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Abstract

Reinforcement learning (RL) aims to find an optimal policy by interaction with an1

environment. Consequently, learning complex behavior requires a vast number of2

samples, which can be prohibitive in practice. Nevertheless, instead of systemat-3

ically reasoning and actively choosing informative samples, policy gradients for4

local search are often obtained from random perturbations. These random sam-5

ples yield high variance estimates and hence are sub-optimal in terms of sample6

complexity. Actively selecting informative samples is at the core of Bayesian7

optimization, which constructs a probabilistic surrogate of the objective from past8

samples to reason about informative subsequent ones. In this paper, we propose9

to join both worlds. We develop an algorithm utilizing a probabilistic model of10

the objective function and its gradient. Based on the model, the algorithm decides11

where to query a noisy zeroth-order oracle to improve the gradient estimates. The12

resulting algorithm is a novel type of policy search method, which we compare to13

existing black-box algorithms. The comparison reveals improved sample complex-14

ity and reduced variance in extensive empirical evaluations on synthetic objectives.15

Further, we highlight the benefits of active sampling on popular RL benchmarks.16

1 Introduction17
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Figure 1: Estimation of a Jacobian GP model (bot-
tom) of a 1-dimensional objective function (top).
The model has observations (black crosses) from
the function, but is able to form a posterior belief
over the gradient. Uncertainty for the Jacobian
model is reduced between samples. An active sam-
ple strategy can improve gradient estimates.

Reinforcement learning (RL) is a notoriously18

data-hungry machine learning problem, where19

state-of-art methods easily require tens of thou-20

sands of data points to learn a given task [1].21

For every data point, the agent has to carry out22

potentially complex interactions with its envi-23

ronment, either in simulation or in the physical24

world. This expensive data collection motivates25

the development of sample-efficient algorithms.26

Herein, we consider policy search problems, a27

type of RL technique where we directly opti-28

mize the parameters of a policy with respect to29

the cumulative reward over a finite episode. The30

collected data is utilized to estimate the direc-31

tion of local policy improvement, enabling the32

use of powerful optimization techniques such33

as stochastic gradient descent. Policy gradient34

methods (e.g., [2–5]) usually rely on random35

perturbations for data generation, e.g., in the36

form of exploration noise in the action space or37

stochastic policies, and do not reason about uncertainty in their gradient estimation. However, innate38

in the RL setting is the ability to actively generate data, allowing the agent to decide on informative39
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queries, thereby potentially reducing the amount of data needed to find a (local) optimum. Active40

sampling has the potential to allow those algorithms to improve sample complexity, reducing the41

number of environment interactions.42

In contrast to random sampling, Bayesian optimization (BO) [6] is a paradigm to optimize expensive-43

to-evaluate and noisy functions in a sample-efficient manner. At the core of BO is the question of44

how to query the objective function efficiently to maximize the information contained in each sample.45

By building a probabilistic model of the objective using past data and, critically, prior knowledge, the46

algorithm can reason about how to query a noisy oracle to solve the optimization task. Since RL can47

be framed as a black-box optimization problem, we can use BO to learn policies in a sample-efficient48

way. However, even though BO has been used to tackle RL, these approaches have been restricted49

to low-dimensional problems. One reason is that BO aims to find a global optimum; hence BO50

algorithms model and search the entire domain, which needs a lot of data and gets exponentially51

more difficult as the dimensionality increases. Additionally, as the amount of data grows so does the52

computational complexity of probabilistic models, which becomes a significant problem. However,53

the success of RL algorithms using policy gradient methods indicates that for many problems it is54

sufficient to find a locally optimal policy.55

Our proposed algorithm combines the strength of gradient-based policy optimization with active56

sampling in the policy space using BO. We thereby improve the computational complexity of BO57

methods on the one hand, and the sample-inefficiency of gradient-based methods on the other hand,58

especially when proper prior knowledge is available. We achieve these improvements by explicitly59

learning a probabilistic model of the objective in the form of a Gaussian process (GP) [7]. From this60

model, we can jointly infer the objective and its gradients with a tractable probabilistic posterior. The61

resulting Jacobian estimate includes all data points, rendering data usage more efficient. Further, the62

algorithm infers informative queries from the uncertainty of the probabilistic model to improve the63

estimate of the local gradient. While in this paper we adapt the setting of [1] and assume access to64

zeroth-order information only, the algorithm extends straightforwardly to policy gradient algorithms65

where additional first-order information is available. In summary, the contribution of this paper is66

a local BO-like optimizer called Gradient Information with BO (GIBO). The queries of GIBO are67

chosen optimally to minimize uncertainty in the gradient estimation. GIBO can be used with existing68

policy search algorithms to improve gradient estimates. Using only zeroth order information, GIBO69

is able to70

• significantly improves sample complexity in extensive within-model comparisons, i.e., when71

accurate prior knowledge is available;72

• is able to solve RL benchmark problems in a sample efficient manner; and73

• reduces variance in the results when compared to non-active sampling baselines.74

1.1 Related Work75

This section relates our contribution to the literature on BO for RL, on BO using gradient information,76

and how GIBO can be incorporated into existing policy gradient methods.77

BO and RL. Bayesian optimization has been used as a global optimizer to solve RL tasks in prior78

work [8–12]. However, the mentioned methods usually search for a global optimum in 2- to 15-79

dimensional parameter spaces. Global BO for RL, exemplified by the mentioned literature, is limited80

to relatively low dimensional problems for two reasons: (i) the computational complexity of global81

probabilistic models does not scale well with the number of data points, (ii) global optimization of82

high-dimensional non-convex objectives is a challenging problem to solve in general. In contrast83

to these prior works on BO in RL, we improve sample complexity by leveraging gradient-based84

optimization. We reduce the problem to a local optimization problem, which entails that we only need85

a local GP model. A local model is computationally easier to handle and ships with the additional86

benefits we discuss in Sec. 3.3.87

BO with first-order oracles. In general, a GP posterior can incorporate gradient information if the88

kernel is differentiable and a first-order oracle is available. Bayesian optimization methods that utilize89

gradient observations are known as first-order BO, and different approaches on how to include the90

derivative information in the model and acquisition functions have been proposed [13–16]. Since91

computing the joint posterior using first- and zeroth-order information is computationally expensive,92

[14] and [15] are using a single directional derivative instead of all partial derivatives. A first-order93
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BO approach for RL, where the gradient information is actively used to decide on the following query,94

is introduced by Prabuchandran et al. [16]. The method therein actively searches for local optima95

by querying points where the gradient is expected to be zero. In contrast, we use the probabilistic96

model of the Jacobian and a BO-style active decision making. GIBO queries the oracle to gain97

information about the gradient at the current location and afterwards a gradient-based optimizer98

decides on the next location. The work closest to ours was proposed recently by Shekhar and Javidi99

[17]. They propose an algorithm with access to zeroth and first-order oracles and derive improved100

regret bounds compared to the zeroth-order oracle case. Their algorithm is divided into two phases:101

In the first phase, it finds a near-optimal region via global optimization and proceeds to phase two,102

aiming towards the optimum with stochastic gradient descent. Contrary to GIBO, in the second phase103

the algorithm therein does not optimize the queries for gradient information. Instead it relies on104

repeated queries to the first-order oracle at the same location to reduce uncertainty. Additionally,105

these first-order BO methods all rely on gradient observations, while the proposed GIBO algorithm106

can work on zeroth-order queries alone, reducing computational complexity significantly.107

Informative sampling in policy gradient methods. Policies that generate more informative samples108

have helped to improve model-free RL algorithms’ performance during the past decade; we mention109

three examples here. Levine and Koltun [18] propose so-called guiding samples in high reward areas110

using differential dynamic programming and model knowledge. Soft actor-critic (SAC) methods [3]111

add the policy’s entropy to the reward function to encourage exploration and improve the variance of112

gradient estimates. Based on SAC an optimistic actor-critic algorithm is introduced in [19] with a113

different exploration strategy that samples more informative actions. Differing from typical policy114

search methods exemplified above, we propose a probabilistic model of the objective function that115

enables active sampling and exploits all available information. It is possible to use GIBO as a layer116

between the policy gradient estimator such as SAC and a gradient-based optimizer, e.g., stochastic117

gradient ascent or Adam [20]. GIBO can utilize any policy gradient algorithm as an oracle for zeroth-118

or first-order information. Based on the posterior conditioned on all collected rewards, our algorithm119

can supply posterior gradient estimates and subsequent queries to evaluate.120

To demonstrate the benefits of active sampling in a simple setup, we adopt the setting proposed by121

Mania et al. [1] where policy optimization is treated as a black-box problem. Augmented Random122

Search (ARS) [1] bases on finite-difference gradient estimation and has been shown to solve RL123

tasks, when no information about the gradient is available. We replace the random sampling strategy124

of ARS with active sampling and the gradient estimation with a GP model. These changes improve125

the sample complexity and variance of ARS, especially when prior knowledge about the objective126

function is available.127

2 Preliminaries128

This work presents a local optimizer with active sampling. The objective function and its derivative’s129

joint distribution are modeled using a GP. Since we have developed the optimizer with the RL130

application in mind, we also introduce the RL problem. For the sake of brevity, we refer the reader to131

[7] and [21] for a GP and BO introduction, respectively.132

2.1 Problem setting133

In the following we phrase policy search as a black-box optimization problem. For a parameterized134

policy πθ : Θ × S → A that maps states s ∈ S and the static policy parameters θ ∈ Θ to actions135

a ∈ A, we use the same performance measure as in policy gradient methods for the episodic case.136

Hence, the objective function J : Rd → R is defined as137

J(θ) = Eπθ

[
I∑

i=0

ri

]
,

where Eπθ is the expectation under policy πθ, ri is the reward at time step i and I the length of the138

episode. A BO query is equivalent to the return of one rollout of the policy πθ in the environment.139

The expected episodic reward is entirely determined by choice of policy parameters (and the initial140

conditions). Thus, the optimizer explores the reward function in the parameter space rather than in141

the action space. Since initial conditions might vary and the environment can be non-deterministic,142

reward evaluations are noisy.143
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Policy search herein is abstracted as a zeroth-order optimization problem of the form144

θ∗ = arg max
θ∈Θ

J(θ), (1)

where θ is the variable and Θ ⊂ Rd a bounded set. To solve (1) an optimization algorithm can query145

an oracle for a noisy function evaluation y = J(θ) + ω. We assume an i.i.d. noise variable ω ∈ R to146

follow a normal distribution ω ∼ N (0, σ2) with variance σ2. We do not assume access to gradient147

information or other higher-order oracles for conciseness. Albeit, GIBO requires that the following148

critical assumption is fulfilled:149

Assumption 1. The objective function J is a sample from a known GP prior J ∼ GP (m(θ), k(θ, θ′)),150

where the mean function is at least once differentiable and the covariance function k is at least twice151

differentiable, w.r.t. θ.152

This is the standard setting for BO with the addition that the mean and kernel need to be differentiable,153

which is satisfied by some of the most common kernels such as the squared exponential (SE) kernel.154

In the empirical section, we investigate the performance of the developed algorithm with and without155

Assumption 1 holding true.156

2.2 Jacobian GP model157

Since GPs are closed under linear operations, the derivative of a GP is again a GP [7]. This enables158

us to derive an analytical distribution for the objective’s Jacobian, which we can use as a proxy for159

gradient estimates and enable gradient-based optimization.160

Following Rasmussen and Williams [7], the joint distribution between a GP and its derivative at the161

point θ∗ is162
[

ȳ
∇θ∗J∗

]
∼ N

([
m(X)
∇θ∗m(θ∗)

]
,

[
K(X,X) + σ2I ∇θ∗K(X, θ∗)
∇θ∗K(θ∗, X) ∇2

θ∗K(θ∗, θ∗)

])
, (2)

where ȳ are the n zeroth-order observations, X ⊂ Θ are the locations of these observations X =163

[θ1, . . . , θn], andK the covariance matrix given by the kernel function k : Θ×Θ→ R. The posterior164

can be derived by conditioning the joint Gaussian prior distribution on the observation [7]165

p
(
∇θ∗J∗

∣∣θ∗, X, ȳ
)
∼ N (µ′∗,Σ

′
∗)

µ′∗ = ∇θ∗m(θ∗)︸ ︷︷ ︸
∈Rd

+∇θ∗K(θ∗, X)︸ ︷︷ ︸
∈Rd×n

(
K(X,X) + σ2I

)−1

︸ ︷︷ ︸
∈Rn×n

(ȳ −m(X))︸ ︷︷ ︸
∈Rn

∈ Rd

Σ′∗ = ∇2
x∗K(θ∗, θ∗)︸ ︷︷ ︸
∈Rd×d

−∇θ∗K(θ∗, X)︸ ︷︷ ︸
∈Rd×n

(
K(X,X) + σ2I

)−1

︸ ︷︷ ︸
∈Rn×n

∇θ∗K(X, θ∗)︸ ︷︷ ︸
∈Rn×d

∈ Rd×d.

(3)

Remark 1. Note that the term [K(X,X) + σ2I]−1 with the highest computational cost (O(N3)) is166

the same term that is used to compute the posterior over f . Therefore, calculating the Jacobian does167

not add to the computational complexity once a GP posterior has been computed.168

Any twice differentiable kernel is sufficient for the presented framework, but we assume a SE kernel169

for the remainder of the paper. The derivatives of the SE kernel function are in the appendix Sec. A.1.170

For a visual example of function- and the Jacobian-posterior, refer to Fig. 1. The figure indicates that171

a zeroth-order oracle is enough to form a reasonable belief over the function’s gradient. Moreover,172

Fig. 1 shows that the uncertainty about the Jacobian gets reduced between query points more so than173

at the query points themselves. To minimize uncertainty about the Jacobian at a specific point, it174

intuitively makes sense to space out query points in its immediate surrounding. Herein, we formalize175

this intuition and formulate an optimization problem that sequentially decides on query points that176

provide the most information about the Jacobian.177

3 Gradient Informative Bayesian Optimization178

In this section, we introduce the proposed method GIBO. First, we define an acquisition function179

to reduce uncertainty for the Jacobian. Second, we outline the basic GIBO algorithm, including180

extensions.181
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Figure 2: We visualize GIBO’s active sampling process with a simple 1-dimensional function. The
blue filled circle refers to the current parameter θt. In the first two images, the acquisition function α
(solid green line) proposes two new query points (green stars) of the objective function J (solid light
grey line). With the history of sampling points (black crosses), the model of the Jacobian∇θJ (in
blue with confidence intervals) is updated, reducing uncertainty around the analytic Jacobian (dashed
light grey line). The last two images show a gradient ascent update step to θt+1 (blue star).

3.1 Maximizing gradient information182

We employ the BO framework to design a set of iterative queries maximizing gradient information.183

To this extend, we propose a novel acquisition function Gradient Information (GI) actively suggesting184

query points most informative for the gradient at the current parameters θt. Acquisition functions185

measure the expected utility of a sample point based on a surrogate model conditioned on the observed186

data. The utility U : Rd → R of our method depends on a Jacobian GP model, the objective’s187

observation data D, and the current parameter θt. It measures the decrease in the derivative’s variance188

at θt when observing a new point θ of the objective function. Hence, we define the utility as the189

expected difference between the Jacobian’s variance Σ′(θt|D) before and the Jacobian’s variance190

Σ′(θt|{D, (θ, y)}) after observing a new point (θ, y)191

αGI(θ|θt,D) = E [U(θ|θt,D)] = E [Tr (Σ′(θt|D))− Tr (Σ′ (θt| {D, (θ, y)}))], (4)

where Tr denotes the trace operator and Σ′(θt|D) is the variance of the Jacobian’s GP model evaluated192

at θt193

∇θJ
∣∣
θ=θt

∼ GP (µ′(θt|D),Σ′(θt|D)) . (5)

The Jacobian’s variance Σ′(θt|{D, (θ, y)}) depends on the extended dataset {D, (θ, y)}. A property194

of the Gaussian distribution is, that the covariance function is independent of the observed targets195

y as shown in Equation (3). Hence, we simplify the optimization over the expectation to (see196

Appendix A.2)197

arg max
θ

αGI(θ|θt,D) = arg min
θ

Tr (Σ′ (θt| [X, θ])), (6)

where the variance only depends on a virtual data set X̂ = [θ1, . . . , θn, θ] =: [X, θ]. In conclusion,198

the most informative new parameter θ to query is only dependent on where we sample next and is199

independent of its outcome f(θ) = y.200

When we replace the Jacobian’s variance in (6) with (3) and leave out constant factors we get201

θ∗ = arg max
θ

Tr

(
∇θtK(θt, X̂)

(
K(X̂, X̂) + σ2

nI
)−1 (

∇θtK(θt, X̂)
)T)

. (7)

Since the acquisition function only depends on the virtual data set, the optimization of the acquisition202

function can be handled computationally efficient by performing the matrix inversion in (7) using203

Cholesky factor updates. This method is outlined in Appendix A.3.204

5



3.2 The GIBO algorithm205

The guided sequential search of the acquisition function for gradient estimates divides the resulting206

algorithm into two loops: An outer loop for iterative parameter updates and an inner loop where the207

acquisition function queries points to increase gradient information. The basic algorithm is given in208

Alg. 1.209

Algorithm 1 GIBO
1: Hyperparameters: stepsize η, hyperpriors for GP hyperparameters, number of iterationsN andM samples

for a gradient estimate.
2: Initialize: place a GP prior on J(θ), set θ0 and D = {}.
3: for t = 0, . . . , N do . Parameter updates.
4: Sample noisy objective function: yt = J(θt) + εt
5: Extend data set: D ← {D, (θt, yt)}
6: GP hyperparameter optimization.
7: for m = 1, 2, . . . ,M do . Sample points for a gradient estimate.
8: Get query point: θ̂ = argmaxθ̂ αGI(θ̂|θt,D).
9: Sample noisy objective function: ŷ = J(θ̂) + ω. . Optionally: Use a policy gradient method

for additional derivative observations.
10: Extend data set: D ← {D, (θ̂, ŷ)}.
11: Update the posterior probability distribution of∇θJ .
12: end for
13: θt+1 = θt + η · E

[
∇θJ

∣∣
θ=θt

]
. Gradient ascent, or any other gradient based optimizer.

14: end for

3.3 Extensions210

In the following, algorithmic extensions are introduced that further improve the performance and211

computational efficiency of our method.212

Local GP model. Sparse approximation of GPs can be applied on BO when the computational213

burden of exact inference is too big [22]. In our case, however, we are only interested in estimating214

the local Jacobian at the current parameter θt. We define a sparse approximation of the posterior at215

the current parameter θt heuristically with the last Nm sampled points. Estimating a local model has216

the additional benefit of making the model selection and hyperparameter optimization simpler. We217

can approximate non-stationary processes locally by dynamically adapting hyperparameters.218

Local optimization of GI. Following similar reasoning as above, we do not have to optimize the GI219

acquisition function globally since we expect informative points to be relatively close to the current220

parameter θt when using a SE kernel. Hence, we define our search bounds locally as [θt− δb, θt+ δb].221

Uncertainty threshold. We can stop sampling new points once our uncertainty about the gradient is222

small enough, and another point would not provide a significant information gain. If Σ′(θt)−Σ′(θ̂) <223

εa we stop sampling, where εa is a hyperparameter of the algorithm.224

Gradient normalization. The gradient is normalized with the Mahalanobis norm using the length-225

scales of the SE kernel.Hence, the stepsize η is adapted automatically to scale with the correlation226

between points, as explained in Appendix A.4.227

State normalization. We apply state normalization to policy search for RL environments. This has228

the same effect as data whitening for regression tasks. In practice, this is beneficial to perform GP229

regression for unknown policy spaces. In case of a linear policy πθ : Rp → Rm, πθ(s) = As + b230

with bias b ∈ Rm, states s ∈ Rp, means of states µs ∈ Rp and variances σs ∈ Rp of states, state231

normalization can be defined by πθ
(
s−µs
σs

)
= A

(
s−µs
σs

)
+ b = A · 1

σs
s − A · µsσs + b. The state232

normalization is implemented in an efficient way that does not require the storage of all states. Also,233

we only keep track of the diagonal of the state’s covariance matrix with Welford’s online algorithm234

[23].235
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4 Empirical Results236

We empirically evaluate the performance of GIBO in three types of experiments. In the first experi-237

ment, we compare our algorithm on several functions sampled from a GP prior so that Assumption 1238

is satisfied. In these within-model comparisons [24], we can show that GIBO outperforms the239

benchmark methods in terms of sample complexity and variance of regret, especially in higher240

dimension. In a second experiment, we perform policy search for a linear quadratic regulator (LQR)241

problem proposed by Mania et al. [1]. Finally, in policy search for RL environments of Gym [25] and242

MuJoCo [26], we show that GIBO reaches acceptable rewards thresholds faster and with significantly243

less variance than ARS. All data and source code necessary to reproduce the results are published244

anonymized at https://github.com/gibo-neurips-2021/GIBO.245

4.1 Within-model Comparison246

We evaluate GIBOs performance as a general black-box optimizer on functions that satisfy Assump-247

tion 1. A straightforward way to guarantee this is by sampling the objective from a known GP prior.248

This approach has been called within-model comparison by Hennig and Schuler [24] but has likewise249

been used in other BO literature (e.g., [27, 28]). To show that GIBO scales particularly well to250

higher-dimensional search spaces, we analyze synthetic benchmarks for up to 36 dimensions.251

The experiment was carried out over a d-dimensional unit domain I = [0, 1]d. For each domain, we252

generate 40 different test functions. For each function, 1000 values were jointly sampled from a GP253

prior with a SE kernel and unit signal variance. To cover the space evenly, we used a quasi-random254

Sobol sampler. To perform experiments with comparable difficulty across different dimensional255

domains, we increase the lengthscales in higher dimensions by sampling them from the distribution256

`(d), introduced in Appendix A.5. The resulting posterior mean was the objective function. All257

algorithms were started in the middle of the domain x0 = [0.5]d and had a limited budget of 300258

zero-order noised function evaluations. The noise was Gaussian distributed with standard deviation259

σ = 0.1. A more detailed description of the experiments, including the true global maximum search260

and an out-of-model comparison, is given in Appendix A.5.261

We compared our algorithm GIBO to ARS, CMA-ES [29] and standard BO with expected improve-262

ment [30] as acquisition function (‘Vanilla BO’). To ensure a fair comparison, domain knowledge was263

passed to the ARS and CMA-ES algorithms by scaling the space-dependent hyperparameters with the264

mean of the lengthscale distribution `(d). For details about the hyperparameters see Appendix A.9.265

Fig. 3 shows the normalized difference between the global function optimum and the function values266

of the optimizer’s best guesses. The within-model comparison shows that our algorithm outperforms267
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vanilla BO on all test functions, except for the 4-dimensional domain. The proposed method GIBO268

outperforms the other benchmarks in terms of sample complexity, especially in higher dimensions.269

Further, GIBO is able to reduce the variance of obtained regret significantly, as shown in Figure 4,270

which indicates a consistently better performance.271

4.2 Linear Quadratic Regulator272

The classic LQR with known dynamics is a fundamental problem in control theory. In this setting, an273

agent seeks to control a linear dynamical system while minimizing a quadratic cost. With available274

dynamics, the LQR problem has an efficiently determinable optimal solution. LQR with unknown275

dynamics, on the other hand, is less well understood. As argued in Mania et al. [1], this offers a new276

type of benchmark problems, where one can set up LQR problems with challenging dynamics, and277

compare model-free methods to known optimal costs. We compare GIBO against ARS and LSPI278

[31] on a challenging LQR instance with unknown dynamics, known from [32, 1, 31]. The reader is279

referred to Appendix A.6 for a complete introduction to the setup.280

The Fig. 5 shows the frequency of stable controllers found and the cost compared to the optimal cost281

for GIBO, ARS, and LSPI. On the left in Fig. 5 we observe that GIBO requires significantly fewer282

samples than ARS, equivalent to LSPI, to find a stabilizing controller. But we note that LSPI requires283

an initial controller K0, which stabilizes a discounted version of the LQR problem. Neither GIBO284

nor ARS require any special initialization. All algorithms achieve similar regrets.285
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Figure 5: Results for the LQR experiment. Left: How frequently GIBO found stabilizing controllers
in comparison to ARS and LSPI. The frequencies are estimated from 100 trials. Right: The sub-
optimality gap of the controllers produced by GIBO compared to ARS and LSPI. The points along
the dashed line denote the median cost, and the shaded region covers 2-nd to 98-th percentile out of
100 trials. Values for the benchmark methods in both images are estimated from [1].
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Figure 6: Training curves of GIBO and ARS for classic control and MuJoCo tasks, averaged over 3
trails. The shaded regions show the standard deviation.

4.3 Gym and MuJoCo286

Lastly, we evaluate the performance of GIBO on classic control and MuJoCo tasks included in the287

OpenAI Gym [25, 26]. The OpenAI Gym provides benchmark reward functions that we use to288

evaluate our policies’ performance compared to policies trained by ARS. Mania et al. [1] showed289

that deterministic linear policies, πθ : Rp → Rm, πθ(s) = As + b, are sufficiently expressive for290

MuJoCo locomotion tasks. Consequently, we define our parameter space by θ = (A, b) ∈ Rp×m+m.291

For the CartPole-v1 we need 4, for the Swimmer-v1 16 and for the Hopper-v1 36-dimensions. For all292

environments, we normalize the reward axis. For the Hopper environment, we additionally subtract293

the survival bonus and use state normalization; find further details in Appendix A.7.294

In the following, we plot the reward against the number of function evaluations (calls of RL environ-295

ment). We averaged the reported policy rewards over three trials. In Fig. 6 we observe that GIBO296

reaches the reward thresholds faster and with significantly less variance than ARS.297

5 Conclusion298

We introduce GIBO, a gradient-based optimization algorithm with a BO-type active sampling strategy299

to improve gradient estimates for black-box optimization problems. When the model assumptions300

of BO are satisfied, we show that the algorithm is significantly more sample-efficient, especially in301

higher dimensions, compared to baseline algorithms for black-box optimization.302

Additionally, we show the benefits of active sampling and probabilistic gradient estimates with GIBO303

by solving popular RL benchmarks for which the model assumptions do not hold exactly. When304

compared to random sampling, GIBO is still more sample efficient and has lower variance. Yet,305

the performance benefits are less pronounced in the RL task. This highlights that GIBO especially306

shines when prior knowledge is available while it still performs reasonably otherwise. Nonetheless,307

we want to remark that the prior biases the gradient estimates and wrong assumptions about the308

objective function can deteriorate performance. However, in some sense, all hyperparameters in RL309

algorithms encode some form of prior knowledge about the problem at hand. In our view, explicit310

probabilistic priors are an appropriate and intuitive form of prior knowledge to obtain, e.g., from311

domain knowledge or available data from prior experiments.312

Since it is straightforward to include derivative observations into GIBO, we expect similar improve-313

ments for other existing RL methods when integrating our method as an additional layer between314

gradient estimators and optimizers. The proposed framework can suggest different exploration315

policies and combine all available data into a posterior belief over the Jacobian. For future research,316

we want to utilize GIBO with state-of-the-art actor-critic algorithms to improve sample complexity317

of these methods.318

In a more general context, our active sampling methodology makes a step towards autonomous319

decision-making. GIBO decides on a learning experiment for the autonomous agent. Whenever a320

decision process is automated, the responsibility for legal and ethical consequences of these decisions321

must be resolved. However, we do not discuss how the decision-maker, GIBO, can be constrained to322

ensure compliance with regulatory requirements, which is a relevant aspect for future research.323
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1. For all authors...429

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s430

contributions and scope? [Yes]431

(b) Did you describe the limitations of your work? [Yes] We point out during the paper432

and especially in the conclusion Sec. 5 that the performance of GIBO hinges on prior433

knowledge of the objective function in the form of GP hyperparamters.434

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our435

work doesn’t describe a specific application, but a general optimization algorithm. We436

shortly discuss automated decision making in the conclusion Sec. 5.437

(d) Have you read the ethics review guidelines and ensured that your paper conforms to438

them? [Yes]439

2. If you are including theoretical results...440

(a) Did you state the full set of assumptions of all theoretical results? [N/A]441

(b) Did you include complete proofs of all theoretical results? [N/A]442

3. If you ran experiments...443

(a) Did you include the code, data, and instructions needed to reproduce the main444

experimental results (either in the supplemental material or as a URL)? [Yes]445

https://github.com/gibo-neurips-2021/GIBO.git446

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they447

were chosen)? [Yes] See Appendix A.9.448

(c) Did you report error bars (e.g., with respect to the random seed after running experi-449

ments multiple times)? [Yes] See Sec. 4 for the variance after 300 query points. We450

choose not to plot error bars in the learning curves for readability reasons. Since the451

results are plotted on a log scale the error bars are hard to read.452

(d) Did you include the total amount of compute and the type of resources used (e.g., type453

of GPUs, internal cluster, or cloud provider)? [No] Nothing fancy, virtual machine of454

internal cluster, 16 GB RAM, 8 VCPUs, total disk 160 GB, no GPU.455

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...456

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the OpenAI457

Gym environments as well as the MuJoCo engine.458

(b) Did you mention the license of the assets? [Yes] See Appendix A.8.459

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]460

461

(d) Did you discuss whether and how consent was obtained from people whose data you’re462

using/curating? [N/A]463

(e) Did you discuss whether the data you are using/curating contains personally identifiable464

information or offensive content? [N/A]465

5. If you used crowdsourcing or conducted research with human subjects...466

(a) Did you include the full text of instructions given to participants and screenshots, if467

applicable? [N/A]468

(b) Did you describe any potential participant risks, with links to Institutional Review469

Board (IRB) approvals, if applicable? [N/A]470

(c) Did you include the estimated hourly wage paid to participants and the total amount471

spent on participant compensation? [N/A]472

13

https://github.com/gibo-neurips-2021/GIBO.git

	Introduction
	Related Work

	Preliminaries
	Problem setting
	Jacobian GP model

	Gradient Informative Bayesian Optimization
	Maximizing gradient information
	The GIBO algorithm
	Extensions

	Empirical Results
	Within-model Comparison
	Linear Quadratic Regulator
	Gym and MuJoCo

	Conclusion
	Appendix
	Derivatives of the Squared Exponential kernel
	Derivation of the Acquisition Function
	Cholesky Factor Update
	Gradient Normalization
	Synthetic Experiments
	LQR Problem
	Gym and MuJoCo
	Implementation
	Hyperparameters


