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Abstract

Superconductors have many promising applications in power transmission and1

power magnet development because of their special characteristics. However,2

new superconductor discovery requires extensive trial-and-error experimentation,3

which is time-consuming and expensive. The development of machine learning4

techniques makes it possible to identify superconductors and predict their critical5

temperature from the material’s properties. This paper briefly reviews machine6

learning’s application in superconductors discovery and its critical temperature7

prediction. Related datasets and different proposed methods are included. And we8

also discussed the future research directions and opportunities in this field.9

1 Introduction10

The superconductor is a kind of material with a characteristic critical transition temperature Tc below11

which the resistance drops to zero [1; 2]. It also has another unique property known as Meissner12

Effect [3] that it would eject the magnetic field if was cooled below the transition temperature Tc.13

Much attention has been paid to superconductors for its potential application in achieving more14

efficient electric power transmission and developing more powerful magnets for electric motors,15

energy storage, medical equipment and industrial separations [4]. Its clean energy-saving feature can16

definitely contribute to the global sustainable development goal.17

Critical Temperature Prediction is crucial for superconductors discovery as materials with high18

critical temperatures are what we can use widely and economically in real applications. Bardeen-19

Cooper-Schrieffer (BCS) theory [5] proposed in 1957, known as the first microscopic theory of20

superconductivity, has explained the phenomenon in many materials. However, it still meets dif-21

ficulties in some unconventional superconductors. Understanding the fundamental mechanism of22

high transition temperature thoroughly is even more challenging. Finding new superconductors23

with high critical temperature prediction is time-consuming and expansive because of the difficulties24

in theoretical explanation and the small fraction of superconductors in candidate materials [6; 7],25

requiring extensive trial-and-error experimentation [8].26

Although the exact mechanism is still unknown, it is believed that the structures and some characteris-27

tics of the material like bond lengths, valency properties of ions, and the Coulomb coupling between28

electronic bands determines the conductive properties [9]. Data-driven methods allow learning from29

known superconductors and linking the characteristics of the material with its conductive properties30

and the critical temperature. The rise of machine learning makes it possible for more efficient super-31

conductor discovery and more accurate critical temperature prediction, thus narrowing the search for32

superconducting materials with high critical temperatures.33

This paper gives a short review of some existing works for machine learning’s application in the34

prediction of superconductors’ critical temperatures. Both traditional machine learning-based methods35
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and novel deep learning methods are mentioned. This progress shows that the prospect of machine36

learning and deep learning in material discovery is broad.37

2 Related Datasets and Databases38

Data is the core part of machine learning for both training and evaluation. In this section, we list39

some crucial datasets and databases of superconductors and material science.40

NIST High Temp. Superconducting Materials (HTS) Database [10] NIST High Temp. Super-41

conducting Materials (HTS) Database contains evaluated thermal, mechanical, and superconducting42

property data for oxide superconductors. It includes the compounds derived from the Y-Ba-Cu-O,43

Bi-Sr-Ca-Cu-O, Tl-Sr-Ca-Cu-O, and La-Cu-O chemical families, as well as other variants of the44

cuprate and bismuthate materials that have superconductivity. Information on physical characteristics45

such as density and crystal structures are provided.46

Superconductivty Data Data Set [11] Superconductivity Data Data Set comes from the NIST High47

Temp. Superconducting Material Database. Eighty-one features extracted from 21263 superconduc-48

tors, along with the critical temperature and chemical formula, are provided. The task is to predict49

the critical temperature based on the features extracted.50

SuperCon [12] Created by the Japanese National Institute for Materials Science, SuperCon contains51

16,413 superconductors and their corresponding critical temperatures.52

DataS, DataK [13; 14] DataS and DataK are subsets of SuperCon. DataS contains 6198 materials53

(3984 cuprates, 971 iron-based and 1243 other types), while DataK contains 13000 materials (626754

cuprates, 1142 iron-based and 5585 other types).55

The Materials Project [15] Material Project is a core part of the Materials Genome Initiative,56

which contains information on 146,323 materials and 24,989 molecules currently. Lattice structures,57

formation energy, and band gaps of crystals are provided.58

NIST Inorganic Crystal Structure Database (ICSD) [16] ICSD is an extensive database for com-59

pletely identified inorganic crystal structures containing over 260,000 crystal structures, and around60

12,000 new structures are added every year. The first record in this database can date back to 1913.61

The Open Quantum Materials Database (OQMD)[17] Created by Chris Wolverton’s group at62

Northwestern University, the OQMD database contains DFT calculated thermodynamic and structural63

properties of 1,022,603 materials. The approximately 300,000 calculated structures are partly from64

the ICSD and partly from iterating over many chemistries for several simple prototypes.65

Crystallography Open Database (COD) [18] COD is a collection of crystal structures of organic,66

inorganic, metal-organic compounds and minerals. It contains approximately 37,000 inorganic67

compounds and alloys.68

3 Critical Temperature Prediction69

Critical temperature prediction is a regression problem to obtain Tc value from proprieties of materials.70

Both traditional machine learning and deep learning methods have been applied in this task.71

3.1 Traditional Machine Learning Methods72

The general workflow of critical temperature prediction based on traditional machine learning methods73

is shown in Figure 1. The core step in this workflow is feature extraction. Standard features include74

elemental property statistics, electronic structure attributes like material’s atomic mass, density, first75

ionization energy, atomic radius, density, electron affinity, fusion heat, thermal conductivity and76

valence, as well as their mean, weighted mean, geometric mean, weighted geometric mean, entropy,77

entropy weighted, range, weighted range, standard deviation, and weighted standard deviation [19].78

Besides, the chemical formula can also be used as feature. Based on the Periodic Table of elements,79

the chemical formula matrix [20] can be built as input.80

Common machine learning methods include Linear Regression, LASSO Regression [21], Ridge81

Regression [22], Support Vector Regression (SVR) [23; 24; 25], Random Forest [26], Decision Tree82

2



Figure 1: The training workflow of traditional machine learning methods for critical temperature
prediction

[27], Elastic-net [28], XGBoost [29] and so on. And these machine learning methods can be used83

combined with classic intelligent optimization methods like Particle Swarm Optimization (PSO)84

[30; 31]. In this subsection, we will review some existing works that focus on building more effective85

feature extraction methods and use different machine learning methods to regress critical temperature.86

Zhang et al. [32] proposed an RS-PSO-SVR prediction model, combining Rough Set (RS) theory [33],87

PSO and SVR methods. PSO is used to determine the key parameters in SVR including regularized88

constant C, and the kernel function parameter γ. RS preprocessing algorithm is used to calculate the89

weight of each feature. The vector of the distance between interacting layers ζ and the calculated90

spacing between interacting charges within layers ` are the input of the RS-PSO-SVR prediction91

model. Back propagation neural network (BPNN) [34] is used as a baseline.92

Stanev et al. [13] built a classification firstly to separate materials into two distinct groups depending93

on whether Tc is above or below a threshold temperature Tsep. Random Forest and its variant methods94

are used to predict Tc. The Materials Agnostic Platform for Informatics and Exploration (Magpie)95

[35] was employed to compute a set of attributes for each material, including elemental property96

statistics and electronic structure attributes.97

Matsumoto et al. [36] calculated the mean value, mean deviation, and standard deviation for each98

composition in element groups to build 53 descriptors as input features. The machine learning method99

used is also Random Forest regression.100

Xie et al. [37] used low-dimensional descriptors of various measures of the phonon spectrum and the101

electron-phonon interaction, proposed by Allen and Dynes [38] for machine learning. They got an102

optimal equation for critical temperature prediction, which led to some improvement from Allen and103

Dynes’s fit.104

Roter et al. [39] used Exponential Gaussian Process Elimination, Fine Tree, Boosted Tree, and a105

Gaussian Support Vector Machine (SVM) for critical temperature regression. The Bagged Tree106

method best predicted the values of Tc. The element-vectors input is the chemical composition matrix107

to represent chemical content. The authors argued that predictors such as the number of valence108

electrons, electronegativity, covalent radius, electron affinity, or the number of unfilled orbits are not109

directly relevant for superconductivity.110

Gaikwad et al. [20] used chemical formula from the atomic table directly as input and applied Random111

Forest, Decision Tree, Bayes Model, Linear Regression, Decision Tree PCA, SVR, XGBoost, and112

SVMRBF methods for regression.113

Liu et al. [40] applied the random forest regression, SVR and the artificial neural network regression114

methods were used. The maximum mass difference ∆M of atoms and the average atomic masse M̄115

were used as a descriptor. Moreover, a multi-step learning strategy was applied to solve problems of116

noisy data.117

García-Nieto et al. [19] used a hybrid regressive model combining the multivariate adaptive regression118

splines (MARS) approximation [41; 42] with the whale optimization algorithm (WOA) [43] for119
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Figure 2: The training workflow of deep learning methods for critical temperature prediction

prediction. The Ridge, Lasso, and Elastic-net regression models were used as baselines. They used120

the mean, weighted mean, geometric mean, weighted geometric mean, entropy, entropy weighted,121

range, weighted range, standard deviation, and weighted standard deviation of material’s atomic122

mass, density, first ionization energy, atomic radius, density, electron affinity, fusion heat, thermal123

conductivity and valence as input features.124

The proprieties used for prediction in Revathy et al.’s work [44] are mean atomic mas, geometric125

mean, atomic mass, entropy atomic mass, range atomic mass, standard atomic mass, Fie, mean126

density, electron affinity, mean fusion heat, thermal conductivity and valence. Machine learning127

methods include Linear Regression, Decision Tree Regressor, XGBoost, Huber Regressor [45].128

Zhang et al. [46] developed the Gaussian process regression method, a nonparametric kernel-based129

probabilistic model, for doped Fe-based superconductor critical temperature prediction from structural130

and topological parameters. And they also applied the Gaussian process regression model to a wider131

variety of superconductor families [9].132

Zhang and Zhu et al. [47] applied DScribe software [48] to build a SOAP descriptor, representing133

the local environment around a center atom by Gaussian-smeared neighbor atom positions made134

rotationally invariant [49], transforming atomic structural information database to input features of135

the machine learning models.136

Revathy et al. [50] utilized fie, atomic mass, radius, density, electron affinity, fusion heat, the137

valence electron, critical temperature, and thermal conductivity. Random Forest Regressor, XGBoost138

Regressor, Artificial Neural Networks, Support Vector Regressor, Decision Tree Regressor, Gradient139

Boosting Regressor, AdaBoost Regressor, and Simple Linear Regressor are used for training and140

testing. In their experiments, Random Forest Regressor achieved the best results.141

3.2 Deep learning Methods142

Past years have witnessed significant progress in theories and applications of deep neural networks,143

which has emerged as a most heated area of machine learning research [51; 52]. Deep neural networks144

learn the representations needed for the tasks by composing enough processing layers to transform145

the representation at a lower level (starting with the raw input) into a representation at a higher and146

more abstract level [53], showing an excellent capability in understanding complex, high-dimensional147

data.148

Most deep learning attempts at superconductors’ critical temperature prediction are based on CNNs149

or CNNs hybrid-based models. Therefore, making the material as a representation that can be input150

into CNNs is the first step. Unlike features in traditional machine learning, representations of material151

in deep learning are mainly based on chemical/molecular formulas.152

Li et al. [54] proposed a hybrid neural network (HNN) that combines a convolutional neural network153

(CNN) and long short-term memory neural network (LSTM). Vector representations of 87 atoms were154

obtained by singular value decomposition (SVD) of the atomic environment matrix used Atom2vec155

methods [37] according to the order of the atoms in the chemical formula.156
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Figure 3: An example of building a material representation based on the Periodic Table, the figure is
from [57]. For a compound X2Y Z, where X, Y or Z is one element in the 52 determined elements.
The representation matrix was initialized by −1 while the blank squares were set to 0. The value for
the X element’s position in the representation matrix was set to 28 and the values for Y and Z were
set to 14. And then the matrix was multiplied by 20 to mimic an image for easier training.

Dan et al. [55] proposed a convolutional gradient boosting decision tree (ConvGBDT), which157

replaced replace the fully connected layer in regular CNNs by GBDT model for regression. Statistical158

elemental properties in molecular formulas are used for material representation.159

In Xiong et al.’s superconductor critical temperature prediction experiments [56], based on Zheng et160

al.’s method [57] shown in Figure 3, periodic table representation of materials was used with chemical161

information in the two-dimensional arrangement of elements as the input of CNNs.162

Konno et al. [14] also use a method called "reading the period table" to the representation of163

material also based on the representation of materials. The original table is split into four tables164

corresponding to s, p, d, and f blocks, which show the orbital characteristics of the valence electrons.165

The dimensions of the input representation of CNNs are 4 × 32 × 7.166

Viatkin et al. [58] used six networks for the model ensemble: an LSTM network, four CNNs, and167

one embedding ensemble of two CNNs. The outputs are concatenated together and then flattened168

before the fully connected layers.169

3.3 Evaluation170

Critical temperature prediction can be evaluated by commonly used evaluation metrics in regression171

as a regression task. And various cross-validation methods are applied to make the evaluation results172

fairer and more convincing.173

3.3.1 Evaluation Metrics174

The commonly used evaluation metrics in critical temperature prediction are listed in Table 1, where175

xi is the actual value, yi is the predicted value, and n is the number of values.176

3.3.2 Evaluation Methods177

Cross-validation is a common method in machine learning for convincing evaluation. There are178

many different cross-validation methods. k-fold cross-validation split a dataset into k subsets, each of179

which is used as a test set, and the rest are used as training sets. And the average cross-validation180

recognition accuracy of k times is used as the result. Leave-one-out cross-validation(LOOCV) used181

each sample as a test set alone for a n samples dataset, and used the remaining n− 1 samples as a182

training set each time.183

To better show explorative prediction capability of a machine learning method, some special evaluation184

methods designed for critical temperature prediction are proposed.185

Meredig et al. [59] argued the overestimation problem of traditional machine learning evaluation186

methods. A leave-one-cluster-out cross-validation (LOCO CV) and a simple nearest-neighbor187

benchmark to show model performance were introduced.188

Xiong et al. [56] also focused on building evaluation methods that can better reflect explorative189

prediction capability. They proposed a k-fold-m-step forward cross-validation to evaluate machine190
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Table 1: Evaluation Metrics in Critical Temperature Prediction

Metrics Equation

MAE
∑n

i=1|xi−yi|
n

MSE 1
n

∑n
i=1 (xi − yi)

2

RMSE

√∑n
i=1(xi−yi)

2

n

MAPE 100%
n

∑n
i=1

∣∣∣xi−yi

yi

∣∣∣
R2 1 −

∑n
i=1(xi−yi)

2∑n
i=1(xi−y)

2

learning algorithms for materials discovery. The critical temperature prediction problem was also191

addressed.192

4 Conclusion and Discussion193

Machine learning, including traditional methods and deep learning methods, is widely used in194

superconductors’ critical temperature prediction. Feature selection/extraction and representation195

building are crucial in the learning process. The performance in open datasets is inspirational for196

further application of machine learning in material properties prediction.197

Current material representation based on periodic cannot reflect molecular/crystal connection and198

geometry. Although there has been some research on the graph-based representation of the material,199

the application in superconductors’ critical temperature is limited. Thus graph-based learning and200

geometric learning can be good directions.201
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