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Abstract

The No Unmeasured Confounding Assumption is widely used to identify causal1

effects in observational studies. Recent work on proximal inference has provided al-2

ternative identification results that succeed even in the presence of unobserved con-3

founders, provided that one has measured a sufficiently rich set of proxy variables,4

satisfying specific structural conditions. However, proximal inference requires5

solving an ill-posed integral equation. Previous approaches have used a variety6

of machine learning techniques to estimate a solution to this integral equation,7

commonly referred to as the bridge function. However, prior work has often been8

limited by relying on pre-specified kernel functions, which are not data adaptive and9

struggle to scale to large datasets. In this work, we introduce a flexible and scalable10

method based on a deep neural network to estimate causal effects in the presence11

of unmeasured confounding using proximal inference. Our method achieves state12

of the art performance on two well-established proximal inference benchmarks.13

Finally, we provide theoretical consistency guarantees for our method.14

1 Introduction15

Causal inference is concerned with estimating the effect of a treatment A on an outcome Y from16

either observational data or the results of a randomized experiment. An estimand of primary17

importance is the average causal effect (ACE), which is the expected difference in Y caused by18

changing the treatment from value a to a0 for each unit in the study population, and is defined as19

a contrast between the expected value of the potential outcomes at the two levels of the treatment:20

E[Y a0
] � E[Y a]. However, in observational settings, the ACE is rarely equal to the observed21

difference in conditional means, E[Y |A = a0] � E[Y |A = a] due to confounding. In an attempt22

to eliminate the influence of confounding, investigators measure putative confounders X and23

subsequently make adjustments for X in their analyses.24

Given X , common approaches, such as standardization and inverse probability weighting (Hernán25

and Robins [1]), obtain valid estimates of the ACE given that the following assumptions hold: i)26

Positivity: Pr[A = a|X = x] > 0 for all x in the population, ii) Consistency: Y a = Y for all27

individuals with A = a, iii) No unmeasured confounding which results in conditional exchangeability:28

Y a
?? A|X ., and iv) No model misspecification.29

While positivity can be empirically verified, the remaining 3 assumptions are not. While model30

mispecification is likely in all real-world scenarios, flexible models and doubly robust estimators have31

been developed to mitigate the effect of this assumption[2]. Therefore, the assumption of conditional32

exchangeability, or equivalently, the No Unmeasured Confounding Assumption (NUCA), is the33

defining characteristic of this broad set of approaches to causal effect estimation (Hernán and Robins34

[3]). However, in many settings, it is unrealistic to assume that we are able to measure a sufficient set35

of confounders for A and Y such that conditional exchangeability holds.36
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Proximal inference is a recently introduced framework that allows for the identification of causal ef-37

fects even in the presence of unmeasured confounders [4, 5]. Proximal inference requires categorizing38

the measured covariates into three mutually exclusive (but not exhaustive) groups: treatment-inducing39

proxy variables Z, outcome-inducing proxy variables W , and “backdoor” variables X that affect40

both A and Y (i.e. typical confounders). See Figure 1 for an example of a directed acyclic graph41

(DAG) that admits identification under the assumptions of proximal inference. The proxy sets W and42

Z must contain sufficient information about the remaining unobserved confounders U , a condition43

that can be formalized by completeness assumptions. Under these and several other conditions, one44

can estimate average potential outcomes from data even in the presence of unmeasured confounding.45

Proximal inference methods have potential applications in medical settings, where a natural question46

is considering the effect of a treatment on an outcome in the presence of unmeasured confounding.47

Before applying proximal inference to real world problems, more validation is required before they48

can be used safely to inform medical decision-making.49

Existing methods for proximal inference can be divided into two categories: two-stage regression50

procedures and methods that impose a maximum moment restriction (MMR). In two-stage regression51

procedures, the first stage aims to predict outcome-inducing proxy variables W as a function of A,52

X , and Z. Then, the second stage regression estimates outcomes Y as a function of the predicted53

Ŵ and the treatment A, and measured confounders X . Tchetgen Tchetgen et al. [5] introduced the54

first estimation technique for proximal inference which was a two-stage procedure that used a model55

based on ordinary least squares regression. Mastouri et al. [6] extended this framework by replacing56

simple linear regression with kernel ridge regression. Xu et al. [7] increased feature flexibility further57

by incorporating neural networks as feature maps instead of kernels.58

In contrast, MMR methods are single-stage procedures to estimate average potential outcomes. Muan-59

det et al. [8] introduced MMR for reproducing kernel Hilbert spaces (RKHS). MMR critically relies60

on the optimization of a V-statistic or U-statistic for learning a function needed to calculate the ACE.61

Zhang et al. [9] used an MMR method to obtain point identification of the ACE in the instrumental vari-62

able (IV) setting and incorporated neural networks into their method by training with the V-statistic as63

a loss function and optimized using stochastic gradient descent. Mastouri et al. [6] demonstrated that64

the MMR framework with kernel functions can be used for proximal inference as well as IV regression.65

In this work, we introduce a new method, Neural Maximum Moment Restriction (NMMR) which is66

a flexible neural network approach that is trained to minimize a loss function derived from either a67

U-statistic or V-statistic to satisfy MMR in the proximal setting. The method introduced in this work68

makes several novel contributions to the proximal inference literature:69

• We introduce a new, single stage method based on neural networks for estimating potential70

outcomes and the ACE in the presence of unmeasured confounding.71

• We provide new theoretical consistency guarantees for our method.72

• We demonstrate state-of-the-art (SOTA) performance on two well-established proximal73

inference benchmark tasks.74

• We show for the first time how to incorporate domain-specific inductive biases using a75

convolutional model on a proximal inference task that uses images.76

• We provide the first unbiased estimate of the MMR risk function using the U-statistic rather77

than V-statistic in the proximal setting.78

2 Background: Proximal Inference79

Throughout the rest of this manuscript we will use capital letters (e.g. A) to denote random variables80

taking values in measurable spaces, (e.g. A; typically subsets of R). Lower case letters denote81

realizations of these random variables (e.g. A = a). Estimates of random variables will be indicated82

using “hat” notation, e.g. Ŷ would be an estimate for the random variable Y .83

Our goal is to estimate the average potential outcome a specified level of an treatment, i.e. E[Y a] is84

the average potential outcome under the treatment a. Without loss of generality, we refer to A as a85

treatment, though it could refer to any (possibly continuous) intervention. Proximal inference allows86

for the estimation of mean potential outcomes for Y a in the presence of unobserved confounders U87

provided that we have a sufficiently rich set of proxies Z,W along with observed confounders X88

that obey certain structural assumptions. The assumptions needed for identification are given below:89
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Figure 1: A summary of NMMR. Our method estimates the bridge function h, which can be used
to compute the average potential outcome E[Y a]. We rely on structural assumptions for the causal
DAG generating the data. NMMR uses a U or V statistic to train a neural network that solves a risk
function that reflects a maximum moment restriction function.

Assumption 1. A,U,W,X, Y, Z satisfy the conditional independences Y ?? Z|A,U,X and W ??90

(A,Z)|U,X .91

Note: Assumption 1 can be equivalently stated as the requirement that these random variables must92

be generated by one of 22 valid causal directed acyclic graphs (DAGs) for proximal inference [5].93

Figure 1 provides an example of a DAG that satisfies these assumptions. We can also formalize the94

notion of “rich enough” proxies with two assumptions about the completeness of U and Z:95

Assumption 2. For any square integrable function g, E[g(U)|A = a,X = x, Z = z] = 0,96

8(a, x, z) 2 A⇥ X ⇥ Z if and only if g(u) = 0 almost surely.97

Assumption 3. For any square integrable function g, E[g(Z)|A = a,W = w,X = x] = 0,98

8(a,w, x) 2 A⇥W ⇥ X if and only if g(z) = 0 almost surely.99

We will use two other assumptions at various points in the paper. The first guarantees the uniqueness100

of the bridge function, while the second ensures the risk function does not have false zeroes.101

Assumption 4. E [f (A,W,X)|A,X,Z] = 0 PA,X,Z-almost surely if and only if f (A,W,X) = 0102

PA,W,X -almost surely.103

Assumption 5. k : (A⇥ X ⇥ Z)2 ! R is continuous, bounded, and Integrally Strictly Positive104

Definite (ISPD), so that
R
f (⇠) k (⇠, ⇠0) f (⇠0) d⇠d⇠0 > 0 if and only if f 6= 0 PA,Z,X -almost surely.105

Assumptions 1-3 together with several regularity assumptions (see assumptions (v)-(vii) in [4]) ensure106

that there exists a function h such that:107

E[Y |A = a,X = x, Z = z] =

Z

W

h(a,w, x)p(w|a, x, z)dw (1)

Equation 1 is a Fredholm integral equation of the first kind and in general is difficult to solve for h.108

The function h is often referred to as the “bridge function” and Theorem 1 of Miao et al. [4] also109

showed that if one has a solution h, then average potential outcomes can be computed as:110

E[Y a] =

Z

W,X
h(a,w, x)p(w, x)dwdx = EW,X [h(a,W,X)] (2)

Thus, under the proximal inference framework an unbiased estimate of the average potential outcome111

E[Y a] is obtained by first estimating the bridge function h, by some ĥ, and then fixing a and taking112

the empirical average of ĥ over the remaining variables using a held-out dataset with M data points113

DW,X = {(wi, xi)}Mi=1, ˆE[Y a] = 1
M

PM
i=1 ĥ(a,wi, xi). Once these mean potential outcomes have114

been estimated, then contrasts of interest like the ACE can be calculated in a straight-forward manner.115

3 Related Work116

Kuroki and Pearl [10] first established identification of a causal effect in the setting of unobserved117

confounders by leveraging noisy proxy variables and estimating the distribution of U using external118
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datasets that allowed for estimation of a distribution p(w|u). These results were extended to allow for119

identification without recovery of U in Miao et al. [4] and Tchetgen Tchetgen et al. [5]. In particular,120

Tchetgen Tchetgen et al. [5] set out the 22 valid causal DAGs that satisfy Assumption 1 and allow121

for identification provided one has access to a sufficiently rich set of proxy variables. These authors122

also provide a 2-Stage Least Squares (2SLS) method to identify and estimate causal effects under123

the assumption that the bridge function has a linear form. Ghassami et al. [11] established a doubly124

robust method for proximal inference using influence functions.125

Earlier work applying machine learning techniques to the task of identification in the setting of126

proximal inference included Deaner [12], which relied on a two-stage penalized sieve distance127

minimization. Several later works similarly employed two-stage regressions with increasingly128

flexible basis functions to estimate potential outcomes. Mastouri et al. [6] developed a two-stage129

kernel ridge regression (Kernel Proxy Variables “KPV”) to estimate the bridge function h. While130

a kernel basis has more flexibility than the linear basis of Tchetgen Tchetgen et al. [5], Xu et al.131

[7] introduced an adaptive basis derived from neural networks. Their two stage regression method,132

Deep Feature Proxy Variables (DFPV), established the previous SOTA performance on the proximal133

benchmark tasks that we consider in our work.134

An alternative approach based on maximum moment restriction (MMR) uses single-stage estimators135

of the bridge function. MMR-based methods were established in Muandet et al. [8] as a way to136

enforce conditional moment restrictions [13]. Zhang et al. [9] introduced the MMR framework to137

the instrumental variable (IV) setting. The IV setting assumes a specific DAG where unobserved138

confounders can be circumvented by use of an instrument that is not confounded by U . IV DAGs can139

be considered a subset of proximal DAGs without outcome-inducing proxies W [5]. There are now140

several machine learning methods that can be applied in the IV setting [14–18]141

Of note, Zhang et al. [9] introduced MMR-IV which is related to Lewis and Syrgkanis [15] and142

Dikkala et al. [17]. MMR-IV involves optimizing a family of risk functions based on U- or V-statistics143

[19]. However, Zhang et al. [9] only consider the IV setting, which significantly differs from the144

proximal setting because of the absence of outcome-inducing proxy variables. Additionally, Zhang145

et al. [9] only optimize neural networks by a loss that corresponds to the V-statistic. The V-statistic146

provides a biased estimate [19] of its corresponding risk function, such as R(h) in Equation 3.147

Finally, Mastouri et al. [6] introduced an MMR-based method for proximal inference called Proximal148

Maximum Moment Restriction (PMMR). PMMR extends the MMR framework to the proximal149

setting through the use of kernel functions and also optimizes Equation 3 via a V-statistic. For a150

comparison of our model to PMMR and MMR-IV, see Table 1.151

4 Our Method: Neural Maximum Moment Restriction (NMMR)152

In this work we propose Neural Maximum Moment Restriction (NMMR) as a method to estimate153

average potential outcomes E[Y a] in the presence of unmeasured confounding. We consider the154

hypothesis class of h belonging to the family of deep neural networks given their well-established155

flexibility, ability to scale to large data sets, and for the ease with which domain-specific inductive156

biases can be included directly into the model (e.g. convolutions for images). Using a connection157

between maximum moment restrictions [8] and U- and V-statistics, we show how a single-stage158

neural network procedure can be used to provide estimates of the bridge function.159

Following Muandet et al. [8] and Zhang et al. [9], we can rewrite the integral equation (1)160

as a conditional moment restriction: E[Y � h(A,W,X)|A,X,Z] = 0. Then, E[(Y �161

h(A,W,X))g(A,X,Z)|A,X,Z] = 0 for any measurable function g on A ⇥ X ⇥ Z , as well.162

By taking the expectation over A,X,Z we obtain E[(Y � h(A,W,X))g(A,X,Z)] = 0 eliminating163

the need to take conditional expectations entirely. The intuition for this result is that any solution for164

h in the original conditional moment restriction will cause E[Y � h(A,W,X)|A,Z,X] to be 0 and,165

thus, the product with g(A,Z,W ) will also be 0, as well as the unconditional expectation, regardless166

of which function g one chooses. This creates an infinite number of moment restrictions and serves167

as the basis of the MMR framework of Muandet et al. [8]. This suggests a minimax strategy of168

searching for an estimate of h such that risk R(h) for the worst-case value of g is minimized:169

R(h) = sup
kgk1(E[(Y � h(A,W,X))g(A,X,Z)])2 (3)
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Following Zhang et al. [9]’s work in the IV setting, Mastouri et al. [6] (Lemma 2) showed that, if g170

is an element of an RKHS, R(h) can be rewritten in the form Rk(h) = E[(Y � h(A,W,X))(Y 0
�171

h(A0,W 0, X 0))k((A,X,Z), (A0, X 0, Z 0))] where (A0,W 0, X 0, Y 0, Z 0) are independent copies of172

the random variables (A,W,X, Y, Z) and k : (A ⇥ Z ⇥ X )2 ! R is a continuous, bounded,173

and Integrally Strictly Positive Definite (ISPD) kernel. Then, if h satisfies Rk(h) = 0, E[Y �174

h(A,W,X)|A,X,Z] = 0 PA,X,Z-almost surely. Thus, if we can find a neural network h that175

satisfies Rk(h) = 0, we will have obtained a PA,X,Z-almost sure solution to Equation 1 and can176

compute any desired average potential outcome with Equation 2.177

We can minimize Rk(h) for data D = {(ai, wi, xi, yi, zi)}Ni=1 by minimizing the expectation in
Mastouri et al. [6] (Lemma 2), which can be approximated by either a V-statistic [19]

R̂V (h) =
1

n2

nX

i,j=1

(yi � hi) (yj � hj) kij

or with a U-statistic [19]:

R̂U (h) =
1

n(n� 1)

nX

i,j=1,i 6=j

(yi � hi) (yj � hj) kij

where hi = h (ai, wi, xi) and kij = k ((ai, zi, xi) , (aj , zj , xj)). R̂U (h) is the minimum variance
unbiased estimator of Rk(h) [19], while R̂V (h) is a biased estimator of Rk(h). In practice, a
penalized version of R̂U (h) has a slight amount of bias, but in practice is much less biased than
even an unpenalized R̂V (h). Previous work either did not consider the U-statistic [6], or did not
utilize the U-statistic [9]. In our work, we introduce two variants of our method, NMMR-U and
NMMR-V, where the former is optimized with a U-statistic and the latter a V-statistic. We train the
neural networks in both variants with a regularized loss function:

L = (Y � h(A,W,X))TK(Y � h(A,W,X)) + �||h||2

where (Y � h(A,W,X)) is a vector of residuals from the neural network’s predictions and K is a178

kernel matrix with entries kij . Throughout, we choose k to be the RBF kernel (see Appendix B). If179

L is representing a V-statistic, then we include main diagonal elements of K. If L is representing a180

U-statistic, then we set the main diagonal to be 0.181

Once we’ve obtained an optimal neural network ĥ, we can compute an estimate of the average182

potential outcome with data from a held-out dataset with M data points DW,X = {(wi, xi)}Mi=1,183

ˆE[Y a] = 1
M

PM
i=1 ĥ(a,wi, xi)184

In contrast to PMMR [6], which uses kernels as feature maps for proxy and treatment variables,185

NMMR uses adaptive feature maps from neural networks. NMMR is similar to MMR-IV [9], but186

MMR-IV is restricted to the instrumental variable (IV) setting rather than the proximal inference set-187

ting. Table 1 places NMMR in context with existing methods for proximal inference and IV regression.188

Table 1: Comparison of the most related methods to NMMR.
Method Setting # of Stages Hypothesis Class Optimization Objective

KPV [6] Proximal 2 Kernels 2-stage least squares
DFPV [7] Proximal 2 Neural Networks 2-stage least squares
MMR-IV [9] IV 1 Neural Networks V-statistic
PMMR [6] Proximal 1 Kernels V-statistic
NMMR-V (ours) Proximal 1 Neural Networks V-statistic
NMMR-U (ours) Proximal 1 Neural Networks U-statistic

5 Consistency of NMMR189

In this section we provide a probabilistic bound on the distance of the estimated bridge function,190

ĥk,�,n, from the true bridge function, h⇤, in terms of the Radamacher complexity Rn(F) of a class191
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of functions F derived from elements of the hypothesis space H and the fixed kernel, k. Note192

that R̂k,�,n(h) = R̂U (h) + � khk22 (see Section 4). We use this bound to demonstrate that, under193

mild conditions, ĥk,�,n converges in probability to h⇤, and that, under an additional completeness194

assumption, h⇤ is unique PA,W,X -almost surely. This provides a consistent estimate of E[Y a].195

Theorem 1. Let h̃k minimize Rk(h) and ĥk,�,n minimize R̂k,�,n(h) for h 2 H and let h⇤ : A ⇥196

W ⇥ X ! R satisfy E [Y � h⇤(A,W,X)|A,X,Z] = 0 PA,X,Z-almost surely, where197

Rk(h) = E [(Y � h (A,W,X)) (Y 0
� h (A0,W 0, X 0)) k ((A,X,Z) , (A0, X 0, Z 0))]

R̂k,�,n(h) =
1

n(n� 1)

nX

i,j=1,i 6=j

[(yi � h (ai, wi, xi)) (yj � h (aj , wj , xj))

⇥ k ((ai, xi, zi) , (aj , xj , zj))] + � khk22
Also let,198

d2k (h, h
0) = E [(h (A,W,X)� h0 (A,W,X)) (h (A0,W 0, X 0)� h0 (A0,W 0, X 0))

⇥ k ((A,X,Z) , (A0, X 0, Z 0))]

Then, d2k (h
⇤, h) = Rk(h) and, with probability at least 1� �,199

d2k

⇣
h⇤, ĥk,�,n

⌘
 d2k

⇣
h⇤, h̃k

⌘
+ �M2 + 8MEA,X,Z

�
Rn�1

�
F

0

A,X,Z

�
+Rn

�
F

0

A,X,Z

��

+ 16M2Mk

✓
2

n
log

2

�

◆ 1
2

+ 10 (2 log 2)
1
2 M2Mkn

�
1
2

 d2k

⇣
h⇤, h̃k

⌘
+ �M2 + 8M (Rn�1 (F

0) +Rn (F
0))

+ 16M2Mk

✓
2

n
log

2

�

◆ 1
2

+ 10 (2 log 2)
1
2 M2Mkn

�
1
2

F 0

a,x,z = {fa,x,z | 9h2H8a02A,x02X ,z02Zfa,x,z (a
0, w0, x0, z0) = h (a0, w0, x0) k ((a0, x0, z0) , (a, x, z))},200

F 0 = {f | 9h2H,a2A,x2X ,z2Z8a02A,x02X ,z02Zf (a0, w0, x0, z0) = h (a0, w0, x0) k ((a0, x0, z0) , (a, x, z))}.201

Further, if Assumption 5 holds, so k is ISPD, then dk is a metric and, if the right hand side goes to202

zero as n goes to infinity,203 ���E [h⇤
|A,X,Z]� E

h
ĥk,�,n

���A,X,Z
i���

PA,X,Z

P
�! 0 so E

h
ĥk,�,n

���A,X,Z
i

P
�! E [h⇤

|A,X,Z].204

Corollary 8 provides a similar result for V-statistic estimators of R(h), meaning we can choose to use205

either U or V-Statistics and have similar guarantees.206

Theorem 2. Under Assumption 4, h⇤
is the unique solution to the integral equation PA,W,X -almost207

surely. Further, if E
h
ĥk,�,n

���A,X,Z
i

P
�! E [h⇤

|A,X,Z], ĥn
P
�! h⇤

.208

See Appendix A for proofs of Theorems 1 and 2 and Corollary 8. Taken together, these results tell us209

that, as long as our optimization algorithm is successful in estimating ĥk,�,n, it will asymptotically210

approach the true bridge function, h⇤. In order for this to occur, the right hand side of the inequalities211

in Theorem 1 must go to zero, which requires not only that the Rademacher terms vanish, but also212

that h̃k must approach h⇤ arbitrarily closely as n increases. In practice, this means increasing the213

complexity of the neural network, but doing so slowly enough the Rademacher complexity terms still214

decrease with sample size. Following Xu et al. [7], we note that recent results from Neyshabur et al.215

[20] suggest that the Rademacher complexity of a fixed network scales like n�
1
2 (similar to many216

other popular hypothesis classes) and that, although we cannot compute the scaling of the Rademacher217

terms directly due to the presence of the kernel function, we expect that they will decline with sample218

size and that, as the neural network becomes more complex, their scaling will more closely resemble219

terms derived from a pure neural network. Finally, we require that the regularization parameter220

decrease as sample size grows, which will, again, depend on the balance between increasing sample221

size, which tends to decrease the need for regularization, and increasing complexity, which tends222

to increase its importance. Thus, while it is difficult to determine an optimal rate of convergence,223

by choosing an appropriate growth rate for the network complexity, we expect the aforementioned224

terms to vanish as n increases to infinity, and, with them, the entire right hand side, making ĥk,�,n a225

consistent estimator of h⇤.226
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6 Experiments227

6.1 Overview of Baseline Models228

We compare the performance of NMMR-U and NMMR-V to that of several previous approaches,229

which we describe briefly here. The baselines can be divided into two categories: structural and230

naive. The structural approaches all leverage some kind of causal information about the data231

generating process. The structural methods include Kernel Proxy Variables (KPV) [6], Proximal232

Maximum Moment Restriction (PMMR) [6], Deep Feature Proxy Variables (DFPV) [21], Causal233

Effect Variational Autoencoder[22] (CEVAE) and the two-stage least squares model (2SLS) from234

Miao et al. [4]. For a review of KPV, PMMR, and DFPV, see Section 3. CEVAE is an autoencoder235

approach derived by Xu et al. [7] from Louizos et al. [22]. 2SLS is a two-stage least squares method236

which assumes that the bridge function h is linear [5].237

The naive approaches serve as baselines and do not use causal information and instead attempt to238

directly regress A,Z,W on the outcome Y . These methods include a naive neural network (Naive239

net), ordinary least squares regression (LS), and ordinary least squares with quadratic features240

(LS-QF). Naive Net is a neural network with the same architecture as NMMR (described further241

in Appendix B) that is trained to predict Y directly from A,Z,W by minimizing observational MSE,242
1
n

Pn
i=1(y � ŷ)2. Least Squares (LS) is the standard linear regression model that predicts Y using243

a linear combination of A,Z,W . Least Squares with Quadratic Features (LS-QF) is the same as244

LS but with additional quadratic terms A2,W 2, Z2, AW,AZ,WZ.245

We evaluate NMMR-U, NMMR-V and baseline methods on two synthetic benchmark tasks from Xu246

et al. [7]. The first is a simulation of how ticket price set by an airline affects the number of ticket sold247

in the presence of a latent confounder of demand for travel (the Demand experiment). The second is248

an experiment where the goal is to recover a property of an image that is influenced by an unobserved249

confounder (the dSprite experiment). The Demand experiment is a low-dimensional estimation250

problem, whereas dSprite is high-dimensional as A and W are 64x64=4096-dimensional. dSprite also251

offers the opportunity to leverage image-specific models that are rarely used in the causal inference252

literature. We note here that both tasks take the measured confounders X to be the null set. For the253

Demand experiment we evaluate all the methods mentioned above, whereas for the dSprite experiment,254

2SLS, LS, and LS-QF were omitted because of their lack of scalability to high-dimensional settings.255

The experiments are conducted in PyTorch 1.9.0 (Python 3.9.7), using an A100 40GB or TitanX256

12GB GPU and CUDA version 11.2. The experiments can be run in minutes for simpler models257

(LS, LS-QF, 2SLS) and within several hours for the larger experiments and more complex models258

(DFPV, NMMR). Implementations of PMMR, KPV, CEVAE, and DFPV and the code to reproduce259

our experiments can be accessed on GitHub. 1260

6.2 Demand Experiment261

Hartford et al. [14] introduced a data generating process for studying instrumental variable regression,262

and Xu et al. [7] adapted it to the proximal setting. The goal is to estimate the effect of airline263

ticket price A on sales Y , where these are confounded by demand U (e.g. seasonal fluctuations).264

For a treatment-inducing proxy, we have information on the cost of fuel Z = (Z1, Z2), and for an265

outcome-inducing proxy, we have information on the number of views on the ticket reservation266

website W (Figure S1). Additional simulation details and the structural equations underlying the267

causal DAG can be found in Appendix C.1.268

Each method was trained on simulated datasets with sample sizes of 1000, 5000, 10,000, and269

50,000. To assess the performance of each method, we evaluated a at 10 equally-spaced intervals270

between 10 and 30. We compared the difference between each method’s estimated average potential271

outcome Ê[Y a] against the true average potential outcome E[Y a], which was obtained by a Monte272

Carlo simulation (10,000 replicates) from the data generating process with A = a fixed. The273

evaluation metric is the causal mean squared error (c-MSE) across the 10 evaluation points of a:274
1
10

P10
i=1(E[Y ai ]� Ê[Y ai ])2. For MMR-based methods, their predictions are computed on a heldout275

dataset, DW with 1,000 draws from W where Ê[Y ai ] = |DW |
�1

P
|DW |

j ĥ(ai, wj), i.e. a sample276

average of the estimated bridge function over W . We performed 20 replicates for each method on277

1https://tinyurl.com/ykatxtys https://tinyurl.com/ymd549bh
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Figure 2: NMMR-U and NMMR-V achieve state of the art performance across all sample sizes.
Causal MSE (c-MSE) of NMMR and baseline methods in the Demand experiment. Each method was
replicated 20 times and evaluated on the same 10 test values of E[Y a] each replicate. Each individual
box plot represents 20 values of c-MSE. See Table S4 for the statistics of each boxplots

each sample size, where a single method replicate yields one c-MSE value. Figure 2 summarizes the278

c-MSE distribution for each method across the four sample sizes. NMMR-U has the lowest c-MSE279

across all sample sizes, with NMMR-V as a close second. Importantly, Least Squares consistently280

outperforms all other methods besides NMMR. It should also be noted that DFPV encounters281

difficulties with the larger sample sizes of 10,000 and 50,000, potentially due to convergence issues282

with its feature maps. Similarly, PMMR and KPV could not be scaled to n = 50, 000.283

For a more in-depth view of the potential outcome curve that each method estimates, we provide the284

replicate-wise potential outcome prediction curves for each of the 4 sample sizes in Figures S3-S6.285

We can see that Least Squares estimates relatively unbiased prediction curves due to the nature of286

the data generating process and further benefits from having very low variance. LS-QF manages287

to match some of the curvature, although its c-MSE distribution (not shown) is not better than LS.288

Kernel-based methods, KPV and PMMR, are highly biased. DFPV is less biased, though it still289

suffers from a lack of flexibility. Both NMMR variants demonstrate the benefit of added flexibility290

and additionally has relatively lower variance, which results in a lower c-MSE.291

Finally, we also varied the magnitude of the variance on the Gaussian noise terms in the structural292

equations for Z and W in order to examine how each method performs with varying quality proxies293

for U (see Appendix E). In Figure S9, we can see that NMMR-V is more robust to noised proxies294

than NMMR-U. This could derive from the fact that the U-statistic is an unbiased, but higher variance,295

estimator than the V-statistic, so when the proxies are less reliable, the estimate of the risk function296

Rk(h) is correspondingly less stable. We can also see that the kernel-based methods (KPV and297

PMMR) rank increasingly well with noisier proxies, which is likely related to the fact that they are298

less data-adaptive methods. Figures S10 through S17 show the replication-wise prediction curves299

across all 72 noise levels, with one grid plot per method.300

6.3 dSprite Experiment301

The second benchmark uses the dSprite dataset from Matthey et al. [23], which was also initially302

adapted for instrumental variable regression in Xu et al. [21], followed by repurposing for proximal303

inference in Xu et al. [7]. This image dataset consists of 2D shapes procedurally generated from304

6 independent parameters: color, shape, scale, rotation, posX, and posY. All possible combinations305

of these parameters are present exactly once, generating 737,280 total images. In this experiment,306

we fix shape = heart, color = white, resulting in 245,760 images, each of which contains 64x64=4096307

pixels. The causal DAG for this problem is shown in Figure S7. The structural equations and detailed308

data generating mechanism underlying the causal DAG can be found in Appendix C.6.309

In the DAG, Fig(·) represents the act of retrieving the image from the dSprite dataset with the310

given arguments. In this experiment, A and W are vectors representing noised images of a heart311
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Figure 3: Causal MSE (c-MSE) of NMMR and baseline methods in the dSprite experiment. Each
method was replicated 20 times and evaluated on the same 588 test images A each replicate. Each
individual box plot represents 20 values of c-MSE. See Table S5 for the statistics of each boxplots

shape, where the heart has a size (scale), orientation (rotation), horizontal position (posX) and312

vertical position (posY). For an exemplar image A and W , see Figure S8. The benchmark computes313

E[Y a] =
1
10 ||vec(a)

TB||
2
2�5000

1000 where B is a 4096⇥ 10 matrix of U(0, 1) weights from Xu et al. [7].314

The observed outcome is computed as Y =
1
10 ||vec(A)TB||

2
2�5000

1000 ⇥
(31⇥U�15.5)2

85.25 + ✏, ✏ ⇠ N (0, 0.5).315

So U dictates the vertical position of the shape in A, as well as the value of Y , making U a316

confounder of A, Y . U is a discrete uniform random variable with E[ (31⇥U�15.5)2

85.25 ] = 1. We317

hypothesized that a convolutional neural network would be exceptionally strong at recovering this318

information about U from the images A and W .319

Similar to the Demand experiment, we trained each method on simulated datasets with sizes 1,000,320

5,000, and 7,500, followed by an evaluation on the same test set as Xu et al. [7]. This test set contains321

588 images A that span the range of scale, rotation, posX and posY values (see Appendix C.9) and322

the 588 corresponding values of E[Y a]. The evaluation metric is again c-MSE: 1
588

P588
i=1(E[Y ai ]�323

Ê[Y ai ])2 and we performed 20 replicates for each method on each sample size. Figure 3 shows324

that NMMR-U or NMMR-V is consistently lowest in c-MSE, with NMMR-V showing substantial325

improvement with increasing sample size. Due to the high dimensionality of the images A and W , we326

could not evaluate Least Squares, LS-QF or 2SLS on this experiment. We can also see that KPV and327

PMMR do not improve much with increasing sample size. Finally, we also highlight that the Naive net,328

which uses the same underlying convolutional neural network architecture as NMMR but is trained329

using observational MSE, performs second-to-worst, with a much larger c-MSE than NMMR-U or330

NMMR-V. This reinforces the need to use causal knowledge in scenarios where it is available.331

7 Conclusion332

In this work we have presented a novel method to estimate potential outcomes in the presence of333

unmeasured confounding using deep neural networks.Though our method is promising, there are sev-334

eral limitations. For very high dimensional data, calculating the kernel matrix K in the loss function335

can be computationally intensive (see Appendix D). Additionally, mapping real world scenarios to336

DAGs that satisfy Assumption 1 is non-trivial and technically unverifiable (e.g. we cannot be truly337

sure that W has no impact on A), though unverifiable assumptions are inherent to causal inference.338

In summary, we provide a new single stage estimator and show how it can be trained on a339

U-statistic based loss in addition existing approaches based on V-statstics. We further prove theoretic340

convergence properties of our method. On established proximal inference benchmarks, our method341

achieves state of the art performance in estimating causal quantities. Finally, since our approach342

is a single-stage neural network, it potentially unlocks new domains for causal inference where deep343

learning has had success, such as imaging.344
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