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Abstract

Consider the problem of estimating the causal effect of some attribute of a text
document; for example: what effect does writing a polite vs. rude email have
on response time? To estimate a causal effect from observational data, we need
to adjust for confounding aspects of the text that affect both the treatment
and outcome—e.g., the topic or writing level of the text. These confounding
aspects are unknown a priori, so it seems natural to adjust for the entirety of the
text (e.g., using a transformer). However, causal identification and estimation
procedures rely on the assumption of overlap: for all levels of the adjustment
variables, there is randomness leftover so that every unit could have (not)
received treatment. Since the treatment here is itself an attribute of the text, it
is perfectly determined, and overlap is apparently violated. The purpose of this
paper is to show how to handle causal identification and obtain robust causal
estimation in the presence of apparent overlap violations. In brief, the idea is
to use supervised representation learning to produce a data representation that
preserves confounding information while eliminating information that is only
predictive of the treatment. This representation then suffices for adjustment
and satisfies overlap. Adapting results on non-parametric estimation, we find
that this procedure is robust to conditional outcome misestimation, yielding
a low-bias estimator with valid uncertainty quantification under weak condi-
tions. Empirical results show strong improvements in bias and uncertainty
quantification relative to the natural baseline.

1 Introduction

We consider the problem of estimating the causal effect of an attribute of a passage of text on
some downstream outcome. For example, what is the effect of writing a polite or rude email
on the amount of time it takes to get a response? In principle, we might hope to answer such
questions with a randomized experiment. However, this can be difficult in practice—e.g., if poor
outcomes are costly or take long to gather. Accordingly, in this paper, we will be interested in
estimating such effects using observational data.

There are three steps to estimating causal effects using observational data. First, we need to specify
a concrete causal quantity as our estimand. That is, give a formal quantity target of estimation
corresponding to the high-level question of interest. The next step is causal identification: we
need to prove that this causal estimator can be estimated using only observational data. The
standard approach for identification relies on adjusting for confounding variables that affect both
the treatment and the outcome. For identification to hold, our adjustment variables must satisfy
two conditions: unconfoundedness and overlap. The former requires the adjustment variables
contain sufficient information on all common causes. The latter requires that the adjustment
variable does not contain enough information about treatment assignment to let us perfectly
predict it. Intuitively, to disentangle the effect of treatment from the effect of confounding, we

Submitted to the NeurIPS Causal ML for Real-World Impact Workshop (CML4Impact 2022). Do not
distribute.



39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93

must observe each treatment state at all levels of confounding. The final step is estimation using a
finite data sample. Here, overlap also turns out to be critically important as a major determinant
of the best possible accuracy (asymptotic variance) of the estimator [ Che+16].

Since the treatment is a linguistic property, it is often reasonable to assume that text data has
information about all common causes of the treatment and the outcome. Thus, we may aim
to satisfy unconfoundedness in the text setting by adjusting for all the text as the confounding
part. However, doing so brings about overlap violation. Since the treatment is a linguistic
property determined by the text, the probability of treatment given any text is either 0 or 1. The
polite/rude tone is determined by the text itself. Therefore, overlap does not hold if we naively
adjust for all the text as the confounding part. This problem is the main subject of this paper.
Or, more precisely, our goal is to find a causal estimand, causal identification conditions, and a
robust estimation procedure that will allow us to effectively estimate causal effects even in the
presence of such (apparent) overlap violations.

In fact, there is an obvious first approach: simply use a standard plug-in estimation procedure
that relies only on modeling the outcome from the text and treatment variables. In particular, do
not make any explicit use of the propensity score, the probability each unit is treated. Pryzant
et al. [Pry+20] use an approach of this kind and show it is reasonable in some situations. Indeed,
we will see in Sections 3 and 4 that this procedure can be interpreted as a point estimator of
a controlled causal effect. Even once we understand what the implied causal estimand is, this
approach has a major drawback: the estimator is only accurate when the text-outcome model
converges at a very fast rate. This is particularly an issue in the text setting, where we would
like to use large, flexible, deep learning models for this relationship. In practice, we find that
this procedure works poorly: the estimator has significant bias and (the natural approach to)
uncertainity quantification almost never includes the estimand true value; see Appendix A.

The contribution of this paper is a method for robustly estimating causal effects in text. The
main idea is to break estimation into a two-stage procedure, where in the first stage we learn a
representation of the text that preserves enough information to account for confounding, but
throws away enough information to avoid overlap issues. Then, we use this representation as
the adjustment variables in a standard double machine-learning estimation procedure [Che+16;
Che+17a]. To establish this method, the contributions of this paper are: (1) We give a formal
causal estimand corresponding to the text-attribute question. We show this estimand is causally
identified under weak conditions, even in the presence of apparent overlap issues. (2) We
show how to efficiently estimate this quantity using the adapted double-ML technique just
described. We show that this estimator admits a central limit theorem at a fast (4/n) rate
under weak conditions on the rate at which the ML model learns the text-outcome relationship
(namely, convergence at n'/4 rate). This implies bias decreases rapidly, and an (asymptotically)
valid procedure for uncertainity quantification. (3) We test the performance of this procedure
empirically, finding significant improvements in bias and uncertainty quantification relative to
the outcome-model-only baseline.

Related work The most related literature is on causal inference with text variables. Papers
include treating text as treatment [Pry+20; WDSD18; Ega+18; FG16; WC19; TLP14]), as
outcome [Ega+18; SG19], as confounder [VSB19; RSN20; Moz+20; KJO20], and discovering
or predicting causality from text [PMB16; Tab+18; Bal+19; MCO00]. Of these, Pryzant et al.
[Pry+20] also address non-parametric estimation of the causal effect of text attributes. Their focus
is primarily on mismeasurement of the treatments, while our motivation is robust estimation.
D’Amour and Franks [DF21] studies summary statistics that suffice for identification, which
they call deconfounding scores. However, that work focuses on finding all deconfounding
scores in a linear-gaussian setting while our concern is with robust estimations with uncertainty
quantification in the presence of overlap violations when learning with large neural models.

2 Notation and Problem Setup

We follow the causal setup of Pryzant et al. [Pry+20]. We are interested in estimating the causal
effect of treatment A on outcome Y. For example, how does writing a negative sentiment (A)
review (X) affect product sales (Y)? There are two immediate challenges to estimating such
effects with observed text data. First, we do not actually observe A, which is the intent of the
writer. Instead, we only observe A, a version of A that is inferred from the text itself. In this paper,
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we will assume that A = A almost surely—e.g., a reader can always tell if a review was meant to
be negative or positive. This assumption is often reasonable, and follows [Pry+20]. The next
challenge is that the treatment may be correlated with other aspects of the text (Z) that are also
relevant to the outcome—e.g., the product category of the item being reviewed. Such Z can act
as confounding variables, and must somehow be adjusted for in a causal estimation problem.

Each unit (4;,Z;,X;,Y;) is drawn independently and identically
from an unknown distribution P. Figure 1 shows the causal re-
lationships among variables, where solid arrows represent causal
relations, and the dotted line represents possible correlations be-
tween two variables. We assume that text X contains all common
causes of A and the outcome Y.

(Treatment) (Perceived treatment)

Figure 1: The causal DAG of the
problem. A writer writes a text

3 Identification and Causal estimand document X based on linguistic

The first task is to translate the qualitative causal question of
interest—what is the effect of A on Y—into a causal estimand.

properties A and Z, where A is
the treatment in the causal prob-
lem. Aand Z cannot be observed

This estimand must both be faithful to the qualitative question directly in data and can only be
and be identifiable from observational data under reasonable as- seen via text. The dotted line
sumptions. The key challenges here are that we only observe A represents possible correlation
(not A itself), there are unknown confounding variables influenc- between A and Z. A reader per-
ing the text, and A is a deterministic function of the text, leading ceives the treatment A from the

to overlap violations if we naively adjust for all the text. Our text. The perceived treatment A
together with contents of X de-

high-level idea is to split the text into abstract (unknown) parts
depending on whether they are confounding—affect both A and
Y—or whether they affect A alone. The part of the text that affects

termine the outcome Y.

only A is not necessary for causal adjustment, and can be thrown away. If this part contains
“enough” information about A, then throwing it away can eliminate our ability to perfectly predict
A, thus fixing the overlap issue. We now turn to formalizing this idea, showing how it can be
used to define an estimand and to identify this estimand from observational data.

Figure 2: A more sophisticated
causal model with the decompo-
sition of text X. X,, X,,z, and
X, are parts of the text affected
by only A, bothAand Z, and only
Z, respectively. A and Z are lin-
guistic properties a writer based
on and thus cannot be observed
directly from data. When inves-
tigating the causal relationship
betweenAand Y, (X,,,,X,) is a
confounding part satisfying both
unconfoundedess and overlap.

Causal model The first idea is to decompose the text into three
parts: one part affected by only A, one part affected interactively
by A and Z, and another part affected only by Z. We use X,
Xanz and X, to denote them, respectively; see Figure 2 for the
corresponding causal model. Note that there could be additional
information in the text in addition to these three parts. However,
since they are irrelevant to both A and Z, we do not need to
consider them in the model.

CDE The treatment A affects the outcome through two paths.
Both “directly” through X,—the part of the text determined just
by the treatment—and also through a path going through X,,,—
the part of the text that relies on interaction effects with other
factors. Our formal causal effect aims at capturing the effect of
A through only the first, direct, path.

CDE :=Ex, , x,1a=1 [E[Y | Xanz,Xz,do(A=1)]—E[Y | Xp\z,X7,do(A=0)]].

3.1
Here, do is Pearl’s do notation, and the estimand is a variant of the
controlled direct effect [Pea09]. Intuitively, it can be interpreted
as the expected change in the outcome induced by changing the
treatment from 1 to O while keeping part of the text affected by
Z the same as it would have been had we set A= 1. This is a

reasonable formalization of the qualitative “effect of A on Y”. Of course, it is not the only possible
formalization. Its advantage is that, as we will see, it can be identified and estimated under

reasonable conditions.

Identification To identify CDE we must rewrite the expression in terms of observable quantities.
There are three challenges: we need to get rid of the do operator, we don’t observe A (only A),
and the variables X,,,,X, are unknown (they are latent parts of X).
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Informally, the identification argument is as follows. First, X,,,X, block all backdoor paths
(common causes) in Figure 2. Moreover, because we have thrown away X,, we now satisfy
overlap. Accordingly, the do operator can be replaced by conditioning following the usual causal-
adjustment argument. Next, A = A almost surely, so we can just replace A with A. Now, our
estimand has been reduced to:

CDE :=Ex,  x,jic1 [E[Y | Xapz, Xz, A=1]1—E[Y | Xppz,X7,A=0)]]. (3.2)

The final step is to deal with the unknown X, ,, X ;. To fix this issue, we first define the conditional
outcome Q according to:

QA,X):=E(Y | AX). (3.3)
A key insight here is that, subject to the causal model in Figure 2, we have Q(4,X) =
E(Y | A, X4,z,X,). But this is exactly the quantity in (3.2). Moreover, Q(4,X) is an observable
data quantity (it depends only on the distribution of the observed quantities). In summary:

Theorem 1. Assume the following:

1. (Causal structure) The causal relationships among A, A, Z, Y, and X satisfy the causal DAG in
Figure 2;

2. (Overlap) 0 < P(A=1|X,,7,X;) < 1;

3. (Intention equals perception) A= A almost surely with respect to all interventional distributions.
Then, the CDE is identified from observational data as

CDE =t := By 5, [E[Y | n(X),A=1]—E[Y | n(X),A=0]], (3.4)
where n(X) := (Q(0,X),Q(1,X)).

We give the result in terms of an abstract sufficient statistic 17(X) to emphasize that the actual
conditional expectation model is not required, only some statistic that is informationally equiva-
lent. We emphasize that, regardless of whether the overlap condition holds or not, the propensity
score of n(X) in condition 2 is accessible and meaningful. Therefore, we can easily identify when
identification fails as long as 1n(X) is well-estimated.

4 Method

Our ultimate goal is to draw a conclusion about whether the treatment has a causal effect on
the outcome. Following previous section, we have reduced this problem to estimating 7°PE,
defined in Theorem 1. The task now is to develop an estimation procedure, including uncertainty
quantification.

4.1 Outcome only estimator

We start by introducing the naive outcome only estimator as a first approach to CDE estimation.
The estimator is adapted from Pryzant et al. [Pry+20]. The observation here is that, taking
n(X) =(Q(0,X),Q(1,X)) in (3.4), we have

TP =Eyp [E(Y [A=1,X)—E(Y |[A=0,X) ]. (4.1)

Since Q(A,X) is a function of the whole text data X, it is estimable from observational data.
Namely, it is the solution to the square error risk:

Q =argminE[(Y —Q(4,X))*]. (4.2)
Q

With a finite sample, we can estimate Q as Q by fitting a machine-learning model to minimize
the (possibly regularized) square error empirical risk. That is, fit a model using mean square
error as the objective function. Then, a straightforward estimator is:

. 1 A A
2= — Z Q1(X;) — Qo(X;), (4.3)
m i:A=1
where n; is the number of treated units.

It should be noted that the model for Q is not arbitrary. One significant issue for those models
which directly regress Y on A and X is when overlap does not hold, the model could ignore A and
only use X as the covariate. As a result, we need to choose a class of models that force the use of
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the treatment A. To address this, we use a two-headed model that regress Y on X for A= 0/1
separately in the conditional outcome learning model (See Section 4.2 and Figure 3).

As discussed in the introduction Section 1, this estimator is yields a consistent point estimate, but
does not offer a simple approach for uncertainty quantification. A natural guess for an estimate
of its variance is:

1 A A R
var(19) := —var(Q; (X;) = QX)) [ Q). (4.4)

That is, just compute the variance of the mean conditional on the fitted model. However, this
procedure yields asymptotically valid confidence intervals only if the outcome model converges
extremely quickly; i.e., if E[(Q — Q)Z]% = o(n_%). We could instead bootstrap, refitting Q on
each bootstrap sample. However, with modern language models, this can be prohibitively
computationally expensive.

4.2 Treatment Ignorant Effect Estimation (TI-estimator)

Following Theorem 1, it suffices to adjust for n(X) = (Q(0,X),Q(1,X)). Hence, we use the
following pipeline. We first estimate Q,(X) and Q,(X) as with the outcome-only estimator. Then,
we take 7(X) = (Qo(X),Q,(X)) and estimate &, ~ P(A=1|7). Thatis, we estimate the
propensity score corresponding to the estimated representation. Finally, we plug the estimated Q
and ¢, into a standard double machine learning estimator [Che+16].

We describe the three steps in detail.

Q-Net In the first stage, we estimate the condi-
tional outcomes and hence obtain the estimated two-
dimensional confounding vector 7(X). For concrete- 4=

ness, we will use the dragonnet architecture of Shi et al. Ao e

[SBV19]. Specifically, we train DistilBERT [San+19] ™=« Tortepresentation

modified to include three heads, as shown in Figure 3. B

Prdctsy

{2
() T Conditional
| 4 outcome estimation

QX[

Two of the heads correspond to Qy(X) and Q;(X) re-
spectively. As discussed in the Section 4.1, applying two
heads can force the model to use the treatment A. The fi-
nal head is a single linear layer predicting the treatment
(which can achieve perfect accuracy). The output of
this head is not used for the estimation; its purpose is to
force the DistilBERT representation to preserve all con-
founding information. This has been shown to improve
causal estimation [SBV19; VSB19].

We train the model by minimizing the objective func-

Figure 3: The architecture of Q-Net follows
the dragonnet [SBV19] for estimation of
Q. Specifically, given representations A(X)
from input text data, the Q-Net predicts Y
for samples with A= 0 and A = 1 using two
separate heads. A third head predicting
A is also included for training, though the
predictions are not used for estimation. Pa-
rameters in DistilBERT and three prediction
heads are trained together in an end-to-end
manner.

tion

1 A 2
20:X)= > [ (Qq (xi:0)~ ¥} + aCrossEntropy (a;, 8,(<)) + fLum(x)],  (4.5)
i
where 0 are the model parameters, a, 3 are hyperparameters and £, (+) is the masked language

modeling objective of DistilBERT.

There is a final nuance. In practice, we split the data into K-folds. For each fold j, we train a
model Q_j on the other K — 1 folds. Then, we make predictions for the data points in fold j

using Q_j. Slightly abusing notation, we use Q,(x) to denote the predictions obtained in this
manner.

Propensity score estimation Next, we define 7j(x) := (Qo(x), Q,(x)) and estimate the propen-
sity score §,(x) ~ P(A=1 | 1)(x)). To do this, we fit a non-parametric estimator to the binary
classification task of predicting A from 7)(X) in a cross fitting or K-fold fashion. The important
insight here is that since 7§(X) is 2-dimensional, non-parametric estimation is possible at a fast
rate. In Appendix A, we try several methods and find that kernel regression usually works
well.

We also define g, (X) := P(A=1 | n(X)) as the idealized propensity score. The idea is that as
1 — n, we will also have g, — g, so long as we have a valid non-parametric estimate.
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CDE estimation The final stage is to combine the estimated outcome model and propensity

score into a CDE estimator. To that end, we define the influence curve of T*PE as follows:
A-(Y —Q(0,X X)
P(X;Q, 8, T = (r=QOX)__ & ((1-4)- (Y —Q(0,X)) — AT, (4.6)
p p(1—g,(x))

where p =P (A= 1). Then, the standard double machine learning estimator of TPt [Che+16],
and the a-level confidence interval of this estimator, is given by

o 1o . Ao p A p ATI 4
== (i C1" = (A" —mqposd (b — A AT /D), 47 21 gpasd (b~ A 47/P)), (4.7)
i=1

where
$ _Ai'(Yi_QO(Xi)) 100
‘ b p(1-8,(x))
p= % Z?:lAi’ Z1_q/2 is the a/2-upper quantile of the standard normal, and sd(-) is the sample
standard deviation.

(1A (Y, —QoXy), i=1,---,n, (4.8)

Validity We now have an estimation procedure. It remains to given conditions under which this
procedure is valid. In particular, we require that it should yield a consistent estimate and asymp-
totically correct confidence intervals. Theorem 3 and its proof are provided in Appendix B.

The key point from this theorem is that we get asymptotic normality at the (fast) y/n-rate while
requiring only a slow (n'/#) convergence rate of Q. Intuitively, the reason is simply that, because
7)(X) is only 2-dimensional, it is always possible to nonparametrically estimate the propensity
score from 7} at a fast rate—even naive KNN works! Effectively, this means the rate at which we
estimate the true propensity score g,(X) =P(A=1 | n(X)) is dominated by the rate at which

we estimate 7(X), which is in turn determined by the rate for Q. Now, the key property of the
double ML estimator is that convergence only depends on the product of the convergence rates of
Q and g. Accordingly, this procedure is robust in the sense that we only need to estimate Q at the
square root of the rate we needed for the naive Q-only procedure. This is much more plausible
in practice. As we will see in Appendix A, the TI-estimator dramatically improves the quality of
the estimated confidence intervals and reduces the bias of estimation.

Remark 2. In addition to robustness to noisy estimation of Q, there are some other advantages
this estimation procedure inherits from the double ML estimator. First, if Q is consistent, then
the estimator is nonparametrically efficient in the sense that no other non-parametric estimator
has a smaller asymptotic variance. That is, the procedure using the data as efficiently as possible.
Second, the estimator is still asymptotic normal even if Q is only accurate up to some invertible
transformation. This is because 7} remains consistent in this case and the AIPTW is double robust.
This property may be useful when Q is miscalibrated.

5 Discussion

In this paper, we address the estimation of the causal effect of a text document attribute using
observational data. The key challenge is that we must adjust for the text—to handle confounding—
but adjusting for all of the text violates overlap. We saw that this issue could be effectively
circumvented with a suitable choice of estimand and estimation procedure. In particular, we
have seen an estimand that corresponds to the qualitative causal question, and an estimator that
is valid even when the outcome model is learned slowly. The procedure also circumvents the
need for bootstrapping, which is prohibitively expensive in our setting.

There are some limitations. The actual coverage proportion of our estimator is below the nominal
level. This is presumably due to the imperfect fit of the conditional outcome model. Diagnostics
(see Appendix E) show that as conditional outcome estimations become more accurate, the TI
estimator becomes less biased, and its coverage increases. It seems plausible that the issue could
be resolved by using more powerful language models.

Although we have focused on text in this paper, the problem of causal estimation with ap-
parent overlap violation exists in any problem where we must adjust for unstructured and
high-dimensional covariates. Another interesting direction for future work is to understand how
analogous procedures work outside the text setting.
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Table 1: The TI-estimator significantly improves both bias and coverage relative to the baseline. Tables
show average bias and confidence interval coverage of CDE estimates, over 100 resimulations. The
TI estimator £ displays higher accuracy/smaller bias of point estimate and much larger coverage
proportions compared to outcome-only estimator £?. The treatment level equals true CDE, which takes
1.0 (with causal effect) and 0.0 (without causal effect). Low and high noise level corresponds to y set to

1.0 and 4.0. Low and high confounding level corresponds to f. set to 50.0 and 100.0.

(a) Average bias

Noise: Low High
True CDE: 1.0 0.0 1.0 0.0
Confounding: Low High Low High Low High Low High

2Q 0.100 0376 0.076 0.326 0.563  0.548  0.502  0.498
[ 0.069 0.059 0.114 0.074  0.088 0.049 0.002 0.089
(b) Coverage proportions of 95% confidence intervals
Noise: Low High
True CDE: 1.0 0.0 1.0 0.0
Confounding: Low High Low High Low High Low High
1@ 0% 0% 2% 0% 0% 0% 0% 0%
7T 57% 84% 57% 79% 87% 80% 77% 81%

A Experiments

We empirically study the method’s capability to provide accurate causal estimates with good
uncertainty quantification Testing using semi-synthetic data (where ground truth causal effects
are known), we find that the estimation procedure yields accurate causal estimates and confidence
intervals. In particular, the TI-estimator has significantly lower bias and vastly better uncertainty
quantification than the Q-only method.

Additionally, we study the effect of the choice of nonparametric propensity score estimator and
the choice of double machine-learning estimator, and the method’s robustness in regard to Q’s
miscalibration. These results are reported in Appendices D and E. Although these choices do not
matter asymptotically, we find they have a significant impact in actual finite sample estimation.
We find that, in general, kernel regression works well for propensity score estimation and the
vanilla AIPTW corresponding to the CDE works well.

Finally, we reproduce the real-data analysis from [Pry+20]. We find that politeness has a positive
effect on reducing email response time.

A.1 Amazon Reviews

Dataset We closely follow the setup of Pryzant et al. [Pry+20]. We use publicly available
Amazon reviews for music products as the basis for our semi-synthetic data. We include reviews
for mp3, CD and vinyl, and among these exclude reviews for products costing more than $100 or
shorter than 5 words. The treatment A is whether the review is five stars (A = 1) or one/two
stars (A= 0).

To have a ground truth causal effect, we must now simulate the outcome. To produce a realistic
dataset, we choose a real variable as the confounder. Namely, the confounder C is whether
the product is a CD (C = 1) or not (C = 0). Then, outcome Y is generated according to
Y « B,A+ B.(n(C)—p,)+yN(0,1). The true causal effect is controlled by f,. We choose
B, = 1.0, 0.0 to generate data with and without causal effects. In this setting, 3, is the
oracle value of our causal estimand. The strength of confounding is controlled by .. We
choose 3. = 50.0, 100.0. The ground-truth propensity score is ©(C) = P(A = 1|C). We set
it to have the value ©(0) = 0.8 and n(1) = 0.6 (by subsampling the data). f, is an offset
E[7(C)] = ®(0)P(C = 0) + n(1)P(C = 1), where P(C = a), a = 0,1 are estimated from data.
Finally, the noise level is controlled by y; we choose 1.0 and 4.0 to simulate data with small and
large noise. The final dataset has 10,685 data entries.

Protocol For the language model, we use pretrained distilbert-base-uncased model provided
by the transformers package. The model is trained in the k-folding fashion with 5 folds. We apply
the Adam optimizer [KB14] with a learning rate of 2e > and a batch size of 64. The maximum
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Table 2: Politeness has a positive causal effect on response time. Table displays different CDE estimates
and their 95% confidence intervals. The unadjusted one is the difference of sample means of treatment
(polite) group and control group. The confidence interval of £™ only covers positive values, which means
politeness can increase the probability of timely response.

Estimator CDE Confidence Interval
unadjusted £™¥¢  -0.038 [ -0.0679, -0.0073 ]
2Q 0.195 [ 0.1910, 0.1993 ]
&1 0.200 [ 0.1708, 0.2288 ]

number of epochs is set as 20, with early stopping based on validation loss with a patience of
6. Each experiment is replicated with five different seeds and the final Q(a, x;) predictions are
obtained by averaging the predictions from the 5 resulting models. The propensity model is
implemented by running the Gaussian process regression using GaussianProcessClassifier in
the sklearn package with DotProduct + WhiteKernel kernel. (We choose different random
state for the GPR to guarantee the convergence of the GPR.) The coverage experiment uses 100
replicates.

Results The main question here is the efficacy of the estimation procedure. Table 1 compares
the outcome-only estimator £9 and the estimator ™. First, the bias of the new method is
significantly lower than the bias of the outcome-only estimator. This is particularly true where
there is moderate to high levels of confounding. Next, we check actual coverage rates over
100 replicates of the experiment. First, we find that the naive approach for the outcome-only
estimator fails completely. The nominal confidence interval almost never actually includes the
true effect. It is wildly optimistic. By contrast, the confidence intervals from the new method
often cover the true value. This is an enormous improvement over the baseline. Nevertheless,
they still do not actually achieve their nominal (95%) coverage. This may be because the Q
estimate is still not good enough for the asymptotics to kick in, and we are not yet justified in
ignoring the uncertainty from model fitting.

A.2 Application: Consumer Complaints to the Financial Protection Bureau

We follow the same pipeline of the real data experiment in [Pry+20, §6.2]. The dataset is
consumers complaints made to the financial protection. Treatment A is politeness (measured
using [YKT18]) and the outcome Y is a binary indicator of whether complaints receive a response
within 15 days.

We use the same training procedure as for the simulation data. Table 2 shows point estimates
and their 95% confidence intervals. Notice that the naive estimator show a significant negative
effect of politeness on reducing response time. On the other hand, the more accurate AIPTW
method as well as the outcome-only estimator have confidence intervals that cover only positive
values, so we conclude that consumers’ politeness has a positive effect on response time. This
matches our intuitions that being more polite should increase the probability of receiving a timely

reply.

B Theorem and Proof of Asymptotic Normality

Theorem 3. Assume the following.
1. The mis-estimation of conditional outcomes can be bounded as follows

agl{g)lc}xa[(éa(m —Q(a,X))*]? = o(n"%); (B.1)

2. The propensity score function P(A = 1|-,-) is Lipschitz continuous on R%, and 3 ¢ > 0,

Ple<g,X)<1—¢)=1;

3. The propensity score estimate converges at least as quickly as k nearest neighbor; i.e.,
A . 2 1 _1 .

E[(&,(X)—PA=1]7400))" | X]> =0(n"7) [Gy6+02];

4. There exist positive constants C,, C, ¢, and q > 2 such that

1
E[|Y]?]s <Cy,  sup  E[(Y —QAX)* | nX)=n)]<C,,
nesupp(n(X))

EL(Y QWA X))} 2 ¢, max E[|Qu()— Qe X)[]7 < Cy.
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Then, the estimator is consistent and

/A" — %) 4 N(0, o) (B.2)

where 0% = E(¢(X;Q, g, TCDE))2~

Proof. We first prove that misestimation of propensity score has rate n™#. For simplicity, we use f,,
fg: (u,v) € R? — R to denote conditional probability P(A = 1|u,v) = f¢(u,v) and the estimated
propensity function by running the nonparametric regression P(A = 1|u, v) = fg(u, v). Specifically,
we have £,(Q(0,X),Q(1,X)) = g,(X) and £, (Qo(X),Q,(X)) =P(A = 1|Q(X), (X)) = &, (X).

Since E[(Qo(X) — Q(O,X))z]%, E[(Q,(X) — Q(l,X))z]% = o(n"'/*) and f, is Lipschitz continuous,
we have
d

<L-E [H (Qo(x),Q:(3)) — (Q(0,X),Q(1,X))

2]2
293
} (B.3)

2

£(Qo(X),Q, (X)) — £, (Q(0,X),Q(1,X))

[SIE

=L {E[(Q(x)—Q(0,X))" ]+ E[(@:00)—(1.3))* ]}

=o(n~ %)

Since the true propensity function f, is Lipschitz continuous on R?, the mean squared error rate

of the k nearest neighbor is O(n=/2) [Gyo+02]. In addition, since the propensity score function
and its estimation are bounded under 1, we have the following equation

2
E|f,(Qo(X), Q1 (X)) = f4(Qo(X), Q1 (X))| =0(n™"?), (B.4)

due to the dominated convergence theorem. By (B.3) and (B.4), we can bound the mean squared
error of estimated propensity score in the following form:

E[ (8,00 —g,00)"]
<E[(8,(5) — £,(Qo(x), Q0N |+ E[ (£,(Q0). @, (0)) — £,(0))°]

2

=K + (B.5)

fg(QO(X): QI(X)) _fg (Q(O:X)’ Q(l’X))

2

E

Fe(Qo00), Q1(X)) = £,(Qo(X), Q1 (X))

=o(n'%),

1

that is E[ (8,(X) — g,(X))’ ] = 0(n™%).

Before we apply the conclusion of Theorem 5.1 in [Che+17b], we need to check all assumptions
in Assumption 5.1 hold in Chernozhukov et al. [Che+17b]. Let C := max {(ZCf +2%)a, Cz}-

(@) E[Y —Q(AX) | n(X),A] =0, E[A—g,(X) | n(X)] = 0 are easily checked by invoking
definitions of Q and g,,.

1 1
() E[|Y]"] < C, E[(Y —Q(A,X))*]? = ¢ and sup,cqppmeoy EL(Y —Q(A,X))* | n(X) =
1] < C are guaranteed by the fourth condition in the theorem.

(P (s <g,X)<1- s) =1 is the second condition in the theorem.
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(d) Since propensity score function and its estimation are bounded under 1, we have

(BL|O, () — (1, X)|*]+ E 8,00 —g,x)|"])’
<(CI+CI+29)

<C

Qo(X)—Q(0,x)|"1+E[

(e) Based on (B.5) and condition 1 in the theorem, we have

(EL(Q100 — Q1 X))] + B (Q0(X) — 0, X))1 + EL(8,00) — g,0))*1)
<[o(n™®) +o(n?) +O(n_%)]%
<o(n™),
E[(Qo(X) —Q(0,X))"]% - E[(&,(X) — £,(X))"]* = o(n"%)
(f) Based on condition 3 in the theorem, we have

sup E[(§,(X)—P@A=1]4(X))" | X =x]=0(n"?).
xesupp(X)

We consider a smaller positive constant £ instead of €. Note that for £ < ¢, we still have
P(é < g,(X)<1—&)=1. Then,

P( sup |8, (x) ! >1 ~) P( inf A()<”)+P( sup g, (x)>1—¢
g,(x)—=|>=-—¢|= i g.(x)<é 8. (x —£
xesupp(X) K 2 2 xesupp(x) " xesupp(X) K
SP( inf PA=1[AX)=7(x))— inf & (x)> e—é)
xesupp(X) xesupp(X)

+P( sup &,(x)— sup P(A=1|ﬁ(X)=ﬁ(x))>1—§—(1—8))

xesupp(X) xesupp(X)

. A . A A 2
E [(lnfxesupp(X) &n (x)— 1nfxesupp(X) PA=1| T’(X) = T)(X))) ]
+

= (c—57
E [ (SUPxesuppr) &0 () — SUP.caupp) PA =11 (X) = ii(x)))’]
(e —6)2
_289Pucunp B[ (00 —P(A=117100) = 1))’
B (e —£€)?

=0(n?)
. - _1
Hence, P(SUp,csupp(x) |gn(x) - %| < % —£8)=>1-0(n"2).

With (a)-(f), we can invoke the conclusion in Theorem 5.1 in [Che+17b], and get the asymptotic
normality of the TI estimator. O

C Proof of Causal Identification

Theorem 1. Assume the following:

1. (Causal structure) The causal relationships among A, A, Z, Y, and X satisfy the causal DAG in
Figure 2;

2. (Overlap) 0 < P(A=1|X,,7,X;) < 1;

3. (Intention equals perception) A= A almost surely with respect to all interventional distributions.
Then, the CDE is identified from observational data as

CDE = P := By 5, [E[Y | n(X),A=1]—E[Y | n(X),A=0]], (3.4
where n(X) := (Q(0,X),Q(1,X)).

)
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Proof. We first prove that this two-dimensional confounding part n(X) satisfies positivity.
Since (Q(0,X), Q(1,X)) = (E[Y | A=1,X,,2,X;], E[Y | A=0,X4,7,X,]) is a function of
(Xanz> X7), the following equations hold:
P(A=1]Q(0,X),Q(1,X)) =E(A | Q(0,X),Q(1,X))
=E[E(A| Xanz,X7) 1Q(0,X),Q(1,X)] (C.1
=E[P(A= 1| Xs\z,X7) | Q(0,X),Q(1,X)].
As 0 < P(A= 1| X4,7,X7) <1, we have 0 < P(A = 1| Q(0,X),Q(1,X)) < 1. Furthermore, we
have 0 < P(A=1| Q(0,X),Q(1,X)) < 1 due to almost everywhere equivalence of A and A.
Since A=A, we can rewrite (3.1) by replacing A with A in the following form:
CDE =Ey,, x, | i=1 | E(Y | do(A=1),Xs7,X;) —E(Y | do(A= 0),Xs.7,X7) |
=By, x, |ic1 | B(Y |A=1,X4,7,X;)—E(Y | A=0,X07,X7) |
=Eyx,,x, |41 E(Y [A=1,X)—E(Y |A=0,X) ]
=By, x, | ic1 [E(Y | A=1,Q(0,X),Q(1,X))]—E[E(Y | A=0,Q(0,X),Q(1,X))]
=Ex, ,x, |ic1 [E(Y | A=1,9(X))]-E[E(Y | A=0,7(X))]
=Ex | i1 [E(Y | A=1,n(X)]-E[E(Y | A=0,7(X))].
The equivalence of the first and the second line is because X7, X block all backdoor paths
between A and Y (See Figure 2) and 0 < P(A= 1| Q(0,X),Q(1,X)) < 1. Thus, the “do-operation”
in the first line can be safely removed. Equivalence of the second line and the third line is due to
QAX)=E (Y | A X407, X Z), which is subject to the causal model in Figure 2. The last equation

is based on the fact that n(X) is a function of only X,,, and X,. (It can be easily checked by
using the definition of the expectation.)

(C.2) shows that (Q(0,X),Q(1,X)) is a two-dimensional confounding variable such that CDE is
identifiable when we adjust for it as the confounding part.

(C.2)

O

Note that if f and h are two invertible functions on R, (f(Q(0,X)),h(Q(1,X))) also suffices the
identification for CDE. Since the sigma algebra should be the same for (Q(0,X),Q(1,X)) and

f(Q(0,X)),h(Q(1,X)), ie.,
o (Q(0,X),Q(1,X)) = o (f(Q(0,X)),h(Q(1,X))).
Hence, we have
P(A=11Q(0,X),Q(1,X))=P(A=1] f(Q(0,X)),h(Q(1,X))),
E(Y 1Q(0,X),Q(1,X)) =E(Y | £(Q(0,X)), h(Q(1,X))).

D Additional Experiments

(C.3)

We conduct additional experiments to show how the estimation of causal effect changes 1) over
different nonparametric models for the propensity score estimation, and 2) when using different
double machine learning estimators on causal estimation. Specifically, for the first study, we apply
different nonparametric models and the logistic regression to the estimated confounding part
N(X) = (QO(X ), Q. (X )) to obtain propensity scores. We use ATT AIPTW in all above cases for
causal effect estimation. For the second study, we fix the first two stages of the TI estimator, i.e.
we apply Q-Net for the conditional outcomes and compute propensity scores with the Gaussian
process regression where the kernel function is the summation of dot product and white noise.
Estimated conditional outcomes and propensity scores are plugged into different double machine
learning estimators. We make the following conclusions with results of above experiments.

The choice of nonparametric models is significant. Table 3 summarizes results with applying
different regression models for the propensity estimation. We can see that suitable nonparametric
models will strongly increase the coverage proportion over true causal estimand. Therefore, we
conclude that the accuracy in causal estimation is highly dependent on the choice of nonparametric
models. In practice, when there is some prior information about the propensity score function,
we should apply the most suitable nonparametric model to increase the reliability of our causal
estimation.
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The ATT AIPTW is consistently the best double machine learning estimator. Table 4 shows
results by applying different double machine learning estimators. We apply both estimators for
the average treatment effect (ATE) and the controlled direct effect (CDE). The bias of “unadjusted”
estimator £"V¢ is also included in Table 4 (a). For bias, ATT AIPTW £ has comparable results
with other double machine learning estimators in most cases. For coverage proportion of
confidence intervals, though it has lower rates in some cases, ™! has consistently the best
performance. Especially in high confounding situations, the advantage of ™" is obvious.

Estimator For each dataset, we compute estimators as follows. n; and n, stands for the
number of individuals in the treated and controlled group. n = n; + ny is the total number of
individuals.

[13 : ” : 3 . Anaive _ L — L
* “Unadjusted” baseline estimator: 7" =/~ >, ,Yi— 72,4 o Vi

* “Outcome-only” estimator: £2 = nil o a=1Q1,i —Qo,i

© ATT AIPTW: £ = 3% A(Y; = Qo) — (1= A)(Y; — Qo ) o5

Table 3: The choice of nonparametric models for the TI-estimator is significant. Tables show average
bias and 95% confidence intervals’ coverage of £™ with applying different nonparametric models in
the second stage. The Gaussian process regression with the dot product+ white noise kernel has the
best performance (lowest bias and highest coverage proportion). The treatment level is equal to true
CDE, which takes 1.0 (with causal effect) and 0.0 (without causal effect). Low and high noise level
corresponds to y = 1.0 and 4.0. Low and high confounding level corresponds to . = 50.0 and 100.0.

(a) Average bias

Noise: Low High

Treatment (oracle causal effect): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High
GPR (Dot Product+White Noise) 0.069 0.059 0.113 0.074 0.088 0.049 0.002 0.089
GPR (RBF) 0.150 0.348 0.156 0.329 0.363 0.452 0.344 0.424
KNN 0.147 0.334 0.144 0313 0316 0372 0.304 0.356
AdaBoost 0.074 0.349 0.061 0323 0.526 0.497  0.479 0.464
Logistic 0.070 0.057 0.114 0.073 0.086 0.047 -0.001 0.087

(b) Coverage proportions of 95% confidence intervals

Noise: Low High

Treatment (oracle causal effect): 1.0 0.0 1.0 0.0

Confounding: Low  High Low High Low High Low High
GPR (Dot Product+White Noise) 57% 84% 57% 79%  87% 80% 77% 81%
GPR (RBF) 31% 0% 41% 0% 7% 7% 17% 19%
KNN 18% 0% 39% 0% 11% 8% 11% 8%
AdaBoost 25% 0% 35% 0% 0% 0% 0% 0%
Logistic 58% 84% 57% 79% 87% 80% 78%  81%

E Discussion of Low Coverage

In this section, we discuss why the confidence intervals we get (See Table 1) have lower coverage
than the nominated level 95%. We conduct diagnostics and find that the inaccuracy of Q’s
estimations is responsible for the low coverage. We compute biases, variances, and coverages
of 7™'s with different mean squared errors E[(Q — Q)?] by using different numbers of datasets.
According to Figure 4—Figure 5, as the mean squared error of Q increases, the bias of 7™! grows
and the coverage of ™' drops. Specifically, the highest coverage of each setting is almost 95%
(use 50 datasets with most accurate conditional outcome estimations). In practice, one direct
way to improve the TI estimator’s accuracy is to apply better NLP models so that more accurate
conditional outcome estimations can be obtained.



Table 4: The ATT AIPTW is consistently the best double machine learning estimator for this causal problem.
Tables show average bias and 95% confidence intervals’ coverage of different causal estimations. ATT
AIPTW 2™ shows consistently the lowest bias and highest coverage rate. For propensity score estimation,
the Gaussian process regression with the dot product+ white noise kernel is applied for all estimators.
The treatment level is equal to true CDE/true ATE, which takes 1.0 (with causal effect) and 0.0 (without
causal effect). Low and high noise level corresponds to y = 1.0 and 4.0. Low and high confounding level
corresponds to 3, = 50.0 and 100.0.

(a) Average bias

Noise: Low High

Treatment (oracle CDE): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low High
unadjusted 2" 1.071 2.143 1.071 2.1453 1.068 2.140 1.069 2.140
ATE AIPTW 0.094 0.178 0.128 0.195 0.122 0.106 0.061 0.140
ATE BMM 0.094 0.176 0.128 0.193 0.122 0.106 0.061 0.140
ATE IPTW -0.574  -1.492  -1.839 -1.807  -0.082  -0.592  -0.393  -0.649
ATT AIPTW: 27! 0.069 0.059 0.114 0.074 0.088 0.049 0.002 0.089
ATT BMM 0.075 0.147 -0.031 0.062 0.621 0.454 0.464 0.337
ATT TMLE: 0.084 0.194 0.085 0.196 0.186 0.136 0.174 0.163

(b) Coverage Proportions of 95% confidence intervals

Noise: Low High

Treatment (oracle CDE): 1.0 0.0 1.0 0.0

Confounding: Low High Low High Low High Low  High
ATE AIPTW 37% 36% 69% 33% 75% 79% @ 79% @ 71%
ATE BMM 39% 35% 70% 36% 75% 79% 79% 71%
ATE IPTW 11% 1% 0% 1% 90% 39% 44% 37%
ATT AIPTW: £ 57% 84% 57% 79% 87% 80% 77%  81%
ATT BMM 26% 4% 49%  41% 1% 3% 1% 14%
ATT TMLE 48% 22% 75% 24% 51% 77% 72% 67%
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Figure 4: Biases and variances increase while coverages decrease as the mean squared errors of Q (Q
loss) becomes larger. This experiment uses 100 datasets with 3, = 1 (with causal effect), . = 50.0 (low
confounding), and y = 4.0 (high noise).
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becomes larger. This experiment uses 100 datasets with 3, = 1 (with causal effect), f. = 100.0 (high
confounding), and y = 4.0 (high noise).



	Introduction
	Notation and Problem Setup
	Identification and Causal estimand
	Method
	Outcome only estimator
	Treatment Ignorant Effect Estimation (TI-estimator)

	Discussion
	Experiments
	Amazon Reviews
	Application: Consumer Complaints to the Financial Protection Bureau

	Theorem and Proof of Asymptotic Normality
	Proof of Causal Identification
	Additional Experiments
	Discussion of Low Coverage

