural information processing systems, pp. 739–746, 2006.
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A DERIVATION OF IRL POLICIES

In this section, we provide detailed derivation of IRL policies in Introduction (Sec. 1).

Fig. 1a Let F be a set of reward function F = {fY (x, z) = αx+ βz − γxz | 0 < α < γ}. Fix
any reward function fY ∈ R. We have

min
π

E[fY (X,Z)]− E[fY (X,Z) | do(π)] = E[fY (X,Z)]−max
π

E[fY (X,Z) | do(π)]. (10)

That is, once a reward function fY is fixed, the IRL policy is an optimal policy X ← π∗(Z)
maximizing the reward fY . Note that for any policy X ← π(Z),

E[fY (X,Z) | do(π)] = E[αX + βZ − γXZ | do(π)] (11)
= E[απ(Z) + βZ − γπ(Z)Z] (12)

For Z = 0, since α > 0, the optimal action π∗(Z = 0) is thus given by

π∗(Z = 0) = argmax
x∈{0,1}

E[αx] = 1 (13)

Similarly, for Z = 1, the optimal action π∗(Z = 1) is given by

π∗(Z = 1) = argmax
x∈{0,1}

E[αx+ β − γx] = argmax
x∈{0,1}

E[(α− γ)x+ β] = 0. (14)

The above solution follows from α < γ. The above equations together imply that the optimal policy
π∗ : X ← ¬Z. Finally, since π∗ is the solution of the outer minimization step for any reward function
fY ∈ F , it is verifiable that π∗ must be the policy obtained by IRL algorithms.

Fig. 1b For any reward function in the hypothesis class F = {fY (x, z) = α | ∀α > 0},

E[fY (X,Z)]− E[fY (X,Z) | do(π)] = E[α]− E[α | do(π)] = 0. (15)

This means that any policy π∗ mapping from X to Z could be a solution for the minimax problem
minπ maxfY ∈F E[fY (X,Z)]− E[fY (X,Z) | do(π)]. For an arbitrary policy π(X|Z),

E[Y | do(π)] =
∑
x,z

E[Y | do(x), z]π(x|z)P (z). (16)

Among quantities in the above equation, for any x, z,

E[Y | do(x), z] = E[¬X ⊕ Z ⊕ U2 | do(x), z] = E[¬x⊕ z ⊕ U2] = 0.5. (17)

The last step follows since U1, U2 are both uniformly drawn over {0, 1} and Z ← U1 ⊕ U2. This
implies that the expected reward of any policy π is equal to

E[Y | do(π)] = 0.5
∑
x,z

π(x|z)P (z) = 0.5. (18)

Therefore, we must have E[Y | do(π∗)] = 0.5 where π∗ is a solution obtained by IRL algorithms.

B PROOFS

In this section, we provide proofs for the theoretical results presented in the paper. Throughout this
paper, detailed parametrizations of the underlying SCM M are assumed to be unknown to the agent.
Instead, the agent has access to a causal diagram G associated with M , and observed trajectories of
the expert’s demonstrations, summarized as the observational distribution P (O). These theoretical
assumptions are required for the our proposed causal IRL algorithm, which delineate the technical
limitations of the work.
Theorem 1. Given a causal diagram G, if there exists a minimal π-backdoor admissible scope
S = {⟨Xi,Zi⟩}ni=1 in G, consider the following conditions:

1. Let effective actions X∗ = X ∩An(Y )GS and effective covariates Z∗ =
⋃

Xi∈X∗ Zi;
2. For i = 1, . . . , n+ 1, let X∗

<i = {∀Xj ∈X∗ | j < i} and Z∗
<i =

⋃
Xj∈X∗

<i
Zj .
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Then, for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as:

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (2)

where the occupancy measure ρπ(x∗, z∗) =
∏

Xi∈X∗ P
(
zi | x∗

<i, z
∗
<i

)
πi(xi | zi).

Proof. Without loss of generality, assume that X = X∗, i.e., all actions in X are active after policy
π ∼ S is deployed. Otherwise, we could always reduce the action set X to the active actions X∗

since P (Y | do(π)) = P (Y | do(πX∗)) where πX∗ is sequence of decision rules {πi | Xi ∈X∗}
with restriction to X∗.

For any i = 1, . . . , n, let Xi = {X1, . . . , Xi−1} and X≤i = X<i ∪ {Xi}. Similarly, we define
Z<i =

⋃
j<i Zj and Z≤i = Z<i ∪Zi. Let π≥i be a sequence of decision rules {πi, πi+1, . . . , πn}

and π>i = π≥i \ {πi}. It is sufficient to show that for any i = 1, . . . , n,

P (y,x<i, z<i | do(π≥i)) =
∑
xi,zi

P (y,x≤i, z≤i | do(π>i))
πi(xi|zi)

P (xi|x<i, z≤i)
(19)

By basic probabilistic operations,

P (y,x<i, z<i | do(π≥i)) =
∑
xi,zi

P (y,x≤i, z≤i | do(π≥i)) (20)

=
∑
xi,zi

P (y | x≤i, z≤i, do(π≥i))P (xi | x<i, z≤i, do(π≥i)P (x<i, z≤i | do(π≥i)) (21)

=
∑
xi,zi

P (y | do(xi),x<i, z≤i, do(π>i))πi(xi|zi)P (x<i, z≤i) (22)

In the last step, P (x<i, z≤i | do(π≥i)) = P (x<i, z≤i) since all causal diagrams G(i) are directed
acyclic graph; and X<i,Z≤i are non-descendants of Xi, Xi+1, . . . , Xn. Next we will show that

P (y | do(xi),x<i, z≤i, do(π>i)) = P (y | xi,x<i, z≤i, do(π>i)) (23)

This is equivalent to show that

(Y ⊥ Xi|X<i,Z≤i) in G(i)Xi
(24)

First, by definition of sequential π-backdoor,

(Y ⊥ Xi|Zi) in G(i)Xi
(25)

Suppose Eq. (24) does not hold. We must have a node W ∈ Z<i∪{Xi} opening a collider path from
Xi to Y . Assume that there exists a directed path from W to Y in G(i)Xi

. Then one could construct
backdoor path from Xi to Y via node W , which contradicts Eq. (25).

What remains is to show that there must exist a directed path from W to Y in G(i)Xi
. Since S

is minimal π-backdoor admissible, it is verifiable from (van der Zander et al., 2014, Lem. 3.4)
that W ∈ An({Y }) in G(i). Consequently, the only case that W ̸∈ An({Y }) in G(i)Xi

is when

W ∈ An({Xi}) in G(i). Again, this allows us to construct a backdoor path between Xi and Y via
W in G(i), which contradicts Eq. (25).

Proposition 1. For a hypothesis class R = {r = w · ϕ | w ∈ Sk}, the solution ν∗ of the canonical
equation in Eq. (3) is obtainable by solving the following minimax problem:

ν∗ = min
π∼S

max
w∈Sk

w⊤Gπ, (4)

where G is a k × n matrix given by G(i, j) =
∑

x∗,z∗ ϕ(i)(x∗, z∗) (ρ(x∗, z∗)− ρπ(j)(x∗, z∗)).

Proof. Note that π is a mixed policy which is a probability distribution over deterministic policies
compatible with scope S . With a slight abuse of notation, we will treat π as a vector where π(i) is the
probability assigned to the i-th deterministic policy π(i). The claimed statement follows immediately
from the definition of the game matrix G.
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Proposition 2. For a hypothesis class R = {r : DX∗ ×DZ∗ 7→ R} regularized by ψ, the solution
ν∗ of the penalized canonical equation in Eq. (5) is obtainable by solving the following problem:

ν∗ = min
π∼S

ψ∗ (ρ− ρπ) (6)

where ψ∗ be a conjugate function of ψ and is given by ψ∗ = maxr∈RX×Z a⊤r − ψ(r).

Proof. Let the vector α = ρ−ρπ . The claimed statement follows from the definition of the conjugate
function ψ∗.

Theorem 2. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and
only if for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (7)

where subsets X∗ ⊆ X , Z∗ ⊆ O \X; and the imitator’s occupancy measure ρπ(x∗, z∗) is a
function of the observational distribution P (O) and policy π.

Proof. the claimed statement follows from Lem. 1.

Lemma 1. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and only
if IDENTIFY(G, Y,S) ̸= “FAIL”. Moreover, IDENTIFY(G, Y,S) returns an identification formula
of the form in Eq. (7) where X∗ = Pa(CY ) ∩X and Z∗ = Pa(CY ) \ ({Y } ∪X); and CY is a
c-component containing reward Y in subgraph G[An(ZY )].

Proof. We first review the identification algorithm for effects of policies with scope S in the causal
diagram G (Tian, 2008). Let D = An({Y }) \X in the induced diagram G. For any policy π ∼ S,
P (Y | do(π)) could be written as, following (Tian, 2008, Eq. 15):

P (Y | do(π)) =
∑

x,d\{y}

Q[D]
∏

Xi∈X

πi(xi | zi). (26)

It has been shown that effects P (Y | do(π)) of all policies π ∼ S are identifiable if and only if
Q[D] is identifiable from P (O, Y ) in G (Tian, 2008; Correa & Bareinboim, 2019). Let D1, . . . ,Dm

denote c-components in G[D]; and let DY denote the c-component in G[D] containing Y and let
D1, . . . ,Dm be other c-components. Q[D] could be written as ((Tian, 2002, Lemma 11)):

Q[D] = Q[DY ]
∏

i=1,...,m

Q[Di]. (27)

Similarly, let S1, . . . ,Sn denote c-components in the diagram G. The algorithm then at-
tempts to identify each c-factor Q[Di] from Q[Sj ] where Sj is a c-component in G con-
taining variables in Di. This procedure could be done by applying the IDENTIFY algo-
rithm introduced in (Tian, 2002), which was later shown to be complete (Huang & Val-
torta, 2006; Shpitser, 2008). Details of algorithm IDENTIFY are described in Alg. 2.

Algorithm 2: IDENTIFY

1: Input: c-components C ⊆ T , a causal diagram G.
2: Output: expression for Q[C] in terms of Q[T ] or fail to determine.
3: Let A = An(C)G[T ].
4: if A = T then Output Q[C] =

∑
t\cQ[T ].

5: end if
6: if A = C then Output “FAIL”.
7: end if
8: if C ⊂ A ⊂ T then
9: Assume that in G[A], C is contained in a c-component T ′.

10: Compute Q[T ′] from Q[A] =
∑

t\aQ[T ] by (Tian, 2002, Lemma 11).
11: Output IDENTIFY(C,T ′,G).
12: end if
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Since all variables in D \ {Y } are non-descendant of Y in G, it is verifiable that the identification
formula for each Q[Di] is a function of distribution P (O), not including reward Y . Let SY denote
a c-component in G that contains DY . Therefore, it is sufficient to show that c-factor Q[DY ] is
identifiable from Q[SY ] as follows:

Q[DY ] =
∑
s

P (y | x∗, z∗)g(P (O)), (28)

where S is a certain subset in O \ Pa(DY ); and g(P (O)) is a function consisting of a series of
arithmetic operation on the observational distribution P (O).

We next show that IDENTIFY(DY ,SY ,G) returns an identification formula of the form Eq. (28).
If SY = An(DY )G[SY ]

(Step 3), the algorithm returns an expression Q[DY ] =
∑

sY \dY
Q[SY ].

(Tian, 2002, Lemma 7) shows that Q[SY ] is given by, following a topological ordering ≺ in G:

Q[SY ] =
∏

V ∈SY

P (v | pa+
V ) (29)

where pa+ = Pa(CV ) \ {V }; and CV is a c-component in subgraph G[{V ′∈V |V ′≺V }] containing V .
Summing over variables in SY \DY we obtain Eq. (28).

We next consider cases where the condition in Step 3 is not satisfied; and IDENTIFY(DY ,SY ,G) has
to enter the recursive step in Step 10. We will utilize the following claim.

Claim 1. At each recursive call in IDENTIFY(DY ,SY ,G) (Step 10), Q[T ′] could be written as:

Q[T ′] =
∑
s

P (y | x∗, z∗)g(P (O)), (30)

where S is a certain subset in O\Pa(DY ); and g(P (O)) function consisting of a series of arithmetic
operation on P (O). We note that S and g could be different for each different T ′.

The above claim allows us to derive the identification formula of the form Eq. (28). Since if Q[DY ]
is identifiable, it must enter Step 3 after some recursive steps. IDENTIFY algorithm returns a formula
Q[DY ] =

∑
t\cQ[T ] where A = An(DY )G[T ]. Since Q[T ] takes the form of Eq. (30), we obtain

the claimed statement Eq. (28).

We will prove Claim 1 by induction on the number of recursive call m in IDENTIFY(C,T ′,G).

Base case m = 1. This follows immediately from (Tian, 2002, Lems. 10 and 11). At Step 9,
Q[A] =

∑
sY \aQ[SY ] and Q[SY ] is given by Eq. (29). This implies Q[S] could be written in the

form of:

Q[A] =
∑
s

P (y | x∗, z∗)g(P (O)) (31)

For any variable V ∈ A, let A≺V denote variables in A that precedes V following the topological
ordering ≺ in G. (Tian, 2002, Lemma 11) shows that

Q[T ′] =
∏

V ∈T ′

Q[V,A≺V ]

Q[A≺V ]
=

∏
V ∈T ′

Q[V,A≺V ]∑
v Q[V,A≺V ]

(32)

Since all variables in A\{Y } precedes Y according to the topological ordering≺, we have Y ̸∈ A≺V

for every V ∈ A \ {Y }. This implies Q[T ′] could be written as

Q[T ′] =
Q[Y,A≺Y ]∑
y Q[Y,A≺Y ]

∏
V ∈T ′\{Y }

Q[V,A≺V ]∑
v Q[V,A≺V ]

(33)

=

∑
a\({y}∪a≺Y )Q[A]∑

a\a≺Y
Q[A]

g′(P (O)) (34)
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The last step follows from (Tian, 2002, Lemma 10). Replacing Q[A] with Eq. (31) we obtain

Q[T ′] =

∑
a\({y}∪a≺Y )

∑
s P (y | x∗, z∗)g(P (O))∑

a\a≺Y

∑
s P (y | x∗, z∗)g(P (O))

g′(P (O)) (35)

= P (y | x∗, z∗)

∑
a\({y}∪a≺Y )

∑
s g(P (O))∑

a\a≺Y

∑
s P (y | x∗, z∗)g(P (O))

g′(P (O)) (36)

= P (y | x∗, z∗)

∑
a\({y}∪a≺Y )

∑
s g(P (O))∑

a\({y}∪a≺Y )

∑
s g(P (O))

g′(P (O)) (37)

= P (y | x∗, z∗)g′′(P (O)) (38)

where g′′ is a series of arithmetic operations of P (O). Eq. (37) holds since g(P (O)) is not a function
of reward signal Y . This proves Eq. (30) for the base case m = 1.

Induction case m = k+1. Suppose the result holds for m ≤ k where k ≥ 1 and consider the case
m = k + 1. At Step 9, Q[A] =

∑
t\aQ[T ]. By the induction assumption, Q[T ] could be written

as Eq. (30). This implies that Q[S] could be written in the form of Eq. (31). Again, following the
derivation in the base case m = 1, we prove that Eq. (30) for the induction case m = k + 1.

Let gi(P (O)) denote the identification formula ofQ[Di] for every c-component Di in G[D]. Eqs. (26)
to (28) together imply that for any policy π ∼ S,

E[Y | do(π)] =
∑

x,d\{y}

∑
s

E[Y | x∗, z∗]g(P (O))
∏

i=1,...,m

gi(P (O))
∏

Xi∈X

πi(xi | zi) (39)

Simplifying the above equation gives

E[Y | do(π)] =
∑
s′

E[Y | x∗, z∗]ρπ(x
∗, z∗) (40)

where S′ is a certain subset of X∗ ∪ Z∗; and ρπ is a function of policy π and the observational
distribution P (O). Note that it is possible that T = (X∗ ∪Z∗) \ S′ ̸= ∅. In that case, one could fix
T to an arbitrary constant t by multiplying the indicator function 1{T = t}.

Lemma 2. Given a causal diagram G, for policy scopes S ′ ⊆ S , S ′ is identifiable from distribution
P (O, Y ) in G if S is identifiable from P (O, Y ) in G.

Proof. If a scope S is identifiable, then the expected rewards E[Y | do(π)] of all policies π with
scope S are identifiable from P (O, Y ) in G. This subsumes all policies associated with the subscope
S ′ ⊆ S. Therefore, S ′ is identifiable from P (O, Y ) in G.

Theorem 3. For a causal diagram G and a reward Y , LISTIDSCOPE(G, Y, ∅,
⋃n

i=1 PA
∗
i ) enumer-

ates a subset S∗ ⊆ S so that for any π ∼ S, there is π∗ ∼ S∗ where E[Y | do(π)] = E[Y | do(π∗)].

Proof. The recursive calls at Steps 8 and 9 guarantee that LISTIDSCOPE generates every identifiable
scope S in S∗ exactly once where

S∗ =

{
S = {⟨Xi,Zi⟩}ni=1 is identifiable | Zi = PA∗

i ∩Z, ∀Z ⊆
n⋃

i=1

PA∗
i

}
(41)

The pruning criteria in Steps 3 and 6 only remove branches containing exclusively only identifiable
(or non-identifiable) scopes (Lem. 2). In that case, it is sufficient to discard all such subscopes
(non-identifiable) or only return the root scope Sr of the corresponding branch (identifiable).

What remains is to show the following claim:

Claim 2. For any scope S ∈ S, there exists S∗ ∈ S∗ such that S∗ perfectly mimics S: that is, for
any π ∼ S, one could find π∗ ∼ S∗ so that E[Y | do(π)] = E[Y | do(π∗)].
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Algorithm 3: Causal MWAL
1: Input: G, Expert demonstrations τE
2: Output: an imitating policy π∗

3: Apply Thm. 1 (or Thm. 2) to obtain formulas for the expert’s ρ(x∗, z∗) and imitator’s occupancy
measure ρπj

(x∗, z∗)

4: Let µ(i) =
∑

x∗,z∗ ϕ(i)(x∗, z∗)ρ(x∗, z∗) and let µπ(i) =
∑

x∗,z∗ ϕ(i)(x∗, z∗)ρπ(x
∗, z∗)

5: Let G̃(i,µπ) = ((µ̂(i)− µπ(i))− 2) /4

6: Let β =

(
1 +

√
2 ln(k)

J

)−1

7: Initialize w1(i) = 1 for i = 1, ..., k
8: for iteration j = 0, 1, 2, . . . , J do
9: Set wj(i) = wj(i)∑

i w
j(i) for i = 1, ..., k

10: Compute the policy π̂j by argminπ w⊤G̃π, where w := wj

11: Compute µ̂j = µπ̂j

12: wj+1(i) = wj(i) · exp(ln(β) · G̃(i, µ̂j)) for i = 1, ..., k
13: end for
14: return The mixed policy that has a probability 1

J of choosing π̂j , for all t ∈ {1, . . . , J}

Algorithm 4: Causal GAIL
1: Input: G, Expert demonstrations τE
2: Output: an imitating policy π∗

3: Apply Thm. 1 (or Thm. 2) to obtain formulas for the expert’s ρ(x∗, z∗) and imitator’s occupancy
measure ρπj

(x∗, z∗)
4: for iteration j = 0, 1, 2, . . . do
5: Collect trajectories from distributions ρ(x∗, z∗) and ρπj

(x∗, z∗)
6: Update the parameters w of discriminator Dj with gradient

Ê[∇w log(Dj(x
∗, z∗))] + Êπj

[∇w log(1−Dj(x
∗, z∗))]

7: Update the policy πj = argminπ Eπ[log(1−D(x∗, z∗))] with policy optimization for DTR
8: end for
9: return The learned policy π∗

Fix any S ∈ S \ S∗. Let XS = An(Y )GS ∩X and let ZS = An(Y )GS \X . We construct a
scope S∗ = {⟨Xi,Z

∗
i ⟩}ni=1 where Z∗

i = PA∗
i ∩

(⋃
X∈XS

pa(X)GS

)
. Similarly, define XS∗ =

An(Y )GS∗ ∩X and ZS∗ = An(Y )GS∗ \X .

We will next show that XS = XS∗ and ZS = ZS∗ . Suppose that XS ⊂XS∗ . Let X be an action
in the set difference XS∗ \XS . Then by the construction of scope S∗, there must exist a directed
path from X to Y in GS∗ via a node in Pa(X)GS for some X ∈ XS . However, such a path must
also exist in the diagram GS . That is, X ∈XS , which is a contradiction. Since GS∗ does not add any
new ancestor of Y , we also have ZS = ZS∗ .

It follows immediately from the factorization in (Tian, 2008, Eq. 15) that S∗ perfectly mimics S.
Moreover, since S is identifiable, the identification condition in (Tian, 2008, Thm. 1) (which is later
shown to be complete in (Correa & Bareinboim, 2019)) implies that Q[ZS ] must be identifiable from
P (O, Y ) in G. Since ZS = ZS∗ , applying the identification condition in (Tian, 2008, Thm. 1) again
shows that S∗ is identifiable from P (O, Y ) in G. That is, S∗ ∈ S∗, which completes the proof.

C CAUSAL MWAL AND CAUSAL GAIL

In this section, we provide details of causal MWAL and causal GAIL, including pseudo-code and
practical considerations in their implementations.
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Causal MWAL Similar to (Syed & Schapire, 2008), we are interested in learning a mixed policy
π compatible with the scope S. Particularly, a mixed policy π∗ is a probability distribution over
deterministic policies compatible with scope S . Details of our Causal MWAL are described in Alg. 3.
Step 8 amounts to finding the optimal policy in an SCM with a known expected E[Y | x∗, z∗].
There are a huge array of techniques available for this, such as dynamic programming or policy
gradient. Step 9 is the same as computing the feature expectations of a given policy. These can
be computed exactly by solving k systems of linear equations, or they can be approximated using
iterative techniques. The algorithm is essentially the MW algorithm (Freund & Schapire, 1999),
applied to a game matrix G̃ defined in Step 3. Compared to the original game matrix G defined in
Prop. 1, G̃ utilizes the estimates µ̂ of the expert’s feature expectations µ from the observational data,
rather than requiring that they be computed exactly. Following the strategy in (Syed & Schapire,
2008), we estimate the feature expectations µ using its empirical mean from demonstrations.

Causal GAIL When the reward is non-linear, given expert demonstrations and the underlying
graph G, we can formalize the optimization problem based on the canonical equation Eq. (3) and
Prop. 2. More specifically, when we utilize a regularizer ψ(r) similar to (Ho & Ermon, 2016), the
convex conjugate function ψ∗ in Eq. (6) is given by:

min
π
ψ∗ (ρ− ρπ) = min

π
max

D∈(0,1)X∗×Z∗
E[log(D(X∗,Z∗))] + Eπ[log(1−D(X∗,Z∗))], (42)

where function D ∈ ΩX∗ × ΩZ∗ 7→ (0, 1) is a discriminator classifier (e.g, a neural network). The
above optimization problem is in the form of two neural networks competing against each other in a
zero-sum game.

Details of our proposed Causal GAIL is summarized in Alg. 4. Step 4 optimizes parameters of the
discriminator D using standard back-propagation. Step 5 computes a policy that minimizes a fixed
reward log(1 − D). For discrete domains, transition probabilities P (zi | x∗

<i, z
∗
<i) are estimated

using empirical means; no value function approximation is used. The optimal policy is then computed
via standard dynamic programming (Howard, 1960; Puterman, 1994). For continuous domains, the
optimal policy π∗ is computed using policy gradient (Sutton et al., 1999). We note that effective
actor-critic algorithms exist for optimizing policies in SCMs via value function approximation (Dawid
& Didelez, 2010; Murphy, 2003; Zhang & van der Schaar, 2020).

D DETAILS ON THE EXPERIMENTAL SETUP

In this section, we describe details of the experimental setup and processing of datasets. We also
provide in Appendix D.1 additional experiments. For all experiments, we evaluate 4 separate imitation
learning strategies summarized as follows:

1. BC: standard behavior cloning approach that learns a series of policy mappings by utilizing
all observed covariates preceding every action Xi ∈X .

2. IRL: standard inverse reinforcement learning approach utilizes all the available covariates
preceding every action Xi ∈X up to each time step. We will apply the MWAL algorithm
(Syed & Schapire, 2008) when the expected reward E[Y | O] is a linear combination of
feature functions. Otherwise, the GAIL algorithm (Ho & Ermon, 2016) is used to obtain an
imitating policy due to the expressive power of neural networks.

3. Causal-BC: the causal behavior cloning approach Zhang et al. (2020); Kumor et al.
(2021) first selects a set of covariates Zi for every action Xi ∈ X following the se-
quential π-backdoor criterion (Def. 3). It then learns an imitating policy π with scope
S = {⟨Xi,Zi⟩}ni=1 using standard BC algorithms.

4. Causal-IRL: Our proposed causal inverse reinforcement learning approach obtains an
imitating policy by solving the canonical causal IRL equation in Eq. (3). We will utilize the
Causal MWAL algorithm (Prop. 1) when the expected reward E[Y | X∗,Z∗] is a linear
combination of feature functions. Otherwise, we resort to the Causal GAIL algorithm
(Prop. 2) due to the expressive power of neural networks.

For discrete domains (Experiments 1, 5, 6 and 7), we estimate transition distributions using empirical
means and solve for an optimal policy in the RL step using dynamic programming. For an environment
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Table 1: Expected rewards E[Y | do(π)] for all imitation strategies. E[Y ] measures the expert’s
performance. For each experiment, we highlight policies with the optimal performance.

Experiment BC IRL πc-bc πc-irl E[Y ]

1 Backdoor 0.24 ± 0.0042 0.25 ± 0.017 0.45 ± 0.0057 0.80 ± 0.0048 0.45
2 HighD + RA 0.38 ± 0.0073 0.38 ± 0.0815 0.49 ± 0.0066 0.62 ± 0.0026 0.48
3 MNIST 0.56 ± 0.0046 0.37 ± 0.0035 0.56 ± 0.0048 0.75 ± 0.0027 0.56
4 MDPUC 0.435 ± 7.160 0.457 ± 3.718 0.669 ± 1.789 0.868 ± 0.327 0.8

5 Frontdoor 0.52 ± 0.0046 0.51 ± 0.077 0.52 ± 0.0054 0.63 ± 0.0045 0.60
6 Backdoor

(Linear)
0.70 ± 0.0044 0.72 ± 0.013 0.75 ± 0.0036 0.98 ± 0.0003 0.75

7 Frontdoor
(Linear)

0.62 ± 0.0037 0.50 ± 0.0040 0.62 ± 0.0036 0.75 ± 0.0030 0.62

8 HighD 0.38 ± 0.0073 0.38 ± 0.082 0.49 ± 0.0066 0.49 ± 0.051 0.48

with continuous states and actions space (Experiments 2, 3, 4 and 8), we solve for the optimal policy
using stochastic policy gradient (Sutton et al., 1999). Expected rewards of policies are estimated by a
Monte-Carlo method computing empirical means over the agent’s trajectories. Effective function
approximation methods also exist to evaluate the value function of policies in high-dimensional
domains (Tsitsiklis & Van Roy, 1997; Murphy, 2005).

Each experiment is repeated for 100 times; we measure the expected reward E[Y | do(π)] of all
algorithms averaging over 100 repetitions. All experiments were performed on Intel Cascade Lake
processors with 30 vCPUs and 120 GB memory in Ubuntu 18.04, implemented in Python. We will
release the source code with the camera-ready version of the paper if the manuscript is accepted.

Experiment 1: Backdoor We study the problem of imitation learning in an SCM compatible with
the causal diagram in Fig. 1c. X1, X2, Z1, Z2 are binary variables in {0, 1}. The reward signal Y is
determined by a non-linear function. Detailed parametrization of this SCM is provided as follows:

UZ1,Z2 ∼ Bern(0.8), UZ2,X2 ∼ Bern(0.8), UZ1,Y ∼ Bern(0.2)

UZ2
∼ Bern(0.1), Z1 ← UZ1,Z2

⊕ UZ1,Y , X1 ∼ Bern(0.68)

Z2 ← UZ2
⊕ UZ1,Z2

⊕ UZ2,X2
, X2 ← UZ2,X2

⊕ Z2

Y ← UZ1,Y ⊕X1 ⊕X2 ⊕ Z2 ⊕ Z2

(43)

Both BC and IRL learn a policy associated with the scope {⟨X1, Z1⟩, ⟨X2, {Z1, X1, Z2}⟩}, which
we denote by πbc and πirl respectively. Causal-BC utilizes the sequential π-backdoor admissible
scope {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩} and learns an imitating policy πc-bc. Our proposed Causal-IRL
learner obtains an imitating policy πc-irl associated with scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩}, which satisfies
the minimal sequential π-backdoor in Def. 4. Since the expected reward E [Y | X1, X2, Z2] is non-
linear, we solve for πc-irl using the Causal GAIL algorithm described in Prop. 2. Reward augmentation
(RA) is performed to incorporates the parametric knowledge that E [Y | X1, X2, Z2] is a monotone
function with regard to values of X1, X2 (Li et al., 2017). This is done by adding an additional
regularization function in Eq. (6) to encourage the Causal-IRL agent to take higher values of
actions X1, X2.

Simulation results are shown in Fig. 3a. Values of expected rewards for all imitation strategies are
provided in Table 1. The analysis reveals that Causal-IRL consistently outperforms the expert’s
policy and other imitation strategies by exploiting additional parametric knowledge about the expected
reward E [Y | X1, X2, Z2]; Causal-BC can learn a policy that mimics the expert’s performance.
As expected, BC and IRL fail to obtain an imitating policy performing as well as the expert’s policy.

Experiment 2: Highway Driving This experiment evaluates our proposed Causal-IRL on
a real-world HighD dataset Krajewski et al. (2018) which consists of humans’ natural driving
trajectories on highway. We study the problem of imitation learning in an SCM compatible with the
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causal diagram in Fig. 4; where reward signal Y is determined by a non-linear function. Detailed
construction of this SCM is described as follows.

1. Z1 is both longitudinal and lateral historical accelerations of the ego vehicle two steps ago.
2. X1 is the accelerations of the ego vehicle at the previous step.
3. Z2 is the velocity of the preceding vehicle.
4. X2 is the velocity of the ego vehicle.
5. We bootstrap samples of Z1, X1, Z2, X2 from the HighD dataset.
6. L was constructed such that X2 satisfies the relation L = I{X2−Z2>−0.4}. This leads to a

distribution P (L = 1) = 0.62.
7. Values of Y,W are decided by the following causal mechanisms:

W ← L ∧ UW,Y , UW,Y ∼ Bern(0.62)

Y ←
(
UW,Y ∧ I{X2−Z2≤−0.4}

)
∨
(
¬UW,Y ∧ I{X2−Z2>−0.4}

)
.

(44)

We also perform the standard causal discovery algorithm (Verma & Pearl, 1988; Spirtes et al., 2000)
to the HighD data over variables Z1, X1, Z2, X2. The analysis reveals the independence relationship
(Z2 ⊥⊥ X1, Z1). In practice, it is common that the leading vehicle’s velocity will not be affected by
the follower’s past accelerations (Treiber et al., 2000; Higgs et al., 2011). We do not impose any
constraints among variables Z1, X1, X2 belonging to the ego vehicle. That is, the above construction
procedure is compatible with the causal diagram in Fig. 4.

X1

Z1

X2

Z2

L

W

Y

Figure 4

Both BC and IRL learn a policy associated with the scope
{⟨X1, {Z1}⟩, ⟨X2, {Z1, X1,W,Z2}⟩}, which we denote by πbc
and πirl respectively. On the other hand, Causal-BC and
Causal-IRL utilizes scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩} which satisfies
the minimal sequential π-backdoor (Def. 4). Causal-BC learns a
policy πc-bc via behavior cloning. Meanwhile, for any policy π with
scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩}, the expected reward E[Y | do(π)]
decomposes as, following Thm. 1,

E[Y | do(π)] =
∑

x1,x2,z2

E[Y | x1, x2, z2]P (z2 | x1)π1(x1)π2(x2 | z2). (45)

Using the above identification formula, Causal-IRL translates the imitation problem into the
canonical equation of Eq. (3) and obtains an imitating policy πc-irl via the Causal GAIL algorithm
(Prop. 2 and Alg. 4).

We evaluate Causal-IRL in the HightD dataset provided with additional parametric knowledge
about the reward signal. Therefore, Causal-IRL is able to exploit the fact that the expected
reward E[Y | X1, X2, Z2] is a monotone function with regard to X2, Z2. Reward augmentation (Li
et al., 2017) is performed to account for such parametric knowledge in the Causal GAIL algorithm.
Particularly, we add an additional regularization function in the optimization problem of Eq. (6) to
encourage the agent to take higher values of action X2 and achieve higher values of state Z2.

We show simulation results in Fig. 3b. Details of expected rewards for all imitation strategies are
described in Table 1. We found that Causal-BC learner is able to achieve the expert’s performance.
Causal-IRL is able to dominate the expert and other imitation strategies. As expected, BC and
IRL perform the worst among all algorithms and fail to obtain an effective imitating policy matching
the expert’s behavior policy.

Experiment 3: MNIST Digits This experiment evaluates our proposed Causal-IRL on the
MNIST digit dataset (LeCun, 1998), which consists of images of handwritten digits. Again, we
study the problem of imitation learning in an SCM compatible with the frontdoor diagram in Fig. 2a.
However, values of mediator Z are now replaced with an image bootstrapped from MNIST dataset
containing digit 0 or 1. More specifically, the data-generating mechanisms of this SCM are described
as follows:

P (U = 1) = 0.75, P (X = 1 | U = 0) = 0.5, P (X = 1 | U = 1) = 0.5

P (Z = 0 | X = 0) = 0.2, P (Z = 0 | X = 1) = 0.8, Y ← 0.25U + 0.75Z
(46)
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Both BC and IRL learn a policy associated with the scope {⟨X, ∅⟩}, which we denote by πbc and πirl
respectively. Since there exists no sequential π-backdoor admissible scope in Fig. 2a, Causal-BC
fails and resorts to a policy obtained by standard BC, i.e., πc-bc = πbc. Finally, Causal-IRL
obtains an imitating policy πc-irl with scope {⟨X, ∅⟩}. It formulates the canonical equation in Eq. (9)
as a two-person zero-sum game, which can be solved by the Causal MWAL algorithm described
in Prop. 1. Simulation results are shown in Fig. 3c. Details of expected rewards for all imitation
strategies are shown in Table 1. We found that Causal-IRL outperforms Causal-BC and BC;
while IRL performs the worst among all algorithms.

Experiment 4: Infinite MDPUC This experiment evaluates our proposed Causal-IRL on an
MDPUC model with the infinite horizon (Ruan & Di, 2022), which is a Markov decision process
explicitly incorporating the existence of unobserved confounders (Zhang & Bareinboim, 2016; 2022).
Fig. 1d shows a simplified causal diagram of this MDPUC model for i = 1, 2, 3. A more detailed
causal diagram was described in (Ruan & Di, 2022).

More specifically, at the time step i, the expert takes an action Xi based on the current state Zi, Uπ

and past action Xi−1. Covariates U (Z,Y )
i , and Uπ are unobserved to the imitator, thus summarized as

exogenous variables. At every time step i, only information that the imitator could utilize is the past
observed states and actions {Z0, X0, Z1, X1, . . . , Zi−1, Xi−1}. Detailed semantics of the SCM is
described as follows.

1. U (Z,Y )
i is the road conditions.

2. Uπ denotes the level of expert driving skills.

3. U (A)
i is the action of the leading vehicle, which cannot be observed by the imitator or the

expert.
4. Zi contains the velocities of the follower vehicle and the leading vehicle, and the gap

between them, which is affected by U (A)
i−1 , Zi−1, Xi−1 and U (Z,Y )

i .
5. Xi is the acceleration or deceleration of the follower vehicle.
6. Yi is the reward, which takes multiple goals into consideration, e.g., efficiency, comfort, and

safety. When the agent is involved in a collision, the environment will be stopped, and the
agent will receive a negative penalty.

Both BC and IRL learn a policy associated with the scope S = {⟨Xi, Zi⟩}∞i=1. On the other hand,
Causal-BC and Causal-IRL utilize scope S∗ = {⟨Xi, {Zi, Xi−1, Zi−1}⟩}∞i=1 which satisfies
the minimal sequential π-backdoor (Def. 4). Causal-BC learns a stationary policy πc-bc ∼ S∗ via
standard behavioral cloning. Meanwhile, Causal-IRL exploits the Markov property up to time
step i, which is,

P (zi | x<i, z<i) = P (zi | xi−1, zi−1) = P (z2 | x1, z1) (47)
E[Yi | x≤i, z≤i) = E[Yi | xi, xi−1, zi, zi−1] = E[Y2 | x2, x1, z2, z1]. (48)

By doing so, Causal-IRL translates the imitation problem into the canonical equation of Eq. (3)
and obtains an imitating policy πc-irl via the Causal GAIL algorithm (Prop. 2 and Alg. 4). Fig. 3d
shows the results, where Causal-IRL outperforms Causal-BC, IRL and BC.

D.1 ADDITIONAL EXPERIMENTS

We also evaluate our imitation approach on various synthetic SCM instances with other forms of
reward functions. Overall, we found that simulation results match our findings in the main manuscript.
Our causal IRL approach consistently dominates state-of-art imitation learning methods across
various causal diagrams. Furthermore, it is able to incorporate parametric knowledge about the
reward function and achieve effective imitating policies from high-dimensional demonstration data.

Experiment 5: Frontdoor We study the problem of imitation learning in an SCM compatible
with the frontdoor diagram in Fig. 2a. X,Y, Z are binary variables in {0, 1}. The reward signal Y is
determined by a non-linear function. Detailed parametrization of this SCM is provided as follows:

U ∼ Bern(0.75), UX ∼ Bern(0.7), UZ ∼ Bern(0.25)

X ← U ⊕ UX , Z ← X ⊕ UZ , Y ← U ⊕ Z (49)
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Figure 5: Simulation results for additional experiments that are not included in the main manuscript.

Both BC and IRL learn a policy associated with the scope {⟨X, ∅⟩}, which we denote by πbc and πirl
respectively. Since there exists no sequential π-backdoor admissible scope in Fig. 2a, Causal-BC
fails and resorts to a policy obtained by standard BC, i.e., πc-bc = πbc. Finally, Causal-IRL obtains
an imitating policy πc-irl with {⟨X, ∅⟩} by solving the canonical equation in Eq. (9). It performs
reward augmentation (Li et al., 2017) to incorporate the parametric knowledge that E[Y | X,Z]
is a monotone function with regard to values of X,Z. Simulation results are shown in Fig. 5a.
Details of expected rewards for all imitation strategies are provided in Table 1. The analysis reveals
that Causal-IRL consistently outperforms the expert’s policy by exploiting additional parametric
knowledge about the expected reward E [Y | X,Z]; while other strategies fail to match the sub-
optimal expert.

Experiment 6: Backdoor with Linear Reward We now consider an SCM instance compati-
ble with the causal diagram in Fig. 6 where reward signal Y is determined by a linear function;
X1, X2, Z1, Z2 are binary variables in {0, 1}. Detailed parametrization of this SCM is given by:

UZ1,Z2 , UZ1,X2 ∼ Bern(0.5), X1 ∼ Bern(0.75), Z1 ← UZ1,Z2 ∧ UZ1,X2

X2 ← UZ1,X2
, Z2 ← X2 ∨ UZ1,Z2

, Y ← 0.5X1 + 0.5Z2
(50)
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Both BC and IRL learn a policy associated with the scope
{⟨X1, {Z1}⟩, ⟨X2, {Z1, X1}⟩}, which we denote by πbc and πirl re-
spectively. Causal-BC utilizes the sequential π-backdoor admissible scope
{⟨X1, {Z1}⟩, ⟨X2, ∅⟩} and learns an imitating policy πc-bc. Our proposed
Causal-IRL learner obtains an imitating policy πc-irl associated with scope
{⟨X1, ∅⟩, ⟨X2, ∅⟩}, which satisfies the minimal sequential π-backdoor in
Def. 4. Since the expected reward E[Y | X1, X2] is a linear function, we solve
for πc-irl using the Causal MWAL algorithm described in Prop. 1. Simulation
results are shown in Fig. 5c. Expected rewards for all imitation strategies are provided in Table 1. Our
analysis reveals that Causal-IRL consistently outperforms the expert’s policy and other imitation
strategies by exploiting the linearity of the expected reward E[Y | X1, X2]; Causal-BC is able to
learn a policy that mimics the expert’s performance; while BC and IRL perform the worst among all.

Experiment 7: Frontdoor with Linear Reward Consider again the frontdoor diagram in Fig. 2a
with binary variables X,Y, Z ∈ {0, 1}. The reward signal Y is now determined by a linear function.
Detailed parametrization of the underlying SCM is provided as follows:

U ∼ Bern(0.75), UX ∼ Bern(0.5), UZ ∼ Bern(0.75)

X ← U ⊕ UX , Z ← X ⊕ UZ , Y ← 0.5U + 0.5Z
(51)

Both BC and IRL learn a policy associated with the scope {⟨X, ∅⟩}, which we denote by πbc and
πirl respectively. Causal-BC fails to find a π-backdoor admissible scope and resorts to a standard
BC policy πc-bc = πbc. Causal-IRL obtains an imitating policy πc-irl with scope {⟨X, ∅⟩}. It
formulates the canonical equation in Eq. (9) as a two-person zero-sum game, which can be solved by
the Causal MWAL algorithm described in Prop. 1. Simulation results are shown in Fig. 5c. Expected
rewards for all imitation strategies are provided in Table 1. The analysis reveals that Causal-IRL
consistently outperforms the expert’s policy and other imitation strategies by exploiting the linearity
of the expected reward E[Y | X,Z]; while IRL performs the worst among all strategies.
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Experiment 8: HighD without Reward Augmentation Finally, we evaluate Causal-IRL in
the HightD dataset without utilizing any additional parametric knowledge about the reward signal.
For this experiment, the simulation setup and training process remain the same as in Experiment 2.
The only difference here is that Causal-IRL now does not exploit the fact that the expected reward
E[Y | X1, X2, Z2] is a monotone function with regard to X2, Z2.

We show in Fig. 5d simulation results for this experiment. Table 1 provides details of expected
rewards for all imitation strategies. We could see by inspection that the performance of BC, IRL,
Causal-BC and the expert remains the same. The performance of Causal-IRL decreases since
it is now unable to exploit the monotonicity of the expected reward E[Y | X1, X2, Z]. However, it is
still able to achieve the expert’s performance and obtain an effective imitating policy.

E RELATED WORK AND CONTRIBUTIONS

Imitation Learning (IL) paradigm investigates the problem of an imitator learning how to behave
in an environment with an unknown reward function by observing demonstrations from a human
expert (Argall et al., 2009; Billard et al., 2008; Hussein et al., 2017; Osa et al., 2018). There are two
major learning modalities that implements IL – behavioral cloning (BC) (Widrow, 1964; Pomerleau,
1989; Muller et al., 2006; Mülling et al., 2013; Mahler & Goldberg, 2017) and inverse reinforcement
learning (IRL) Ng et al. (2000); Ziebart et al. (2008); Ho & Ermon (2016); Fu et al. (2017). BC
methods directly mimic the expert’s behavior policy by learning a mapping from observed states to
the expert’s action via supervised learning. Alternatively, IRL methods first learn a potential reward
function under which the expert’s behavior policy is optimal. The imitator then obtains a policy by
employing standard RL methods to maximize the learned reward function. Under some common
assumptions, both BC and IRL are able to obtain policies that achieve the expert’s performance
(Kumor et al., 2021; Swamy et al., 2021). Moreover, when additional parametric knowledge about the
reward function is provided, IRL may produce a policy that outperforms the expert’s in the underlying
environment (Syed & Schapire, 2008; Li et al., 2017; Yu et al., 2020).

Despite the performance guarantees provided by existing imitation methods, both BC and IRL rely
on the assumption that the expert’s input observations match those available to the imitator. While
this assumption may certainly hold in some settings, it is quite stringent in others, where agents
may differ in their sensory capabilities, have distinct goals in mind, and evolve their reasoning (e.g.,
“software”) and attention independently. When the expert and imitator’s input covariates disagree, the
expert’s demonstration could be contaminated with the presence of unobserved confounders (UCs).
In this case, naively applying standard imitation methods may not necessarily lead to satisfactory
performance, even when the expert him or herself behaves optimally (Zhang et al., 2020).

Causal Inference (CI) addresses the challenge of unobserved confounding bias in the observational
data by exploiting causal assumptions about the data-generating mechanisms (commonly through
causal graphs and potential outcomes). Several criteria and algorithms have been developed (Pearl,
2000; Spirtes et al., 2000; Bareinboim & Pearl, 2016). More recently, there exists an emerging
line of research under the rubric of causal imitation learning that augments the imitation paradigm
to account for environments consisting of arbitrary causal mechanisms and the aforementioned
mismatch between expert and imitator’s sensory capabilities (de Haan et al., 2019; Zhang et al., 2020;
Etesami & Geiger, 2020; Kumor et al., 2021). Closest to our work, Zhang et al. (2020); Kumor
et al. (2021) derive graphical criteria that completely characterize when and how BC could lead to
successful imitation even when the agents perceive reality differently. However, most of these causal
imitation methods focus on the BC setting, where the performance of the imitator is limited by the
expert’s policy. (de Haan et al., 2019) studies the problem of “causal confusion” by assuming that
there does not exist any UC. There are several other works that investigate this problem based on
the framework of (or variations of) Markov decision processes (MDP) (Puterman, 1994), including
contextual MDPs (Tennenholtz et al., 2021), MDPs with temporally correlated noises (Swamy et al.,
2022), and MDPs with the presence of UCs (Ruan & Di, 2022). Still, it is unclear how to perform
IRL-type training beyond MDP settings, especially when expert policies are non-stationary, the
underlying environment is non-Markovian, and UCs are generally present.

Contributions This paper investigates the settings where the expert’s demonstrations are con-
taminated with biases induced by UCs. When UCs are present, it is possible to construct a simple
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causal model with binary variables such that existing IRL methods cannot learn an effective imitating
policy from demonstrations alone, regardless of how advanced the feature extraction procedures are
and what the sample size is. In a nutshell, our contribution is to empower imitation learning to be
robust against confounding bias through knowledge augmentation via a causal lens. Accordingly, we
propose the first causal IRL method that could perform at least as well as the expert while being robust
against UCs by exploiting causal relationships encoded in the underlying environment. The learned
IRL policy may significantly outperform the expert’s policy by leveraging additional parametric
knowledge about the reward signal. Moreover, our method reduces the causal IRL to the canonical
form, which allows us to apply existing IRL methods to find an effective imitating policy, despite the
presence of unobserved confounding bias.

Finally, we would like to clarify that there are many challenges in reinforcement learning, including
estimation in the high-dimensional domain. In this paper, we investigate a probably undermined but
crucial one, which is, when the expert’s demonstrations are contaminated with biases induced by
UCs, potentially leading to suboptimal or even undesired imitating behaviors. It is orthogonal to
many challenges that state-of-art IRL methods concern, e.g., high-dimensionality, and we believe
that it is as equally urgent to address as other existing challenges in IRL. Our goal in this paper
is to enhance the existing IRL methods to be robust against confounding bias through knowledge
augmentation, provided with a causal perspective about the environment. This is where we believe
that the communities of causality and imitation learning could and should converge.

F FREQUENTLY ASKED QUESTIONS

Q1. Are causal assumptions necessary for causal imitation learning?

Answer. Yes, causal assumptions are necessary for practical imitation learning when
some input covariates of the expert’s policy are latent to the imitator, and unobserved
confounders (UCs) are present in the expert’s demonstrations. The departing point of
our work is the realization that an imitating policy that performs as well as the expert is
generally underdetermined by the observational data alone. Indeed, this observation is not
new, and was first made in (Zhang et al., 2020).For concreteness, consider models M1,M2,
unknown to researchers, where in M1, X ← U , Y ← X; in M2, X ← U , Y ← X ⊕ U ; in
Mi, i = 1, 2, P (U = 0) = P (U = 1) = 0.5. We assume that Y,U are unobserved; Y is the
reward. In both M1 and M2, the observational distribution P (X = 0) = P (X = 1) = 0.5.
In M1, P (y) is imitable with policy π(x) = P (x); while in M2, P (Y = 0|do(π)) = 0.5
for any π(x), which is far from P (Y = 0) = 1. This example shows that when UCs are
present, imitation learning from observations alone is generally impossible.
A common approach to addressing the challenges of UCs is to explore causal relationships
among variables. Such relationships could be compactly represented in the form of a causal
diagram (Pearl, 2000). Consider again the previous example. Note that the bi-directed
arrow X ↔ Y exists in G2 but not G1. One could distinguish SCMs M1,M2 using their
corresponding causal diagrams G1,G2, and obtain an effective imitating policy when it is
possible (i.e., M1).
Finally, we would like to point out that most standard imitation learning methods, including
both BC and IRL, focus on the Markov decision process (MDP) model. It (perhaps implicitly)
assumes the structural constraint of unconfoundedness, i.e., UCs do not exist in the expert’s
demonstrations. In other words, existing BC and IRL methods are developed based on a
common set of causal assumptions, which we could compactly represent using a canonical
causal diagram (e.g., see (Zhang & Bareinboim, 2022)). This canonical MDP graph does
not include the presence of UCs, thus not representative of the more generalized setting
studied in this paper.

Q2. Is the requirement of causal diagram a limitation?

Answer. We note that requiring a causal diagram as input is not a limitation of our work.
Instead, as explained in Q1, causal assumptions are necessary for practical IRL that aims
to provide guarantees and understand the conditions algorithms may succeed in many
real-world applications. Our reasoning and arguments are summarized below:
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1. Unobserved confounders generally exist in demonstration data when the sensory capa-
bilities of the imitator and the expert differ, e.g., HighD (Krajewski et al., 2018).

2. Without any causal assumption, existing imitation learning algorithms, including BC
and IRL, are unable to learn an effective policy from the demonstration data alone that
performs as well as the expert (Etesami & Geiger, 2020; Kumor et al., 2021; Zhang
et al., 2020).

3. That is, when UCs are present, causal assumptions about the environment are necessary
to achieve reasonable imitation performance via IRL.

4. Existing IRL methods assume the underlying environment to be an MDP model, which
satisfies the Markov property and precludes the analysis of UCs.

5. A causal diagram (Pearl, 2000) represents an arbitrary collection of causal relationships
in the environment. This flexibility allows one to encode the existence of UCs explicitly.

To sum up, this paper extends existing IRL methods, via simple augmentation, to the
generalized setting where UCs generally exist, and causal relationships are encoded in the
form of a causal diagram. In a very general sense, the structural assumptions required to
perform causal inferences are inevitable, as shown in (Bareinboim et al., 2022, Theorem 1).
We then note that in some compelling real-world applications, one may have a qualitative
understanding of the causal relationships of the environment, e.g., the ad-placement engine
(Bottou et al., 2013). Also, there are quite general and systematic methods under the rubrics
of “causal discovery” capable of learning a causal diagram (or its equivalence class) from
observational data (Spirtes et al., 2000). Our methods could be combined with causal
discovery algorithms to learn an imitating policy after the graph is obtained. This means
that the dependence on domain experts could be minimized.

Q3. The learned policy requires a separate decision rule at each time step. How does it differ
from stationary policies in MDPs?

Answer. A policy that remains invariant at each step is said to be a stationary policy. It
is a special case of non-stationary policies where decision rules are different at every time
step (Puterman, 1994; Fix et al., 1993). Stationary policies are optimal in MDP models
that satisfy the Markov property. However, its optimality guarantee no longer holds in
non-Markovian environments, where the transition distributions differ over every stage of
action. This paper focuses on settings where Markovianity cannot be ascertained.
Generally, policies considered in this paper are also referred to as dynamic treatment regimes
(DTR) (Murphy et al., 2001) in the causal inference literature. DTRs are a popular model,
and have been widely applied for medical decision-making. Unlike standard MDP settings,
DTR does not assume that the underlying environment satisfies the Markov property and the
transition functions are generally different between different stages of intervention (action).
Consequently, the optimal DTR policy is generally non-stationary, requiring a separate
policy for every action stage.
We would like to highlight that the most challenging aspect of our investigation is confound-
ing biases in the expert’s demonstrations induced by unobserved confounders (UCs). UCs
are pervasive in practical scenarios since not all information available to the decision-maker
is recorded and available to the AI system, including the aforementioned medical treatment.
Proposing a causal framework to imitate non-stationary policies for non-Markovian is more
general, and can be naturally adapted to stationary policies in a Markovian environment.

Q4. What is the difference between GAIL and Causal GAIL?

Answer. GAIL was original developed in the Markov decision process (MDP) (Ho &
Ermon, 2016), which encodes the assumption of unconfoundedness, i.e., unobserved con-
founders do not exist in the expert’s demonstrations. On the other hand, Causal GAIL does
not rely on such an assumption and is robust to the bias introduced by the presence of
unobserved confounding.
Details of Causal GAIL are provided in Alg. 4 (Appendix C). During the initialization (Step
1), it first applies the identification procedure Thms. 1 and 2 to reduce the causal imitation
problem to its corresponding canonical equation (Eq. (3)). Starting there, the learning
procedure is essentially the GAIL algorithm applied to non-stationary DTR policies (Murphy
et al., 2001). Step 4 updates the reward function D, parameterized as a neural network
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discriminator, using the standard gradient descent. Step 5 computes an optimal policy in an
SCM given a fixed reward function. There are a huge array of techniques available for this.
As for discrete domains, the transition distributions are computed using empirical means,
and we then solve for an optimal policy using standard dynamic programming (Bellman,
1966). For an environment with continuous states and actions space, we solve for the optimal
policy using stochastic policy gradient (Sutton et al., 1999). Expected rewards of policies are
estimated by a Monte-Carlo method computing empirical means over the agent’s trajectories.
Effective function approximation methods also exist to evaluate the value function of policies
in high-dimensional domains (Tsitsiklis & Van Roy, 1997; Murphy, 2005).

Q5. Could the proposed method be scaled up to high-dimensional, complex environments?

Answer. Yes, our causal-IRL method naturally scales to general sequential decision-
making settings with higher dimensional domains. A key observation in our proposed
approach is the reduction to the canonical equation of causal IRL in Eq. (3). Once the
canonical equation is obtained, the learner could then solves for an effective imitating policy
using the standard IRL method, including MWAL and GAIL. Details of the implementation
are described in Sec. 2.2 and Appendix C. This paper introduces novel algorithms (Thms. 1
and 2) to reduce the causal imitation learning problem to its corresponding canonical form
(when it is possible). The reduction procedure takes at most a polynomial-number of steps
with regard to the size of the causal diagram. This allows us to benefit from the state-of-art
computational framework for IRL in MDP models while ascertaining the validity of the
procedure through proper causal tools. For instance, we demonstrate the validity of our
algorithm in Experiment 3 using the MNIST digits (LeCun, 1998).
Here, we would also like to clarify that there are many challenges in IRL. Scalability to the
high-dimensional domain is one of them. However, in this paper, we investigate another
challenge, a probably undermined but crucial one, which is, the settings where the expert’s
demonstrations are contaminated with biases induced by unobserved confounders (UCs). It
is orthogonal to the challenge of high-dimensionality that state-of-art IRL methods concern,
and we strongly believe that it is as equally urgent to address as other existing challenges in
IRL. Indeed, when UCs are present, it is possible to construct a simple model with binary
variables such that existing IRL methods cannot learn an effective imitating policy from
demonstrations alone, regardless of how advanced the feature extraction procedures are
and what the sample size is. Our goal in this paper is to enhance the existing IRL methods
to be robust against confounding bias through knowledge augmentation, provided with a
causal perspective about the environment. This is where we believe that the communities of
causality and imitation learning could and should converge. Thus, it is not our purpose to
beat existing IRL methods in another benchmark with high-dimensional domains that match
the assumptions they expect (i.e., UCs are assumed away).

Q6. Could the proposed method be scaled to long-sequence decision problems with infinite
horizons?

Answer. Yes, the proposed methods could be generalized to sequential decision problems
with infinite horizons by incorporating common assumptions of temporal models. In
Experiment 4, we evaluate the proposed algorithm in a generalized Markov decision process
incorporating unobserved confounders, called the MDPUC (Ruan & Di, 2022; Zhang &
Bareinboim, 2022). The graph underlying this experiment properly simulates the real-world
driving decision process. By exploiting the Markov property over time, we can decompose
the causal diagram over the infinite horizon into a collection of sub-graphs, one for each pair
of the actionXi and the reward Yi. Fig. 1d shows the causal diagram spanning over time step
i = 1, 2, 3. As a comparison, BC and IRL still utilize the standard 1-step information scope
{⟨Xi, {Zi}⟩}. By applying Thm. 1 at each time step, we obtain a π-backdoor admissible
policy scope {⟨Xi, {Zi, Xi−1, Zi−1}⟩} for Causal-IRL and Causal-BC. Simulation
results are shown in Fig. 3d. One could see by inspection that Causal-IRL performs the
best among all algorithms and achieve the experts’ performance.

Q7. How is Causal IRL able to outperform Causal BC and the expert?

Answer. When the imitator has no prior knowledge about the reward function, methods
like GAIL model the reward function as a general discriminator (i.e., a neural network),
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and are able to converge to the equilibrium point where the imitator exactly matches the
expert’s distributions. In other words, causal IRL generally coincides with causal BC without
additional parametric knowledge about the latent reward signal.
In general, causal IRL consistently dominates causal BC since it can exploit parametric
knowledge about the reward function. This observation is not new and was noted in the
literature, e.g., see (Syed & Schapire, 2008; Li et al., 2017). Effective methods exist to
encode prior knowledge about the reward signal when training GAIL-type imitators, which
are referred to as reward augmentation (Li et al., 2017). For instance, in Experiment 2, we
train causal-IRL imitator using reward augmentation that encourages the agent to accelerate
when the velocity of the preceding vehicle is high. Simulation results in Fig. 3b show that
causal-IRL can consistently outperform the expert and causal BC by exploiting the additional
parametric knowledge about reward. In Experiment 8 (highway driving), we trained another
causal-IRL imitator without additional knowledge about the reward. Simulation results in
Fig. 5d show that the performance of causal-IRL and causal-BC coincide, exactly matching
the expert’s performance.

Q8. Could the proposed method be applicable to settings with multiple reward signals?

Answer. Yes, following the conventions of the dynamic treatment regime (DTR) literature
(Murphy et al., 2001), the reward signal is represented as a single random variable. In
a nutshell, policy optimization methods for DTR extend immediately to multiple reward
signals, one per every stage of action (Chakraborty & Moodie, 2013). Theoretically, Thms. 1
and 2 hold when the reward Y is a set of variables. The reward function r(x∗, z∗) is
defined as the cumulative reward

∑
Y ∈Y E[Y | x∗, z∗]. For concreteness, we demonstrate

our algorithm in Experiment 4 to optimize the cumulative reward in a sequential decision-
making problem with an infinite horizon.

Q9. What is the projection algorithm, and why do we need to perform such projections?

Answer. The projection algorithm (Tian, 2002, Sec. 4.5) marginalizes unobserved en-
dogenous variables in a causal diagram and allows us to focus on the causal relationships
among observed endogenous variables. It is particularly useful for causal identification
since the identifiability of causal effects remains invariant across the projection operation.
Details fo the projection algorithm is provided in Alg. 5. It transforms an arbitrary causal
diagram G with observed endogenous variables O into a simplified causal diagramH such
that unobserved endogenous variables V \O are omitted.
For instance, consider a causal diagram G with directed arrows X → Z → Y and a
bi-directed arrow X ↔ Y ; variable Z is unobserved so the observational distribution
P (X,Y ). In this case, one could simplify the diagram by projecting out node Z, i.e.,
H = PROJECT(G). The resulting diagram H is given by X → Y and X ↔ Y . It can be
shown that the interventional distribution P (y|do(x)) is not identifiable in the projected
diagramH, thus is not identifiable from P (X,Y ) in the original diagram G.
Due to these nice properties of the projection algorithm, in Sec. 3, we consistently assume
the causal diagram G to be the outcome of the projection algorithm, only consisting of
endogenous nodes O, Y . The identifiablity results in Thm. 2 and Lem. 1 hold without loss
of generality.

Q10. Why does the proposed method mainly focus on ν∗ ≤ 0?

Answer. The condition ν∗ ≤ 0 indicates that the expert’s policy might be sub-optimal and
the Causal IRL algorithm is able to find a policy that improves over the expert.
Many real-world applications exist where the expert generating the demonstrations is
possibly sub-optimal and could be improved. For instance, consider the development of
autonomous vehicles, where the reinforcement signal is never fully known, and imitation
learning methods are widely used. To collect demonstration data, it often requires a human
demonstrator, possibly a driving expert, to drive the vehicle around the target environment
(e.g., a city, a highway) and record the natural driving trajectories. No matter how clean their
driving record is, the human demonstrator is naturally error-prone and cannot guarantee
optimal driving behaviors at all times (Atchley et al., 2011). Indeed, in many complicated
learning tasks, it might be difficult for the demonstrator to be consistently optimal, even for
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Algorithm 5: PROJECT (Tian, 2002, Def. 5)
1: Input: A causal diagram G.
2: Output: A causal diagramH where all endogenous variables are observed, i.e., V = O.
3: Let O,L be, respectively, observed endogenous variables and latent endogenous variables in G.
4: LetH be a causal diagram constructed as follows.
5: for each observed V ∈ O in G do
6: Add an observed node V inH.
7: end for
8: for each pair S,E ∈ O in G s.t. S ̸= E do
9: if there exists a directed path S → E in G then

10: Add an edge S → E inH.
11: else if there exists a path S → V1 → · · · → Vn → E in G s.t. V1, · · ·Vn ∈ L then
12: Add an edge S → E inH.
13: else if there exists a bidirected edge S ↔ E in G then
14: Add a bidirected edge S ↔ E inH.
15: else if there exists a path S ← Vl,1 ← · · · ← Vl,n ↔ Vr,m → · · · → Vr,1 → E in G s.t.

Vl,1, · · · , Vl,n, Vr,1, · · · , Vr,m ∈ L then
16: Add a bidirected edge S ↔ E inH.
17: else if there exists a path S ← Vl,1 ← · · · ← Vl,n ← Vc → Vr,m → · · · → Vr,1 → E in G s.t.

Vl,1, · · · , Vl,n, Vc, Vr,1, · · · , Vr,m ∈ L then
18: Add a bidirected edge S ↔ E inH.
19: end if
20: end for
21: ReturnH.

relatively veteran experts, e.g., playing complex video games or stock trading (Newell et al.,
1972; Nikolaidis et al., 2017).
Behavioral cloning methods mimic the demonstrator’s policy and thus never outperform
the sub-optimal expert. On the other hand, by exploiting additional parametric knowledge
about the latent reward signal, inverse RL methods are able to obtain an effective policy
that consistently dominates the expert’s policy. This observation is not new, and was first
proposed in (Syed & Schapire, 2008), who also formalized the use of performance gap ν∗.
(Zhang et al., 2020) studied the behavioral cloning from the combination of confounded
observations and causal constraints about the environment. In this work, we take inspiration
from inverse RL approaches and develop non-trivial imitation learning methods that are
robust to both unobserved confounding and a sub-optimal expert.

Q11. How about ν∗ > 0?

Answer. When the performance gap ν∗ > 0, there exists at least one causal model such
that the imitator can never achieve the expert’s performance.
For instance, consider a bow graph consisting of a directed arrow X → Y and a bi-directed
arrow X ↔ Y . We could construct a causal model M compatible with this causal constraint
such that no intervention do(x) on action X could outperform the expert’s performance
E[Y ]. Let an exogenous variable U be uniformly drawn over a binary domain {0, 1}. Let the
expert’s policy be X ← U and the reward function Y ← X ⊕ ¬U . Fig. 7 below describes
the causal diagram associated with SCM M .

X Y

Figure 7: Bow Graph

Evaluating the expert’s reward in SCM M gives

E[Y ] = E[X ⊕ ¬U ] = E[U ⊕ ¬U ] = 1

On the other hand, for any intervention do(x), the imitator’s reward is given by

E[Y |do(x)] = E[x⊕ ¬U ] = 0.5
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The last step holds since U is a uniform binary variable. In this environment, for any action,
the imitator’s reward E[Y |do(x)] = 0.5 is far from the expert’s performance E[Y ]. This
means that in the bow graph, the performance gap is at least ν∗ > E[Y ]−E[Y |do(x)] = 0.5.
Such settings are referred to as “non-imitable” in (Zhang et al., 2020, Lemma 1).

Q12. How does causality help inverse RL to get better performance than the expert?

Answer. By utilizing causal relationships embedded in the environment, the learner is
able to address the bias/distribution drift due to the presence of unobserved confounding
in demonstration data. Once the adjustment formula is obtained (i.e., Thms. 1 and 2), IRL
algorithms could produce a policy that substantially outperforms the expert by exploiting
parametric knowledge about the reward, e.g., linearity (Syed & Schapire, 2008) or through
reward augmentation (Li et al., 2017). In this work, one of our main contributions is to extend
existing IRL approaches to more generalized settings where the expert’s demonstrations are
imperfect, and the phenomenon of unobserved confounding exists (i.e., Markovianity cannot
be assumed). To further ground our contributions, we summarize the current literature on
imitation learning as follows, in order to highlight that our work fills a critical literature gap
where unobserved confounders exist in the sequential imitating processes and the expert is
sub-optimal:

Optimal Expert Sub-optimal Expert
Unconfounded Behavior Cloning (BC):

Widrow (1964); Pomerleau (1989);
Muller et al. (2006); Mülling et al.
(2013); Mahler & Goldberg (2017)

Invserse Reinforcement Learning (IRL):
Ng et al. (2000); Ziebart et al. (2008);
Ho & Ermon (2016); Fu et al. (2017)

Confounded Causal BC:
Zhang et al. (2020); Kumor et al. (2021)

Causal IRL: our work

To sum up, behavior cloning (BC) is able to achieve satisfactory performance when the
demonstration data is unconfounded, and the expert is (near) optimal. Inverse RL (IRL) can
outperform the suboptimal expert by exploiting additional parametric knowledge about the
reward signal. However, both BC and IRL are fragile to data drift due to the presence of
unobserved confounders. Causal BC (Zhang et al., 2020; Kumor et al., 2021) produces a
confounding-robust policy but is still limited by the performance of a suboptimal expert.
Finally, this paper empowers IRL methods with the causal inference theory so that the IRL
imitator could produce a policy robust to both unobserved confounding and the suboptimal
expert.

Q13. What is the problem formulation of causal IRL?

Answer. Details of the problem formulation have been described in Sec. 2. Formally, the
problem of causal IRL can be summarized as follows:

– Input: (1) the expert’s demonstrations, summarized as the observational distribution
P (O), and (2) a causal diagram G associated with the underlying SCM.

– Output: a policy π∗ = {π∗
1(X1 | Z1), . . . , π

∗
n(Xn | Zn)} determining actions X .

– Objective: to learn an imitating policy π∗ that achieves the expert’s performance, i.e.,
E[Y | do(π∗)] ≥ E[Y ].

Q14. Could the authors provide a table of notations?

Answer. Yes, we provide in Table 2 a summary of important notations used in this paper.
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Table 2: Summary of Notations

Notations Meanings
Preliminaries:
M Structural Causal Model
O observed variables
L latent variables
U exogenous variables

Causal IRL:
X actions
X∗ effective actions
Z covariates
Z∗ effective covariates
Y latent reward

Expert:
fX behavior policy or expert policy
ρ(x∗, z∗) occupancy measure of the expert
EM [Y ] expert performance

Imitator:
Mπ a submodel from M where fX replaced by π
S policy scope
do(x) atomic intervention on X by constants x
do(π) policy intervention on actions X following π
ρπ(x

∗, z∗) occupancy measure of the imitator
EM [Y | do(π∗)] imitator performance

Graph Notations:
G causal diagram associated with M
GS causal diagram associated with submodel Mπ

pa , ch , de , an parents, children, descendants, and ancestors
Pa,Ch,De,An parents with the argument, children with the ar-

gument, descendants with the argument, and an-
cestors with the argument
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