
Under review as a conference paper at ICLR 2022

COMPOSING FEATURES: COMPOSITIONAL MODEL
AUGMENTATION FOR STEERABILITY OF MUSIC
TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Music is a combinatorial art. Given a starting sequence, many continuations are
possible, yet often only one is written down. With generative models, we can
explore many. However, finding a continuation with specific combinations of fea-
tures (such as rising pitches, with block chords played in syncopated rhythm)
can take many trials. To tackle the combinatorial nature of composing features,
we propose a compositional approach to steering music transformers, building on
lightweight fine-tuning methods such as prefix tuning and bias tuning. We in-
troduce a novel contrastive loss function that enables us to steer compositional
models over logical features using supervised learning. We examine the difficulty
in steering based on whether features musically follow a prime or not, using ex-
isting music as a proxy. We show that with a relatively small number of extra
parameters, our method allows bias tuning to perform successful fine-tuning in
both the single-feature and compositional setting.

1 INTRODUCTION

Recent research has focused on ways of adapting unconditional language models to perform well
on conditional tasks they were not initially trained on. Methods such as fine-tuning, side-tuning,
bias-tuning, and prompt or prefix tuning have emerged as lead candidates for such tasks such as
steering the sentiment of or words mentioned in a sentence (Ben-Zaken et al., 2021; Li & Liang,
2021; Lester et al., 2021; Dathathri et al., 2020). However, such tasks are normally presented in
a non- or minimally-compositional approach (possibly controlling for two orthogonal variables,
such as sentiment and topic (Keskar et al., 2019), but rarely more than that). In contrast, in the
domain of music generation, sequence-continuation is inherently a highly compositional problem:
the user likely has many aspects of the output they would like to control, such as speed, dynamics,
harmony, or texture, each of which can be decomposed into multiple sub-features. Furthermore,
the relationship between these features and the output is more diffuse than in the NLP settings:
while in examples such as Keskar et al. (2019), individual words indicate the different conditions
being satisfied, in music the entire sequence of tokens are used in evaluating a single feature (for
instance, average pitch over a span of time depends on all tokens representing that span). This
makes compositionality even more challenging than in the text generation setting. On the other
hand, music is a sequential domain where there are clear logical features which can be examined,
such as average dynamics or number of notes per second. This further motivates using music as a
test-bed for highly compositional tasks involving simultaneously steering an autoregressive model
towards several particular desired attributes according to different classifiers.

As a more immediate motivation, consider the following scenario: a composer wants to sample from
the pre-trained Music Transformer (Huang et al., 2018) to complete a musical phrase. In addition
to the overall musical quality of the continuation, they want it to stay in key and switch to using
block chords (i.e. a few notes played together at once). Repeatedly sampling continuations from
the model and cherry-picking a good sample (rejection sampling) would be very labor-intensive, but
assuming they can compute binary features for “stays in key” and “uses block chords”, the composer
could sample a large number of continuations and cherry-pick from the smaller set of continuations
which exhibit all features (thereby delegating part of the accept/reject step). While significantly less
labor-intensive, this solution could potentially require sampling enormous amounts of continuations

1

Under review as a conference paper at ICLR 2022

Prime “Uses block
 chords”

Original
continuation

Only one
block chord

Steerable
Transformer Many block chords!

Figure 1: Showcasing a prime from the test set steered in two different ways. The original contin-
uation has arpeggiation (the steep rising and falling lines) throughout. The right piano rolls were
steered with a logical feature that checks for many simultaneous notes (block chords). In particular,
the bottom right piano roll shows that the model learned to ”exploit” the logical feature by repeating
a low note, while still sounding musical.

if, for instance, 6 the requested features significantly differ from those of the priming sequence (such
that it and the desired continuation form an unlikely sequence according to the generative model).
In other words, the pre-trained model could be a poor proposal distribution for some applications.

In this work, we are interested in developing better proposal distributions through an adaptation ap-
proach which can steer the generative model towards continuations which i) are significantly more
likely to exhibit the requested feature, and ii) exhibit a satisfactory musical quality. The approach
should be able to accommodate a large number of features without adding significant memory or
computation overhead. We achieve this by making features composable, making it possible to steer
features independently and also multiple features at once. Figure 1 shows that when using a pre-
trained transformer model augmented with a relatively small number of additional parameters, we
are able to steer towards arbitrary logical music features and achieve realistic music generation sim-
ply by sampling directly from the model 1. In contrast, the same unconditional transformer model
fails to produce any examples satisfying those features even when generating 100 samples. With our
method, a composer can control both the short-chunk features, and the long-form structure, by chain-
ing together chunks steered in different directions (using different combinations of features), while
maintaining long-term coherence (by leveraging the transformers’ full self-attention receptive field).
See the demo in the footnote for longer steered examples, and compositions semi-automatically gen-
erated using our feature tuning approach in a musician-directed way.

2 PROBLEM FORMULATION

Music Transformer is an autoregressive language model which decomposes the joint probability of
a sequence of tokens x1, . . . , xN (where xn ∈ K, and K is a set of categorical tokens) into

p(x = x1, . . . , xN) = p(x1)

N∏
n=2

p(xn | x1, . . . , xn−1). (1)

It leverages a common modeling approach which represents the conditional probabilities p(xn |
x1, . . . , xn−1) using a neural network (Bengio et al., 2003). As its name implies, Music Transformer
uses a Transformer network architecture (Vaswani et al., 2017a). Each token xn is first mapped to a
real-valued embedding en (for instance using a lookup table), then the network maps each sequence
e1, . . . , en−1 to a probability distribution for the value of xn over the elements of K.

Sequence continuation in an autoregressive language model works by repeatedly sampling from
its distribution over the next token given the previous tokens. Starting from some priming se-

1Listen to these examples at https://storage.googleapis.com/composing-features/
index.html

2

https://storage.googleapis.com/composing-features/index.html
https://storage.googleapis.com/composing-features/index.html

Under review as a conference paper at ICLR 2022

quence xp = (x0, . . . , xM), we first sample yM+1 ∼ p(· | x0, . . . , xM), then yM+2 ∼ p(· |
x0, . . . , xM , yM+1), and so on, until the end of the continued sequence xc = (yM+1, . . . , yN). 2

Many downstream tasks can be cast as sequence continuation problems, including the steerable
music generation problem investigated in this work.

We are given a set of features Φ = {φj}Jj=1, φj ∈ KN → {0, 1}. Each φj takes the value 1 if a
prime-continuation pair exhibits that feature (which we note as (xp,xc) |= φj), and 0 otherwise.
Note that the features must take both prime and continuation sequences as input, since some contin-
uation features may be relative to the priming sequence (e.g. “significantly higher pitch”). Our true
objective with respect to feature φj is to steer the model towards a distribution which maximizes

Exc|xp

[
(xp,xc) |= φj

]
(2)

while maintaining musicality. This objective is non-differentiable because (xp,xc) |= φj is a non-
differentiable satisfiability criterion.

In addition to the single-feature problem, we also consider the problem of composed features Φ̂, i.e.

(xp,xc) |= Φ̂ ≡
∧

φj∈Φ̂⊆Φ

(xp,xc) |= φj , (3)

to account for scenarios where a user is interested in steering the model towards multiple features
(such as in the “stays in key” and “exhibits extreme dynamical contrast” scenario dicussed in the
introduction).

3 PROPOSED APPROACH

We start by describing our proposed approach in the single-feature case and later on explain how we
adapt it to the compositional case.

3.1 LIKELIHOOD-BASED TRAINING

While approaches using reinforcement learning—such as KL-regularized deep Q-learning (Jaques
et al., 2016)—could be used to overcome the non-differentiability problem, in this work we consider
a proxy loss in the form of the negative log-likelihood

l = − log pθ(xc | xp), (4)

which we use in two ways:

1. Positively: given a prime–continuation pair (xp,xc) |= φj , we find an adaptation θj of
the model’s parameters θ that minimizes lX (we use the symbol X to denote the fact that l
is computed using the correct parameters θj). By using prime–continuation examples that
sound musical, we ensure that the steered model stays musically grounded.

2. Negatively: we can also take advantage of other features φi for which (xp,xc) 6|= φi,
by maximizing l× (we use the symbol × to denote the fact that l is computed using the
incorrect parameters θi).

The positive case corresponds to maximum-likelihood training. Additionally, we can exploit the
intuition that the adapted parameters θj should “explain” the prime–continuation pair (xp,xc) |= φj
better than θi (for some feature φi for which (xp,xc) 6|= φi) or θ (the non-adapted model parameters,
with a corresponding loss l∅). In other words, we can maximize the probability of choosing θj over
θi and θ by minimizing a contrastive loss of the form

2To simplify the discussion, we assume a fixed sequence length N , but the explanation applies to sequences
of varying lengths as well.

3

Under review as a conference paper at ICLR 2022

Maestro dataset

Prime Continuation

Steerable
Transformer

Unconditional
Transformer

Figure 2: Overall training setup, where the (positive) feature being learned is φj (with parameters
θj), and the negative feature is φi (with parameters θi). The parameters θ, used for the unconditional
negative log-likelihood, are not learned.

− log

(
pθj (xc | xp)

pθj (xc | xp) + pθi(xc | xp) + pθ(xc | xp)

)
= − log

(
e−lX

e−lX + e−l× + e−l∅

)
(5)

We propose a loss that interpolates between Equations 4 and 5 using an α coefficient (which is
treated as a hyperparameter):

Lj = α · lX − (1− α) · log

(
e−lX

e−lX + e−l× + e−l∅

)
(6)

Intuitively, the maximum-likelihood setting should suffice to achieve our adaptation goals, but in
practice we find that the approach benefits from the inclusion of negative cases through a contrastive
loss term. We tried different α values and found α = 0.8 to work well in practice. See Figure 2 for
an illustration of the training setup.

3.2 FEATURE-CONDITIONAL ADAPTATION

Fine-tuning all model parameters can be prohibitive if the number J of features is large (let alone
combinatorially large in the compositional case); however, recent work provides effective and
lightweight alternatives:

1. Prefix tuning (Li & Liang, 2021) works by preprending learnable task embeddings
e−K , . . . , e−1 to the priming sequence embeddings e1, . . . , eM . The loss gradient is then
backpropagated through the language model and into the task embeddings.

2. Bias-tuning (Ben-Zaken et al., 2021) works by adapting a small subset θb ⊂ θ of the
transformer’s parameters, namely the biases of its affine transformations. Since these biases
amount to a small fraction of the model’s parameters, in the case where the number of
tasks is relatively small, tuning separate θb for each task becomes feasible. We present an
extension to bias-tuning where the number of tasks is exponential in the number of total
classification functions, using an approach which nevertheless only requires a number of
tuned parameters linear in the number of total classification functions.

In practice, while prefix tuning showed promise in the single-feature setting, we were unable to
make it work in the compositional setting. We therefore focus our investigation on bias-tuning and
present prefix tuning results in the Appendix.

In the compositional setting, a naive approach requires learning 2|Φ|−1 model adaptations. Instead,
we propose to express the adaptation for a composed feature Φ̂ as the combination of the θj of its
underlying features φj ∈ Φ̂. More specifically, for bias-tuning we average the adapted biases as

4

Under review as a conference paper at ICLR 2022

Em
b. 1

MLP MLP MLP MLP

Bias vector

Em
b. J

Concat/Average

Pre�x
tuning

Average

MLP MLP

Bias vector

Average

Bias tuning

+ + + OutputInput

Em
bedding layer

Inner layer

Inner layer

Figure 3: Prefix- and bias-tuning methods used to steer the music transformer.

θb =
1

|Φ̂|

∑
φj∈Φ̂

θb,j . (7)

Note that we do not simply use the above heuristic to compose feature adaptations post-hoc; we train
the model in a compositional setting (by sampling prime–continuation pairs (xp,xc) |= Φ̂ for vari-
ous composed features) so that the single-feature adaptations can learn to work well in conjunction
with each other. See Figure 3 for an illustration of the methods.

4 METHODOLOGY

4.1 MUSICAL FEATURES

We consider 18 features representing properties that a composer would typically like to control; see
the Appendix for a complete list. Features include both absolute and relative features. Absolute
features apply only to the continuation, while relative features, such as “the continuation is signifi-
cantly higher in pitch than the prime” or “the continuation is significantly more rhythmically dense
than the prime” describe relations between the prime and continuation. Note that this type of model
should work with any feature function which takes in sequences and returns a boolean; we chose
examples that have clear musical meanings and are easy to implement.

In addition to exploring binary musical features, we also explore fine-tuning to a provided dataset;
in our experiments we fine-tune to the Maestro dataset (Hawthorne et al., 2019), and refer to this
feature as φz.

4.2 TRAINING DATA

The prime–continuation pairs used to train the feature-specific adaptations are drawn from the Mae-
stro dataset (Hawthorne et al., 2019), an open-source collection of virtuoso piano performances.
Each prime is 100 tokens long (approximately 2-10 seconds), and each continuation is also 100
tokens long. Note that since all prime–continuation pairs are drawn from the Maestro dataset, we
implicitly assume that (xp,xc) |= φz always holds.

In the single-prefix setting, when a prime–continuation pair (xp,xc) is sampled for feature φj , we
also select another feature φi at random such that (xp,xc) 6|= φi and use its corresponding θi in
Equation 6.

In the compositional case, we first extend Φ so that each feature has a corresponding “negated”
feature (e.g. “has both loud and soft pitches” vs “no contrast in dynamics”), bringing the total

5

Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8
Training epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
M

LE
 L

os
s

Unconditional loss

Non-contrastive

Method
Bias tuning (cofactual)
Bias tuning (counterfactual)
Dataset
Train
Validation

0 1 2 3 4 5 6 7 8
Training epoch

Contrastive

Figure 4: MLE loss during training of the bias tuning method. Using the contrastive loss is more
effective at discriminating between cofactual and counterfactual features (see subsection 5.2).

number of features to 2 · |Φ| = 36. By definition, each prime–continuation pair exhibits exactly 18
features. When sampling a pair (xp,xc), we compute lX with respect to a random subset of those
18 features (with size drawn at random from U [1, 12]). We compute l× by negating some of the
sampled features.

4.3 IMPLEMENTATION

In the single-feature case, we use a standard prefix tuning model as per Li & Liang (2021), as-
sociating every feature φj with a prefix vj . As in their paper, we used the finding that a rela-
tively low-dimensional embedding space of feature prefixes (200 dimensions) projected to a higher-
dimensional embedding (2048 dimensions) using a shared MLP across feature prefixes worked well.
The pre-trained transformer model had no parameters modified, but was changed to accept these
2048-dimensional vectors as 4 512-dimensional vectors prepended before the 512-dimensional vec-
tors representing the input tokens (as the transformer’s latent embedding was 512 dimensions). The
resulting sequence of vectors were masked using causal attention in order to predict xc.

The loss used in the compositional setting is almost identical to Equation 6, the main difference
being in the contrastive loss implementation. The features used to compute l× are obtained by
negating some of the features used to compute lX, and the fraction β of negated features is used to
modulate the interpolation coefficient as α′ = α −min(α, β). The intuition is that the differences
in steering should be more noticeable when comparing feature sets with less overlap.

5 RESULTS—SINGLE-FEATURE REGIME

5.1 TRAINING STATISTICS

As seen in Figure 4, in the contrastive case the model not only learns to assign progressively more
weight to (xp,xc|vj) (the “positive” examples), but also learns to assign progressively less weight
to (xp,xc|vi) (the “negative” examples).

5.2 THE LARGE VARIANCE IN DIFFICULTY OF PRIME-FEATURE PAIRS

As shown in Figure 6, there is a large difference in the efficacy of rejection sampling with respect
to primes from the Maestro validation dataset which are followed in the Maestro validation dataset
by a satisfying continuation (here termed “cofactual primes”), and rejection sampling with respect
to primes from the maestro validation dataset which in fact are not followed by a satisfying contin-
uation (“counterfactual primes”). In fact, for some continuations the “counterfactual” probability of

6

Under review as a conference paper at ICLR 2022

Prefix tuning (Contrastive) Prefix tuning (Non-contrastive) Unconditional

Cofactual 0.58 (0.57, 0.59) 0.54 (0.53, 0.55) 0.38 (0.37, 0.39)
Counterfactual 0.39 (0.38, 0.40) 0.33 (0.32, 0.34) 0.23 (0.22, 0.24)
Random 0.43 (0.42, 0.44) 0.40 (0.39, 0.41) 0.27 (0.26, 0.27)

Table 1: Comparison of the efficacy of Prefix tuning (using contrastive and non-contrastive) with
the efficacy of the unconditional approach. The numbers in parentheses indicate 95% confidence
intervals.

efficacy is almost 0%. Prefix tuning not only increases the efficacy of steering overall, but also tends
to decrease the relative difficulty of “counter-factual” steering.

5.3 CONTRASTIVE LOSS GENERALLY IMPROVES EFFICACY OVER NON-CONTRASTIVE LOSS

While efficacy differs for different primes and features, contrastive learning generally signifi-
cantly outperforms non-contrastive learning, which almost universally outperforms the uncondi-
tional model. As seen in Table 1, it is usually (but not always) the case that the efficacy of the model
trained with contrastive loss is significantly higher than that trained with non-contrastive loss, and
very rarely do both contrastive and non-contrastive models fail (i.e., fail to perform significantly
better, and actually seem to do worse, than the unconditional model).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Difficulty

0.0

0.2

0.4

0.6

0.8

Ef
fic

ac
y

Difficulty vs. Efficacy

Unconditional
Non-contrastive
Contrastive

1 2 3 4 5 6
Number of steered features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y
of

 a
ch

ie
ve

m
en

t

Cofactual
Condition

Maestro
Unconditional
Bias tuning
Prefix (concatenate)
Prefix (average)

1 2 3 4 5 6
Number of steered features

Random

Figure 5: Left: Difficulty is quantified as the efficacy of the unconditional model. In most
cases, contrastive learning significantly improves over non-contrastive learning (as evidenced by
the dashed orange lines). In only a few cases does prefix tuning fail to improve over the uncon-
ditional model. Middle and right: Efficacy of various methods with various numbers of steered
features on cofactual and random features.

6 RESULTS IN THE COMPOSITIONAL SETTING

Steering unconditionally becomes intractable as the number of steered features increases.
Under a naive assumption of independence among feature presence, one would assume that the
rejection sampling efficacy in steering a total of n features would roughly equal pn, where p is the
mean probability of a feature being satisfied. While this assumption is naive, we do find that in
the unconditional setting, the level of efficacy of unconditional sampling drops substantially as the
number of features to be steered increases. On average, only 0.2% of the time were 6 cofactually
steered features all achieved correctly using rejection sampling.

Trained models degrade at a much slower rate as the number of steered features increases.
While the bias-tuning model had average efficacy of 59% in the single prefix setting with randomly
sampled prefixes, it dropped by an order of magnitude (to 7.9%) in the randomly-sampled 6-prefix
setting (still significantly outperforming unconditional rejection sampling).

Bias-tuning is the most effective way to steer a model as the number of steered features in-
creases. This was true both for “cofactual” steered features and random steered features (although

7

Under review as a conference paper at ICLR 2022

random steered features understandably was a harder task overall). Notably, even though prefix tun-
ing had performed well when trained on single prefixes, it failed to generalize to the compositionally-
trained case even in the cases that a single prefix was being steered.

Listening test The above experiments evaluate the effectiveness of methods in satisfying the re-
quested features. To evaluate the musical quality of these ‘successful’ generations, we conducted
a listening study with musicians to compare the steering of three features between our overall best
augmentation approach (i.e. bias tuning) and the baseline of rejection sampling on the unconditional
model. Questions were posed as pairwise comparisons, and listeners were asked to rate which one
they thought was more musical. To prepare the samples, we randomly picked 120 primes from the
test set. For steering each prime, we randomly chose three-feature sets that were present in the
dataset as the conditioning features. We asked eight musicians to each rate fifteen pairs. The results
show that our bias-tuning approach was much preferred over the unconditional, and the results were
statistically significant (p < 0.0003). Bias tuning won 63 of the pairwise comparisons, tied for 26
pairs, and lost for 31 pairs. This shows that our bias-tuning approach is not only more effective in
steering features, but also produces musically more compelling results.

7 FUTURE WORK

As prior work demonstrates, there are several possible avenues for steering transformers. We have
established a baseline for compositional steering with bias-tuning and shown negative results on
compositional steering with prefix tuning, but believe novel loss functions, architectures, and de-
coding strategies could improve on these methods. In addition, other methods for steering, such as
Plug-and-Play, side-tuning or CTRL can be applied to this area with potentially promising results.

This study focused on binary features, but most of those binary features were actually derived from
cutoffs on continuous features, like amount of dynamic contrast or percentage pitch increase. Future
work could include features which are associated with a continuous value from 0 to 1.

8 RELATED LITERATURE

This work would be impossible without the wealth of research on transformer models for sequence
generation tasks. Starting with Vaswani et al. (2017a), researchers realized that this paradigm en-
ables far more coherent and diverse generation than the recurrent neural networks typically used
before (Sherstinsky, 2018). Another milestone was the development of GPT-3, which showed that
with sufficient size/training data such models could potentially perform few shot learning (Brown
et al., 2020). Several subsequent papers, however, demonstrated the inadequacy of few-shot learn-
ing for many tasks (Perez et al., 2021). A few alternatives to online few-shot learning have since
emerged.

Prompt tuning was initially explored ad-hoc in the context of finding ways to produce interesting
output by GPT-3, and was formalized by Lester et al. (2021). While originally prompts were de-
signed as tokens from the transformer’s vocabulary, subsequent studies generalized them to any
embeddings prepended to the input (Li & Liang, 2021). We extend research into prefix tuning by
considering aggregation methods among compositional prefixes.

Feature-wise transformations, i.e. elementwise scaling and/or biasing of features in a network based
on side-information, have been applied in a wide variety of problem settings—see Dumoulin et al.
(2018) for an overview. We draw direct inspiration from BitFit’s bias-tuning approach (Ben-Zaken
et al., 2021) and cast it as a feature-wise transformation approach. By factoring the additive pertur-
bations in Figure 3 into their preceding layers, our bias-tuning implementation can be described as a
multi-task variant of BitFit where the parameterizations are tied across features. A key difference is
that our feature-specific adaptations are designed to be composable, which to our best knowledge has
not yet been explored in the context of large language models—although compositional adaptations
using feature-wise multiplicative interactions have been studied in the context of zero-shot image
classification (Purushwalkam et al., 2019). Similarly, side-tuning, or summing task-specific features
with general language-model features, has shown significant enhancements in few-shot learning, but
is typically not performed compositionally (Zhang et al., 2019).

8

Under review as a conference paper at ICLR 2022

Contrastive learning is used in representation learning to train a network which maps “similar”
(positive) inputs to nearby representations and “dissimilar” (negative) inputs far away from the pos-
itive inputs. See Le-Khac et al. (2020) for a theoretical framework and overview. In generative
modeling, contrastive divergence (Hinton, 2002) was proposed to train Restricted Boltzmann Ma-
chines (Smolensky, 1986), image-to-image translation models (Baek et al., 2021; Park et al., 2020;
Liu et al., 2021), and conditional (Kang & Park, 2020) and unconditional (Jolicoeur-Martineau,
2018) generative adverarial networks (Goodfellow et al., 2014). Our contrastive formulation differs
from previous work in two ways. First, rather than selecting positive and negative examples related
to the conditioning signal (musical features in our case) and using the contrastive loss to predict
which example “agrees” with the signal, we select positive and negative conditioning signals (i.e.
different musical features) and use the contrastive loss to predict which conditioning signal explains
the prime–continuation pair best. Second, we also treat the absence of a conditioning signal (i.e.
the original generative model) as a negative conditioning signal, meaning that we want the model
conditioned on the “correct” musical features to explain the prime–continuation pair better than the
unconditional model.

Other work leveraging language models for multiple tasks include CTRL (Keskar et al., 2019) and
Plug-and-Play models (Dathathri et al., 2020). However, CTRL has the disadvantage that it requires
knowing the tasks during the training of the large language model, while Plug-and-Play requires
multiple passes through the language model, which can be expensive for sufficiently large models.
Background in controllable deep generative models for music Advances in sequence model-
ing (van den Oord et al., 2016; Vaswani et al., 2017b; van den Oord et al., 2017; Choromanski
et al., 2020) has enabled long-form music generation in both the symbolic domain (Oore et al.,
2020; Huang et al., 2019; Payne, 2019; Liutkus et al., 2021; Hsiao et al., 2021) and the audio do-
main (van den Oord et al., 2016; Hawthorne et al., 2019; Dieleman et al.; Dhariwal et al., 2020).

Similar to language, researchers in music generation have been adapting these language models to-
wards controllable generation, such as by conditioning on one part of a musical piece to complete
the rest, such as melody harmonization (Simon et al., 2008; Liang, 2016; Choi et al., 2020), or more
generally arbitrary partial score completion (Huang et al., 2017; Hadjeres et al., 2017). Represen-
tational learning approaches such as autoencoders (AEs) and variational autoencoders (VAEs) have
also been used for steering interpolations or transformations along learned latent dimensions, a low-
level disentangled attribute-based dimension such as note density (Roberts et al., 2018; Kawai et al.,
2020), or a high-level learned dimension such as energy level in mood that is then realized through
its mapping to low-level features such as note-density and rhythm (Tan & Herremans, 2020), con-
trolling chord progressions and texture independently (Simon et al., 2018; Wang et al., 2020), or
rearranging a piece to have increased polyphony or rhythmic density (Wu & Yang, 2021).

Controllable generative models typically does not offer users full control (i.e. only allows users to
specify a small number of low-level or high-level controls, or through an example), while relying
on its learned stylistic distribution and/or features encoded from the user-specified template piece
to fill in the rest of the musical details. In contrast, traditional constraint satisfaction based music
generation systems do not have prior knowledge of the desired stylistic distribution, instead rely
on users to specify a large number of musical constraints to guide its search (see Pachet & Roy
(2001) for a survey). When using the former systems, users may still feel a lack of agency, while the
latter can impose a laborious process. Our approach explores the space in between, allowing users to
compose multiple features along different musical dimensions for short chunks (similar to constraint
specification), while leveraging pretrained transformers‘ expressiveness to aid users in maintaining
coherence in long-form composition.

9 CONCLUSION

We have shown that music transformers can be directed towards a specific generative “task” using
some of the same methods as natural language transformers. In addition, we have studied compo-
sitionality in this domain. Compositionality (including relatively high levels of compositionality)
is critical in the music domain (and other domains) if the user wants control over the output. We
establish that compositionality is a hard problem, and propose adaptations of several solutions from
the literature (bias-tuning and prefix-tuning) to address these challenges. We find success with bias-
tuning, but not with prefix-tuning. While our results are promising, there is clearly significant room
for improving on the efficacy of steering a transformer compositionally.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Hyunjung Shim. Rethinking the
truly unsupervised image-to-image translation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14154–14163, 2021.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. ArXiv, abs/2106.10199, 2021.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. The journal of machine learning research, 3:1137–1155, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Kristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, and Jesse Engel. Encoding musi-
cal style with transformer autoencoders. In International Conference on Machine Learning, pp.
1899–1908. PMLR, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. ICLR, 2020.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, J. Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. ArXiv, abs/1912.02164, 2020.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Sander Dieleman, Aaron van den Oord, and Karen Simonyan. The challenge of realistic music
generation: modelling raw audio at scale. In Advances in Neural Information Processing Systems.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018. doi: 10.23915/distill.00011.
https://distill.pub/2018/feature-wise-transformations.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Gaëtan Hadjeres, François Pachet, and Frank Nielsen. DeepBach: a steerable model for Bach
chorales generation. In International Conference on Machine Learning, pp. 1362–1371, 2017.

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander
Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano music modeling
and generation with the MAESTRO dataset. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=r1lYRjC9F7.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. Compound word transformer:
Learning to compose full-song music over dynamic directed hypergraphs. AAAI, 2021.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=r1lYRjC9F7

Under review as a conference paper at ICLR 2022

Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Doug Eck. Coun-
terpoint by convolution. In Proceedings of the International Conference on Music Information
Retrieval, 2017.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis Hawthorne, An-
drew M. Dai, Matthew D. Hoffman, and Douglas Eck. An improved relative self-attention mech-
anism for transformer with application to music generation. CoRR, abs/1809.04281, 2018. URL
http://arxiv.org/abs/1809.04281.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. In International Conference on Learning Representations, 2019.

Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning recurrent neural net-
works with reinforcement learning. CoRR, abs/1611.02796, 2016. URL http://arxiv.
org/abs/1611.02796.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard
gan. arXiv preprint arXiv:1807.00734, 2018.

Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional image generation.
arXiv preprint arXiv:2006.12681, 2020.

Lisa Kawai, Philippe Esling, and Tatsuya Harada. Attributes-aware deep music transformation. In
Proceedings of the 21st international society for music information retrieval conference, ismir,
2020.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
CTRL: A conditional transformer language model for controllable generation. CoRR,
abs/1909.05858, 2019. URL http://arxiv.org/abs/1909.05858.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. IEEE Access, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. CoRR, abs/2104.08691, 2021. URL https://arxiv.org/abs/2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
CoRR, abs/2101.00190, 2021. URL https://arxiv.org/abs/2101.00190.

Feynman Liang. Bachbot: Automatic composition in the style of bach chorales. Masters thesis,
University of Cambridge, 2016.

Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco: Diverse con-
ditional image synthesis via contrastive generative adversarial network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16377–16386, 2021.

Antoine Liutkus, Ondřej Cıfka, Shih-Lun Wu, Umut Simsekli, Yi-Hsuan Yang, and Gael Richard.
Relative positional encoding for transformers with linear complexity. In International Conference
on Machine Learning, pp. 7067–7079. PMLR, 2021.

Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. This time with
feeling: Learning expressive musical performance. Neural Computing and Applications, 32(4):
955–967, 2020.

François Pachet and Pierre Roy. Musical harmonization with constraints: A survey. Constraints, 6
(1):7–19, 2001.

Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
image-to-image translation. In European Conference on Computer Vision, pp. 319–345. Springer,
2020.

Christine Payne. MuseNet. https://openai.com/blog/musenet, 2019. Accessed: 2020-
05-04.

11

http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1611.02796
http://arxiv.org/abs/1611.02796
http://arxiv.org/abs/1909.05858
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://openai.com/blog/musenet

Under review as a conference paper at ICLR 2022

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
CoRR, abs/2105.11447, 2021. URL https://arxiv.org/abs/2105.11447.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-driven
modular networks for zero-shot compositional learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 3593–3602, 2019.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hierarchical latent
vector model for learning long-term structure in music. ICML, 2018.

Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term memory
(LSTM) network. CoRR, abs/1808.03314, 2018. URL http://arxiv.org/abs/1808.
03314.

Ian Simon, Dan Morris, and Sumit Basu. MySong: automatic accompaniment generation for vocal
melodies. In Proceedings of the SIGCHI conference on human factors in computing systems.
ACM, 2008.

Ian Simon, Adam Roberts, Colin Raffel, Jesse Engel, Curtis Hawthorne, and Douglas Eck. Learning
a latent space of multitrack measures. arXiv preprint arXiv:1806.00195, 2018.

P. Smolensky. Information Processing in Dynamical Systems: Foundations of Harmony Theory, pp.
194–281. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

Hao Hao Tan and Dorien Herremans. Music fadernets: Controllable music generation based on
high-level features via low-level feature modelling. ISMIR, 2020.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. NeurIPS, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017b.

Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. Learning interpretable representation for
controllable polyphonic music generation. ISMIR, 2020.

Shih-Lun Wu and Yi-Hsuan Yang. Musemorphose: Full-song and fine-grained music style transfer
with just one transformer vae. arXiv preprint arXiv:2105.04090, 2021.

Jeffrey O. Zhang, Alexander Sax, Amir Roshan Zamir, Leonidas J. Guibas, and Jitendra Malik.
Side-tuning: Network adaptation via additive side networks. CoRR, abs/1912.13503, 2019. URL
http://arxiv.org/abs/1912.13503.

A MUSICAL FEATURES

Note that while some features may appear to be opposites (e.g., “loud” vs “soft”), and while it is
true that they are mutually exclusive, in fact it is possible for a sequence to satisfy neither (e.g., if
it’s in a middle dynamic level).

Absolute features:

1. “Loud” - minimum velocity is greater than 60

2. “Soft” - maximum velocity is less than 60

12

https://arxiv.org/abs/2105.11447
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1912.13503

Under review as a conference paper at ICLR 2022

3. “Has Dynamic Contrast” - Extreme Dynamic Contrast” - The sequence has two notes
whose velocities differ by more than 30

4. “Extreme Dynamic Contrast” - The sequence has two notes whose velocities differ by more
than 70

5. “All consonances” - the sequence has no dissonances (simultaneous notes with an absolute
difference modulo 12 of 1, 2, 10, 11, or 6)

6. “Long sharp dissonance” - the sequence has a sharp dissonance (simultaneous notes being
played with a difference of 1 or 11) that lasts for a significant amount of time

7. “Only melody” - only a single note is playing at a time
8. “Few onsets” - when grouping notes according to attack time, there are few groups per

second
9. “Many onsets” - when grouping notes according to attack time, there are many groups per

second
10. “Blocks of two” - there are groups of two notes being played simultaneously
11. “Larger blocks” - there are blocks of three or more notes being played simultaneously
12. “Within single key” - all notes fit within a single major scale

Relative features:

1. “Significantly lower average pitch than prime”
2. “Significantly higher average pitch than prime”
3. “Significantly higher number of grouped attacks than prime”
4. “Significantly lower number of grouped attacks than prime”
5. “Significantly more notes per second than prime”
6. “Significantly fewer notes per second than prime”
7. “Could fit in the same key as the prime”
8. “Has 2 or more pitch classes (pitch mod 12) which the prime doesn’t have”

B ADDITIONAL FIGURES

C ON A PER-FEATURE LEVEL, THERE IS A BENEFIT TO INCLUDING AN
ADDITIONAL STEERED FEATURE IN CONJUNCTION WITH n OTHER
STEERED FEATURES AS OPPOSED TO REJECTION SAMPLING + n - 1
STEERED FEATURES UP TO n = 6.

As seen in Figure 8, the benefit of steering doesn’t only come from an increased likelihood of a
single feature (which in fact would make the joint likelihood of 6 total features higher, but would
not indicate increased compositionality). Rather, for a single constant feature, bias-tuning towards
that feature increases steerability even in the presence of 5 other steered features.

13

Under review as a conference paper at ICLR 2022

Prefix tuning Prefix tuning Unconditional
Feature (Contrastive) (Non-contrastive)

all consonances Cofactual 0.51 (0.48, 0.54) 0.31 (0.27, 0.35) 0.37 (0.34, 0.40)
Counterfactual 0.37 (0.34, 0.40) 0.23 (0.19, 0.27) 0.28 (0.25, 0.31)

Random 0.30 (0.26, 0.34) 0.27 (0.23, 0.31) 0.17 (0.14, 0.20)
contrasting dynamics Cofactual 0.78 (0.75, 0.82) 0.82 (0.79, 0.86) 0.52 (0.48, 0.56)

Counterfactual 0.68 (0.64, 0.72) 0.74 (0.71, 0.78) 0.37 (0.33, 0.41)
Random 0.73 (0.69, 0.77) 0.83 (0.80, 0.87) 0.44 (0.39, 0.48)

extreme dynamic contrast Cofactual 0.36 (0.32, 0.40) 0.45 (0.40, 0.49) 0.08 (0.06, 0.10)
Counterfactual 0.28 (0.24, 0.32) 0.33 (0.29, 0.37) 0.02 (0.01, 0.04)

Random 0.25 (0.21, 0.28) 0.39 (0.35, 0.44) 0.01 (0.00, 0.02)
few onsets Cofactual 0.58 (0.54, 0.63) 0.49 (0.45, 0.54) 0.06 (0.04, 0.09)

Counterfactual 0.21 (0.18, 0.25) 0.16 (0.12, 0.19) 0.02 (0.00, 0.03)
Random 0.27 (0.23, 0.31) 0.25 (0.21, 0.29) 0.02 (0.01, 0.03)

long sharp dissonance Cofactual 0.36 (0.32, 0.40) 0.14 (0.11, 0.17) 0.04 (0.02, 0.05)
Counterfactual 0.38 (0.34, 0.43) 0.06 (0.04, 0.08) 0.01 (0.00, 0.02)

Random 0.40 (0.35, 0.44) 0.10 (0.07, 0.12) 0.01 (-0.00, 0.01)
loud Cofactual 0.87 (0.84, 0.89) 0.84 (0.81, 0.88) 0.79 (0.75, 0.82)

Counterfactual 0.73 (0.69, 0.77) 0.55 (0.51, 0.59) 0.35 (0.31, 0.39)
Random 0.74 (0.70, 0.78) 0.57 (0.53, 0.61) 0.44 (0.40, 0.49)

many verticalities Cofactual 0.82 (0.79, 0.86) 0.78 (0.75, 0.82) 0.21 (0.18, 0.25)
Counterfactual 0.50 (0.45, 0.54) 0.44 (0.39, 0.48) 0.13 (0.10, 0.16)

Random 0.70 (0.66, 0.74) 0.61 (0.57, 0.65) 0.20 (0.16, 0.23)
potentially same key Cofactual 0.64 (0.60, 0.68) 0.55 (0.51, 0.59) 0.65 (0.61, 0.69)

Counterfactual 0.18 (0.15, 0.21) 0.17 (0.13, 0.20) 0.18 (0.15, 0.22)
Random 0.32 (0.28, 0.36) 0.29 (0.25, 0.33) 0.34 (0.30, 0.38)

relative pc shift Cofactual 0.52 (0.48, 0.56) 0.47 (0.43, 0.52) 0.34 (0.30, 0.38)
Counterfactual 0.41 (0.37, 0.45) 0.31 (0.27, 0.35) 0.20 (0.16, 0.23)

Random 0.44 (0.39, 0.48) 0.40 (0.36, 0.44) 0.26 (0.23, 0.30)
significantly higher center of mass Cofactual 0.26 (0.22, 0.29) 0.23 (0.19, 0.26) 0.21 (0.18, 0.25)

Counterfactual 0.17 (0.14, 0.20) 0.13 (0.11, 0.16) 0.10 (0.08, 0.13)
Random 0.15 (0.12, 0.18) 0.14 (0.11, 0.17) 0.14 (0.11, 0.17)

significantly higher note density Cofactual 0.64 (0.60, 0.68) 0.64 (0.60, 0.69) 0.72 (0.68, 0.76)
Counterfactual 0.50 (0.46, 0.55) 0.50 (0.46, 0.55) 0.61 (0.57, 0.65)

Random 0.52 (0.48, 0.56) 0.57 (0.52, 0.61) 0.59 (0.55, 0.64)
significantly higher rhythmic density Cofactual 0.58 (0.54, 0.62) 0.59 (0.55, 0.63) 0.58 (0.54, 0.62)

Counterfactual 0.40 (0.36, 0.44) 0.47 (0.42, 0.51) 0.46 (0.41, 0.50)
Random 0.42 (0.38, 0.46) 0.46 (0.42, 0.51) 0.49 (0.45, 0.53)

significantly lower center of mass Cofactual 0.29 (0.25, 0.33) 0.25 (0.21, 0.29) 0.19 (0.16, 0.22)
Counterfactual 0.22 (0.18, 0.26) 0.15 (0.12, 0.18) 0.12 (0.09, 0.14)

Random 0.22 (0.19, 0.26) 0.18 (0.15, 0.21) 0.11 (0.08, 0.13)
significantly lower note density Cofactual 0.62 (0.57, 0.66) 0.58 (0.54, 0.62) 0.14 (0.11, 0.17)

Counterfactual 0.29 (0.25, 0.33) 0.29 (0.25, 0.33) 0.02 (0.00, 0.03)
Random 0.36 (0.32, 0.40) 0.37 (0.32, 0.41) 0.06 (0.04, 0.08)

significantly lower rhythmic density Cofactual 0.58 (0.54, 0.62) 0.51 (0.47, 0.55) 0.23 (0.19, 0.27)
Counterfactual 0.17 (0.14, 0.20) 0.11 (0.09, 0.14) 0.02 (0.00, 0.03)

Random 0.20 (0.16, 0.23) 0.20 (0.16, 0.23) 0.06 (0.04, 0.08)
soft Cofactual 0.58 (0.54, 0.62) 0.55 (0.51, 0.59) 0.32 (0.28, 0.36)

Counterfactual 0.26 (0.22, 0.30) 0.18 (0.15, 0.21) 0.04 (0.03, 0.06)
Random 0.28 (0.24, 0.32) 0.21 (0.18, 0.25) 0.08 (0.06, 0.11)

some verticalities Cofactual 0.92 (0.90, 0.95) 0.91 (0.89, 0.94) 0.74 (0.71, 0.78)
Counterfactual 0.81 (0.78, 0.84) 0.74 (0.70, 0.77) 0.64 (0.60, 0.68)

Random 0.90 (0.87, 0.92) 0.87 (0.84, 0.90) 0.76 (0.72, 0.80)
within single key Cofactual 0.62 (0.58, 0.66) 0.58 (0.54, 0.62) 0.63 (0.59, 0.67)

Counterfactual 0.53 (0.48, 0.57) 0.42 (0.37, 0.46) 0.54 (0.50, 0.58)
Random 0.59 (0.55, 0.63) 0.53 (0.49, 0.57) 0.60 (0.55, 0.64)

Table 2: Efficacy comparison across all features.

14

Under review as a conference paper at ICLR 2022

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cofactual

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Co

un
te

rfa
ct

ua
l

Figure 6: Varying difficulties of features, evaluated with the unconditional model.

all_
con

son
an

ces

con
tra

stin
g_d

yn
am

ics

ex
tre

me_d
yn

am
ic_

con
tra

st

few
_on

set
s

lon
g_s

ha
rp_

dis
son

an
ce lou

d

man
y_v

ert
ica

liti
es

po
ten

tia
lly_

sam
e_k

ey

rel
ati

ve
_pc

_sh
ift

sig
nif

ica
ntl

y_h
igh

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_h
igh

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_h
igh

er_
rhy

thm
ic_

de
nsi

ty

sig
nif

ica
ntl

y_l
ow

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_l
ow

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_l
ow

er_
rhy

thm
ic_

de
nsi

ty sof
t

som
e_v

ert
ica

liti
es

with
in_

sin
gle

_ke
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
t s

at
isf

yi
ng

 fe
at

ur
e

Counterfactual

all_
con

son
an

ces

con
tra

stin
g_d

yn
am

ics

ex
tre

me_d
yn

am
ic_

con
tra

st

few
_on

set
s

lon
g_s

ha
rp_

dis
son

an
ce lou

d

man
y_v

ert
ica

liti
es

po
ten

tia
lly_

sam
e_k

ey

rel
ati

ve
_pc

_sh
ift

sig
nif

ica
ntl

y_h
igh

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_h
igh

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_h
igh

er_
rhy

thm
ic_

de
nsi

ty

sig
nif

ica
ntl

y_l
ow

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_l
ow

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_l
ow

er_
rhy

thm
ic_

de
nsi

ty sof
t

som
e_v

ert
ica

liti
es

with
in_

sin
gle

_ke
y

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
t s

at
isf

yi
ng

 fe
at

ur
e

Cofactual

Prefix tuning (Contrastive) Unconditional Prefix tuning (Non-contrastive)

all_
con

son
an

ces

con
tra

stin
g_d

yn
am

ics

ex
tre

me_d
yn

am
ic_

con
tra

st

few
_on

set
s

lon
g_s

ha
rp_

dis
son

an
ce lou

d

man
y_v

ert
ica

liti
es

po
ten

tia
lly_

sam
e_k

ey

rel
ati

ve
_pc

_sh
ift

sig
nif

ica
ntl

y_h
igh

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_h
igh

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_h
igh

er_
rhy

thm
ic_

de
nsi

ty

sig
nif

ica
ntl

y_l
ow

er_
cen

ter
_of

_m
ass

sig
nif

ica
ntl

y_l
ow

er_
no

te_
de

nsi
ty

sig
nif

ica
ntl

y_l
ow

er_
rhy

thm
ic_

de
nsi

ty sof
t

som
e_v

ert
ica

liti
es

with
in_

sin
gle

_ke
y

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
t s

at
isf

yi
ng

 fe
at

ur
e

Random

Figure 7: Bar plots.

15

Under review as a conference paper at ICLR 2022

Figure 8: Additional gain after 5 features are already included occur along almost every feature,
suggesting that the bias-tuned transformer really can be used compositionally.

16

	Introduction
	Problem formulation
	Proposed approach
	Likelihood-based training
	Feature-conditional adaptation

	Methodology
	Musical Features
	Training data
	Implementation

	Results—single-feature regime
	Training statistics
	The large variance in difficulty of prime-feature pairs
	Contrastive loss generally improves efficacy over non-contrastive loss

	Results in the Compositional setting
	Future Work
	Related Literature
	Conclusion
	Musical Features
	Additional figures
	On a per-feature level, there is a benefit to including an additional steered feature in conjunction with n other steered features as opposed to rejection sampling + n - 1 steered features up to n = 6.

