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Abstract

Prediction of a molecule’s 3D conformer ensemble from the molecular graph holds
a key role in areas of cheminformatics and drug discovery. Existing generative
models have several drawbacks including lack of modeling important molecular
geometry elements (e.g. torsion angles), separate optimization stages prone to
error accumulation, and the need for structure fine-tuning based on approximate
classical force-fields or computationally expensive methods such as metadynamics
with approximate quantum mechanics calculations at each geometry. We propose
GEOMOL–an end-to-end, non-autoregressive and SE(3)-invariant machine learning
approach to generate distributions of low-energy molecular 3D conformers. Lever-
aging the power of message passing neural networks (MPNNs) to capture local and
global graph information, we predict local atomic 3D structures and torsion angles,
avoiding unnecessary over-parameterization of the geometric degrees of freedom
(e.g. one angle per non-terminal bond). Such local predictions suffice both for the
training loss computation, as well as for the full deterministic conformer assembly
(at test time). We devise a non-adversarial optimal transport based loss function to
promote diverse conformer generation. GEOMOL predominantly outperforms pop-
ular open-source, commercial, or state-of-the-art machine learning (ML) models,
while achieving significant speed-ups. We expect such differentiable 3D structure
generators to significantly impact molecular modeling and related applications. 4

1 Overview

Figure 1: We explore the task of low-
energy 3D conformer ensemble gener-
ation from the input molecular graph.
This example molecule has both rigid
(rings) and more flexible parts. Conform-
ers are shown aligned and juxtaposed.

Problem & importance. We tackle the problem of
molecular conformer generation (MCG), i.e. predicting
the ensemble of low-energy 3D conformations of a small
molecule solely based on the molecular graph (fig. 1). A
single conformation is represented by the list of 3D coor-
dinates for each atom in the respective molecule. In this
work, we assume that the low-energy states are implicitly
defined by the given dataset, i.e. our training data consist
of molecular graphs and corresponding sets of energeti-
cally favorable 3D conformations. Low-energy structures
are the most stable configurations and, thus, expected to be observed most often experimentally.
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Dealing with molecules in their natural 3D structure is of great importance in areas such as chemin-
formatics or computational drug discovery because conformations determine biological, chemical,
and physical properties [Guimaraes et al., 2012, Schütt et al., 2018, Klicpera et al., 2019, Axelrod and
Gomez-Bombarelli, 2020b, Schütt et al., 2021, Liu et al., 2021] such as charge distribution, potential
energy, docking poses [McGann, 2011], shape similarity [Kumar and Zhang, 2018], pharmacophore
searching [Schwab, 2010], or descriptors for 3/4D QSAR [Verma et al., 2010]. For instance, in drug
design it is crucial to understand how a molecule binds to a specific target protein; this process heavily
depends on the 3D structures of the two components, both in terms of geometric (shape matching)
and chemical (hydrophobic/hydrophilic) interactions [Gainza et al., 2020, Sverrisson et al., 2020].

Motivation & challenges of existing methods. The main challenge in MCG comes from the
enormous size of the 3D structure space consisting of bond lengths, bond angles, and torsion angles.
It is known that the molecular graph imposes specific constraints on possible 3D conformations, e.g.
bond length ranges depend on the respective bond types, while chiral centers dictate local spatial
arrangement. However, the space of possible conformations grows exponentially with the graph size
and number of rotatable bonds, thus hindering exhaustive brute force exploration even for relatively
small molecules. Additionally, the number of plausibly-stable low-energy states is unknown a priori
and can vary between one and several thousand conformations for a single molecule [Chan et al.,
2021]. Nevertheless, various facets of the curse of dimensionality have been favorably tackled by ML
models in different contexts, and our goal is to build on the recent ML efforts for MCG [Mansimov
et al., 2019, Simm and Hernandez-Lobato, 2020, Lemm et al., 2021, Xu et al., 2021].

Molecular conformations can be determined experimentally, but existing techniques are very ex-
pensive. As a consequence, predictive computational models have been developed over the past
few decades, traditionally being categorized as either stochastic or systematic (rule-based) meth-
ods [Hawkins, 2017]. Stochastic approaches have traditionally been based on molecular dynamics
(MD) or Markov chain Monte Carlo (MCMC) techniques, potentially combined with genetic algo-
rithms (GAs). They can do extensive explorations of the energy landscape and accurately sample
equilibrium structures, but quickly become prohibitively slow for larger molecules [Shim and MacK-
erell Jr, 2011, Ballard et al., 2015, De Vivo et al., 2016, Hawkins, 2017], e.g. they require several CPU
minutes for a single drug-like molecule. Moreover, stochastic methods have difficulties sampling di-
verse and representative conformers, prioritizing quantity over quality. On the other hand, rule-based
systematic methods achieve state-of-the-art in commercial software [Friedrich et al., 2017] with
OMEGA [Hawkins et al., 2010, Hawkins and Nicholls, 2012] being a popular example. They usually
process a single drug-like molecule under a second. They address the aforementioned challenges
of stochastic methods by relying on carefully curated torsion templates (torsion rules), rule-based
generators, and knowledge bases of rigid 3D fragments, which are assembled together and combined
with subsequent stability score ranking. However, torsion angles are mostly varied independently
(based on their fragments), without explicitly capturing their global interactions, which results in
difficulties for larger and more flexible molecules. Furthermore, the curated fragments and rules are
inadequate for more challenging inputs (e.g. transition states or open-shell molecules).

Both types of methods can be combined with Distance Geometry (DG) techniques to generate the
initial 3D conformation. First, the 3D atom distance matrix is generated based on a set of distance
constraints or from a specialized model. Subsequently, the corresponding 3D atom coordinates are
learned to approximately match these predicted distances [Havel et al., 1983b,a, Crippen et al., 1988,
Havel, 1998, Lagorce et al., 2009, Riniker and Landrum, 2015]. Indeed, modern stochastic algorithms
are entirely based on DG methods [Riniker and Landrum, 2015]. The inductive bias of rotational
and translational invariance is guaranteed for DG, thus being appealing for ML models [Simm and
Hernandez-Lobato, 2020, Xu et al., 2021, Pattanaik et al., 2020b]. However, several drawbacks
weaken this important direction: i) the distance matrix is overparameterized compared to the actual
number of degrees of freedom, ii) it is difficult to enforce 3D Euclidean distance constraints as well
as geometric graph constraints (e.g. on torsion angles or rings [Riniker and Landrum, 2015]); iii)
important aspects of molecular geometry are not explicitly modeled, e.g. torsion angles of rotatable
bonds or chiral centers; iv) expensive force-field energy fine-tuning of the generated conformers is
vital for a reasonable quality [Xu et al., 2021, Simm and Hernandez-Lobato, 2020]; iv) the resulting
multi-stage pipeline is prone to error accumulation as opposed to an end-to-end model.

Previous methods often rely on a force field (FF) energy function minimization to fine-tune the
conformers. These are hand-designed energy models which use parameters estimated from experi-

2



ment and/or computed from quantum mechanics (e.g. Universal Force Field [Rappé et al., 1992],
Merck Molecular Force Field [Halgren, 1996]). However, FFs are crude approximations of the
true molecular potential energy surface [Kanal et al., 2018], limited in the interactions they can
capture in biomolecules due to their strong assumptions [Barman et al., 2015]. In addition, FF energy
optimization is relatively slow and increases error accumulation in a multi-pipeline method.

Relation to protein folding. There has been impressive recent progress on modeling protein
folding dynamics [Ingraham et al., 2018, AlQuraishi, 2019, Noé et al., 2019, Senior et al., 2020],
where crystallized 3D structures are predicted solely from the amino-acid sequence using ML
methods. However, molecules pose unique challenges, being highly branched graphs containing
cycles, different types of bonds, and chirality information. This makes protein folding approaches not
readily transferable to general molecular data.

Our key contributions & model in a nutshell. In this work, we investigate the question:

Can we design fast ML generative models of high quality, representative, diverse, and generalizable
low-energy 3D conformational ensembles from molecular graphs?

To tackle this question, we propose GEOMOL (shown in fig. 2), exhibiting the following merits:

• It is end-to-end trainable, non-autoregressive, and does not rely on DG techniques (thus avoiding
aforementioned drawbacks). More precisely, it outputs a minimal set of geometric quantities (i.e.
angles and distances) sufficient for full deterministic reconstruction of the 3D conformer.

• It models conformers in an SE(3)-invariant (translation/rotation) manner by design. This desirable
inductive bias was previously either achieved using multi-step DG methods [Simm and Hernandez-
Lobato, 2020] or not captured at all [Mansimov et al., 2019].

• It explicitly models and predicts essential molecular geometry elements: torsion angles and local
3D structures (bond distances and bond angles adjacent to each atom). Together with the input
molecular graph, these are used for k-hop distance computation at train time and full deterministic
conformation assembly at test time. Crucially, we do not over-parameterize these predictions, i.e.
a single torsion angle is computed per each non-terminal bond, irrespective of the number and
permutation of the neighboring atoms at each end-point of the respective bond.

• The above geometric elements (torsion angles, local structures) are SE(3)-invariant (by definition
or usage) and we jointly predict them using MPNNs [Gilmer et al., 2017] and self-attention
networks. Thus, unlike [Mansimov et al., 2019], we are not affected by MPNNs’ pitfalls that
obstruct direct predictions of 3D atom coordinates from node embeddings, e.g. symmetric or
locally isomorphic nodes would always have identical MPNN embeddings [Xu et al., 2019, Garg
et al., 2020] and, as a consequence, would be inappropriately assigned identical 3D coordinates.

• To promote diverse conformer ensembles with good coverage, we devise a tailored generative
loss that does not use slow or difficult-to-optimize adversarial training techniques. Using optimal
transport, GEOMOL finds the best matching between generated and ground truth conformers
based on their pairwise log-likelihood loss, requiring only minimization.

• It explicitly and deterministically distinguishes reflected structures (enantiomers) by solving
tetrahedral chiral centers using oriented volumes and local chiral descriptors, bypassing the need
for iterative optimization usually done in DG approaches.

• Empirically, we conduct experiments on two benchmarks: GEOM-QM9 (smaller molecules
relevant to gas-phase chemistry) and GEOM-DRUGS (drug-like molecules) [Axelrod and Gomez-
Bombarelli, 2020a]. Our method often outperforms previous ML and two popular open-source or
commercial methods in different metrics. Moreover, we show competitive quality even without
the frequently-used computationally-demanding fine-tuning FF strategies.

• GEOMOL processes drug-like molecules in seconds or less, being orders of magnitude faster than
popular baselines (e.g. ETKDG/RDKit[Riniker and Landrum, 2015]), without sacrificing quality.

2 Method

Problem setup & notations. Our input is any molecular graph G = (V,E) with node and edge
features, xv ∈ Rf ,∀v ∈ V and eu,v ∈ Rf ′ ,∀(u, v) ∈ E representing atom types, formal charges,
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Figure 2: Overview of the GEOMOL model, which is SE(3)-invariant by design. Given a molecular
graph, we first compute MPNNs atom embeddings. Next, we predict the local 3D structures (LS) of
each non-terminal atom in a permutation invariant way, explicitly solving chirality. Third, for each
bond connecting non-terminal vertices, we assemble the two LS by predicting a single torsion angle,
avoiding overparameterization. Finally, the full conformer is assembled (only) at test time.

bond types, etc. For each molecular graph G, we have a variable-size set of low-energy ground
truth 3D conformers {C∗l }l that we predict with a model {Ck}k

def
= ζ(G). A conformer is a map

C : V → R3 from graph nodes to 3D coordinates, but a simplified notation is cv ∈ R3 for v ∈ V .
We use additional notations: d(X,Y ) = ‖cX − cY ‖ is the 3D distance between X and Y; ∠XY Z
is the counter-clockwise (CCW) angle ∠cXcY cZ ; ∠(XY Z,XY T ) is the CCW dihedral angle
of the 2D planes cXcY cZ and cXcY cT (formula is in appendix C). We use the corresponding
c∗v, d

∗(X,Y ),∠∗XY Z,∠∗(XY Z,XY T ) when manipulating a ground truth conformer.

Any conformer is defined up to a SE(3) transformation, i.e. any translation or rotation applied to the
set {cv}v∈V . A classic conformer distance function that satisfies this constraint is root-mean-square
deviation of atomic positions (RMSD), computed by the Kabsch alignment algorithm [Kabsch, 1976].

2.1 GEOMOL high-level overview

Our approach, shown in fig. 2, comprises three steps. First, we predict the local 3D structure of
each non-terminal atom, which we deem local structure (LS), by combining self-attention layers
and MPNNs with deterministic corrections for chiral centers. Bond distances and bond angles are
computed from the predicted LS. Next, we assemble all neighboring pairs of LSs by predicting the
torsion angles and aligning them. Importantly, since LSs are fixed, it suffices to only predict a single
value for the dihedral angle of each bond. Towards this goal, we develop a canonical representation of
torsion angles via a local coordinate system defined SE(3)-equivariantly w.r.t. the full structure, which
allows us to predict exactly the number of degrees of freedom. Finally, at test time, we assemble
all predicted pairs of neighboring LSs to construct the full conformer, applying deterministic ring
corrections. In order to generate diverse conformers, we append random Gaussian noise vectors to
each initial node feature vector and use an optimal transport-based loss function for training.

2.2 Message passing neural networks (MPNNs)

Given an input graph G, an MPNN [Gilmer et al., 2017, Battaglia et al., 2018, Yang et al., 2019]
computes node embeddings hv ∈ Rd,∀v ∈ V using T layers of iterative message passing:

h(t+1)
u = ψ

(
h(t)
u ,

∑
v∈Nu

φ(h(t)
v ,h(t)

u , eu,v)

)
, where h(0)

v
def
= concat[xv, zv], zv ∼ N (0, sId)

(1)
for each t ∈ [0 .. T − 1], where Nu = {v ∈ V |(u, v) ∈ E}, while ψ and φ are generic functions,
e.g. implemented using multilayer perceptrons (MLP) or attention [Veličković et al., 2017]. Final
node embeddings are obtained by the embedding of the last layer: hv

def
= h

(T )
v ,∀v ∈ V . Finally, we

also compute a molecular embedding: hmol
def
= MLP (

∑
v∈V hv). We leave comparison with other

MPNN variants for future work, e.g. Kipf and Welling [2017], Veličković et al. [2017], Hamilton
et al. [2017], Xu et al. [2019].
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2.3 Local structure (1-hop) prediction model

Following notations in fig. 3, for each non-terminal graph vertex X ∈ V having n graph neighbors
NX = {Ti}i∈[1..n], we predict its local 3D structure (LS), i.e. the relative 3D positions of all Ti, when
X is centered in the origin. The generic model is a function f(hT1

, . . . ,hTn ;hX) = (p1, . . . ,pn) ∈
R3×n that, additionally, should satisfy permutation equivariance w.r.t. Ti’s, namely, the 3D position
of each neighbor Ti should not change regardless of the ordering of the X’s neighbors:

f(hTπ(1)
, . . . ,hTπ(n)

;hX) = (pπ(1), . . . ,pπ(n)),∀π ∈ Sn (2)

Figure 3: For each non-terminal
atom X, we predict the relative 3D
position of each of its graph neigh-
bors, {Ti}i∈[1..n], in a permutation
equivariant way.

Our choice is the encoder part of a transformer [Vaswani et al.,
2017], without any positional encoding, thus satisfying per-
mutation equivariance. This model takes as input the set
{concat[hTi ,hX ]; i ∈ [1..n]} in any order and synchronously
updates the n embeddings based on several transformer layers.
The final layer projects the embeddings to 3 dimensions, result-
ing in a list (p1, . . . ,pn) ∈ R3×n having the exact same node
order as the input list.

Enforcing local consistency. We desire the LS model f()
to be distance-consistent, i.e. any bond distance d(X,Y ) is
the same, no matter if it is computed from the LS of node X
or of node Y. To achieve this, we use the above transformer
just to compute bond directions (which will be aligned using a separate approach described in
section 2.4), while we obtain the bond distances with a separate symmetric model. Concretely,
let the above transformer f() predict (p1, . . . ,pn) ∈ R3×n, while the final local 3D coordinates
are p′i

def
= pi
‖pi‖dGNN (hX ,hTi),∀i, where each bond distance is predicted with a symmetric model

dGNN (hX ,hY )
def
= softplus(ψ(hX ,hY ) + ψ(hY ,hX)),∀(X,Y ) ∈ E, with the same shared ψ (e.g.

an MLP). For notation simplicity, we will just use pi instead of p′i.

What about SE(3) invariance? The above model is not SE(3)-invariant per se, but it is used as
such. Namely, on one hand we compute SE(3)-invariant quantities: 1-hop distances d(Ti, X), 2-hop
distances d(Ti, Tj), and bending angles ∠TiXTj . These will be compared to their ground-truth
counterparts in the final loss, see section 2.5. On the other hand, the LS of adjacent graph nodes are
assembled together for computing torsion angles or for building the full conformer at test time. This
process is explicitly defined to be SE(3)-invariant as described in section 2.4.

Tetrahedral chiral corrections. When embedding the local neighborhood of a node in 3D space,
one has to carefully account for tetrahedral chiral centers (fig. 4). Tetrahedral chirality is a common
form of stereochemistry which restricts the 3D location of neighboring substituents of a central
atom with four distinct neighbors; molecules which differ by a single tetrahedral chiral center, i.e.
enantiomers, are mirror images of each other. Chirality heavily impacts some properties of small

Figure 4: Chirality: even if the two
shown graphs are isomorphic, they
have distinct 3D structures that can
be distinguished by the order of the
carbon center’s neighbors.

molecules–e.g. bioactivity. Existing MPNNs using only the
molecular graph cannot distinguish chiral centers (fig. 4), but
solutions exist [Pattanaik et al., 2020a]. Mathematically, enan-
tiomers can be differentiated based on the oriented volume
around the chiral center. That is, given the ordered set of neigh-
bor 3D coordinates around the center, namely p1,p2,p3,p4 ∈
R3, the sign of the volume of

the tetrahedron formed by the neighbors is

OV (p1,p2,p3,p4)
def
= sign


∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣


Enantiomeric structures always have opposite signs for the
oriented volume [Crippen et al., 1988]. Since we generate local
3D structures directly, we can also use local 3D chiral descriptors to ensure the correct generation
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of tetrahedral chiral centers. RDKit internally keeps track of these local chiral labels, denoted by
CW/CCW labels (detailed in e.g. Pattanaik et al. [2020a]). Importantly, each local chiral label
corresponds to a certain oriented volume (CW = +1 and CCW = -1). Thus, when generating an LS
for a tetrahedral center, we calculate the oriented volume and check against the internal RDKit label.
If it results in the incorrect oriented volume (i.e. the incorrect chiral center was generated), we simply
reflect the structure by flipping against the z-axis. This ensures that all chiral centers are generated
exactly, and no iterative optimization is necessary as with traditional DG-based generators.

2.4 Torsion angle representation and local structure (LS) assembly

Once the LS of each atom/vertex is predicted, we assemble them in pairs corresponding to each
non-terminal bond in the molecular graph. We describe this process for a bond connecting atoms X
and Y, each having additional graph neighbors {Ti}i∈[1..n] and, resp., {Zj}j∈[1..m]. See fig. 5.

Torsion angle over-parameterization. We first note that, for any assembled bond XY (fig. 5, right),
and ∀i, k ∈ [1..n],∀j, l ∈ [1..m], the dihedral angles ∠(XY Ti, XY Tk) and ∠(XY Zl, XY Zj) are
fully determined by the LS of nodes X and Y, respectively, so they do not depend on torsion angles.
Next, observe that there is exactly one torsion angle for any bond XY, given unique indexing of the
neighbors. This happens because of the constraint on ∠(XY Ti, XY Zj) and ∠(XY Tk, XY Zl):

∠(XY Ti, XY Zj) = [∠(XY Tk, XY Zl)+∠(XY Ti, XY Tk)+∠(XY Zl, XY Zj)](mod 2π) (3)

Thus, in order to avoid unnecessary over-parameterization, we should predict a single torsion angle α.

Figure 5: Assembly of the local
structures of bonded atoms X and Y
based on the predicted torsion angle.

Torsion angle formulation. However, it is still unclear at
this point how to define this unique angle in a canonical way
that is both: i) permutation invariant w.r.t. the nodes in the set
{Ti}i∈[1..n] and, respectively, in the set {Zj}j∈[1..m], and ii)
SE(3)-invariant w.r.t. the full 3D conformer.

Let ∆ij
def
= ∠(XY Ti, XY Zj) and sij

def
=

[
cos(∆ij)
sin(∆ij)

]
. Let

cij ∈ R be real coefficients such that s def
=
∑
i,j cijsij ∈ R2

is not the null vector. Then, we define the torsion angle as5:
α

def
= atan2( s

‖s‖ ). It is easy to see that this formulation satisfies
both invariances claimed above. We further state (and prove in
appendix A) that our proposed formulation gives a torsion an-
gle uniquely determined by all local angles ∠(Y XTi, Y XTk),
∠(Y XZj , Y XZl) and by the true underlying torsion angle:

Proposition 1. Given 3D coordinates of nodes X,Y, Ti, Zj
and fixed weights cij ∈ R such that

∑
i,j cijsij ∈ R2 is not the null vector, then α def

= atan2( s
‖s‖ ) is

unique, i.e. if we change the torsion angle of edge XY, then α will change. Formally, if we rotate the
set of bonds {XTi}i jointly around the line XY with the same angle γ, then α will be shifted with γ.

How to set cij? Breaking symmetries. A simple solution is to choose cij = 1,∀i, j. However, in
some important cases, local symmetries may result in s = 0. For example, this happens if, for some
j, we have ∆ij = 2iπ

n + ct.,∀i ∈ [1..n]. One solution is to use different cij to differentiate between
the different subgraphs rooted at different Ti (and similarly for Zj). This is reminiscent of traditional
group priorities used for distinguishing E/Z isomers. We devise a flexible solution: a differentiable
real value function computed from the MPNN node embeddings as cij = MLP (hTi + hZj ) ∈ R,
with MLP being a network shared across all bonds and molecules. Note that we constrain cij = cji,
thus guaranteeing that the same α is obtained if we swap X and Y (and their neighbors, respectively).

Final LS assembly for a single bond. We now describe the assembly process depicted in fig. 5.
We first predict the LS of node X as in section 2.3, giving some pX = 0,pY ,pTi ∈ R3,∀i ∈ [1..n],

5We define atan2 slightly different than standard: atan2(r cos(α), r sin(α)) def
= α,∀α ∈ [0, 2π), r ∈ R∗+.
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as well as the LS of node Y, giving qY = 0,qX ,qZj ∈ R3,∀j ∈ [1..m]. By design, we have that
‖qX‖ = ‖pY ‖. These two sets are currently not aligned. To achieve this, we first rotate the LS of X
such that pY becomes [‖pY ‖ 0 0]

>, while pX remains 0. Next, we rotate and translate the LS
of Y such that qY becomes pY and qX becomes pX = 0. These two rotations have one degree of
freedom each, which we set randomly. Exact formulas are in appendix B. Thus, the bond XY is now
matched, but the torsional rotation is still arbitrary/random. The remaining step is to rotate the LS of
X with an angle γ such that all dihedrals ∠(XY Ti, XY Zj) match their true counterparts. This is

done by applying to all vectors pTi the same rotation of type: Hγ :=

[
1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

]
.

How to compute γ? The current dihedrals ∆cur
ij

def
= ∠cur(XY Ti, XY Zj) depend on the random

torsional rotations from the previous assembly step. After applying the Hγ rotation, we obtain
the new dihedral angles: [∆cur

ij − γ] mod 2π that should match the ground truth dihedral angles

∆∗ij
def
= ∠∗(XY Ti, XY Zj). This is equivalently written as s∗ij = Acur

ij sγ , where sγ
def
=

[
cos(γ)
sin(γ)

]
and Acur

ij
def
=

[
cos(∆cur

ij ) sin(∆cur
ij )

sin(∆cur
ij ) − cos(∆cur

ij )

]
. Let s∗ def

=
∑
i,j cijs

∗
ij and Acur def

=
∑
i,j cijA

cur
ij . The

necessary condition for γ becomes sγ = (Acur)
>
s∗, which is also sufficient due to proposition 1.

This implies it is enough to predict only the normalized
[
cos(α)
sin(α)

]
def
= s∗

‖s∗‖ , from which γ follows. We

predict α using a function commutative in X and Y (i.e. swapping X and Y does not change α):

α = [φ(hX ,hY ,hmol) + φ(hY ,hX ,hmol)]mod 2π (4)

where φ is a neural network (e.g. MLP). Finally, sγ =

[
cos(γ)
sin(γ)

]
= 1
‖(Acur)>s∗‖ (Acur)

>
s∗.

2.5 An optimal transport (OT) loss function for diverse conformer generation

Loss per single conformer. Assume first that we predict a single conformer C. Based on all LS
and torsion angle predictions, we deterministically compute all 1/2/3-hop distances and bond/torsion
angles. If the corresponding ground truth conformer C∗ is known, we feed those quantities into a
negative log-likelihood loss, denote by L(C, C∗) and detailed in appendix D. Similar to Senior et al.
[2020], we fit distances using normal distributions and angles using von Mises distributions. This is a
much faster approach compared to habitual RMSD losses that compare full conformers.

Figure 6: Before (left) and af-
ter (right) introducing a match-
ing loss to distinguish symmet-
ric graph nodes. Hydrogen
predictions in both groups are
visibly improved.

Dealing with node symmetries. Our current formulation has
difficulties distinguishing pairs of symmetric graph nodes that are
less than 3 hops away, e.g. hydrogen groups. We address this using
a tailored matching loss detailed in appendix D and exemplified in
fig. 6.

Total OT loss per ensemble of conformers. In practice, our
model generates a set of conformers {Ck}k∈[1..K] that needs to
match a variable sized set of low-energy ground truth conformers,
{C∗l }l∈[1..L]. However, we do not know a priori the number L of true
conformers or the matching between generated and true conformers.
We also wish to avoid expensive and problematic adversarial training.
Our solution is an OT-based, minimization-only, loss function:

Lensemble def
=WL(·,·)({Ck}k, {C∗l }l) = min

T∈QK,L

∑
k,l

TklL(Ck, C∗l )

where T is the transport plan satisfying QK,L
def
= {T ∈ RK×L+ : T1L = 1

K1K ,T
T1K = 1

L1L}.
The minimization w.r.t. T is computed quickly using Earth Mover Distance and the POT library [Fla-
mary and Courty, 2017].
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Table 1: Results on the GEOM-DRUGS dataset. All models are without FF fine-tuning. "R" and
"P" denote Recall and Precision. Note: OMEGA is an established commercial (C) software.

COV - R (%) ↑ AMR - R (Å) ↓ COV - P (%) ↑ AMR - P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median
GraphDG (ML) 10.37 0.00 1.950 1.933 3.98 0.00 2.420 2.420
CGCF (ML) 54.35 56.74 1.248 1.224 24.48 15.00 1.837 1.829
RDKit/ETKDG 68.78 76.04 1.042 0.982 71.06 88.24 1.036 0.943
OMEGA (C) 81.64 97.25 0.851 0.771 77.18 96.15 0.951 0.854
GEOMOL (s = 9.5) 86.07 98.06 0.846 0.820 71.78 83.77 1.039 0.982
GEOMOL (s = 5) 82.43 95.10 0.862 0.837 78.52 94.40 0.933 0.856

Table 2: Results on the GEOM-QM9 dataset. See caption of table 1.

COV - R (%) ↑ AMR - R (Å) ↓ COV - P (%) ↑ AMR - P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median
GraphDG (ML) 74.66 100.00 0.373 0.337 63.03 77.60 0.450 0.404
CGCF (ML) 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
RDKit/ETKDG 85.13 100.00 0.235 0.199 86.80 100.00 0.232 0.205
OMEGA (C) 85.51 100.00 0.177 0.126 82.86 100.00 0.224 0.186
GEOMOL (s = 5) 91.52 100.00 0.225 0.193 86.71 100.00 0.270 0.241

2.6 Full conformer assembly at test time

Knowing all true LSs and torsion angles is, in theory, enough for a deterministic unique SE(3)-
invariant reconstruction of the full conformer. However, in practice, these predictions might have
small errors that accumulate, e.g. in rings. To mitigate this issue, we deterministically build the full
conformer (only at test time) by first predicting a smoothed structure of (fused) rings separately, and
then assembling the full conformer following any graph traversal order (any order gives the same
conformer, so this procedure does not break the non-autoregressive behavior). We detail this step in
appendix E.

3 Experiments

We empirically evaluate GEOMOL on the task of low-energy conformer ensemble generation for
small and drug-like molecules. We largely follow the evaluation protocols of recent methods [Simm
and Hernandez-Lobato, 2020, Xu et al., 2021], but also introduce new useful metrics.

Datasets & splits. We use two popular datasets: GEOM-QM9 [Ramakrishnan et al., 2014]
and GEOM-DRUGS [Axelrod and Gomez-Bombarelli, 2020a]. Statistics and other details are in
fig. 10 and in Mansimov et al. [2019]. Datasets are preprocessed as described in appendix G. We
split them randomly based on molecules into train/validation/test (80%/10%/10%). At the end, for
each dataset, we sample 1000 random test molecules as the final test set. Thus, the splits contain
106586/13323/1000 and 243473/30433/1000 molecules for GEOM-QM9 and GEOM-DRUGS, resp.

Baselines. We compare to established or recent baselines (discussed in section 1). ETKDG/RDKit
[Riniker and Landrum, 2015] is likely the most popular open-source software, a stochastic DG-based
method developed in the RDKit package. OMEGA [Hawkins et al., 2010, Hawkins and Nicholls,
2012, Friedrich et al., 2017], a rule-based method, is one of the most established commercial software,
with more than a decade of continuous development. OMEGA and ETKDG are some of the fastest
and best scaling existing approaches. Finally, we compare with the recent ML models of highest
reported quality: GraphDG [Simm and Hernandez-Lobato, 2020] and CGCF [Xu et al., 2021].

Evaluation metrics. We follow prior work [Simm and Hernandez-Lobato, 2020, Xu et al., 2021]
and use root-mean-square deviation of atomic positions (RMSD) to compare any two conformers.
This is defined as the normalized Frobenius norm of the two corresponding matrices of 3D coordinates
after being SE(3)-aligned a priori (using the Kabsch alignment algorithm [Kabsch, 1976]). Next,
we introduce four types of metrics to compare two conformer ensembles, generated by a method,
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Figure 7: Left: Examples of generated structures. For every model, we show the best generated
conformer, i.e. with the smallest RMSD to the shown ground truth. More examples are in appendix N.
Right/top: Number of rotatable bonds per DRUGS test molecule versus COV Recall (95% confidence
intervals). Right/bottom: conformer generation times for each model.

{Ck}k∈[1..K], and ground truth, {C∗l }l∈[1..L]. These metrics follow the established classification
metrics of Precision and Recall and are defined for a given threshold δ > 0 as:

COV - R (Recall) def
=

1

L
|{l ∈ [1..L] : ∃k ∈ [1..K], RMSD(Ck, C∗l ) < δ}|

AMR - R (Recall) def
=

1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C∗l )
(5)

where AMR is "Average Minimum RMSD", COV is "Coverage", and COV - P (Precision) and AMR -
P (Precision) are defined as in eq. (5), but with the generated and ground truth conformer sets swapped.
The recall metrics measure how many of the ground truth conformers are correctly predicted, while
the precision metrics indicate how many generated structures are of high quality. Specifically, in
terms of recall, COV measures the percentage of correct generated conformers from the ground truth
set (where a correct conformer is defined as one within an RMSD threshold of the true conformer),
while AMR measures the average RMSD of each generated conformer with its closest groun truth
match. Depending on the application, either of the metrics might be of greater interest. We follow Xu
et al. [2021] and set δ = 0.5Å for GEOM-QM9 and δ = 1.25Å for GEOM-DRUGS.

Training and test details. For each input molecule havingK ground truth conformers, we generate
exactly 2K conformers using any of the considered methods. For GEOMOL, this is done by sampling
different random noise vectors that are appended to node and edge features before the MPNN (eq. (1)).
At train time, our model uses a standard deviation (std) s (see eq. (1)) of 5 for both GEOM-QM9 and
GEOM-DRUGS. At test time, GEOMOL can use the same or different s values, depending on the
downstream application, i.e. higher s results in more diverse conformers, while lower s gives more
quality (better precision). For OMEGA, it is not possible to specify a desired number of conformers.
So, we tune the RMSD threshold (which decides how many conformers to keep) such that the total
generated conformers by OMEGA are approximately 2K. For GEOM-QM9, this corresponds to
no RMSD cutoff (i.e. OMEGA generates all possible conformers), and for GEOM-DRUGS, this
corresponds to a cutoff of 0.7Å (meaning no two generated conformers will have a distance smaller
than this cutoff). We discuss hyper-parameters and additional training details in appendix H.

Results & discussion. Results are shown in table 1 and table 2, and confidence intervals are in
appendix I. As noted above, GEOMOL can be run with different noise std at test time, depending on
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which metric the user is interested in. Even though OMEGA is an established commercial software
with more than a decade of continuous development, our model remarkably frequently outperforms
it. Note that OMEGA fails to generate any conformers for 7% of the QM9 test set (many of which
include fused rings). Moreover, we also outperform the popular RDKit/ETKDG open-source model
(except for AMR-P on QM9) and very recent ML models such as GraphDG and CGCF, sometimes
by a large margin. For a qualitative insight, we show generated examples in fig. 7 and appendix N.

Additionally, we show in fig. 7 how COV Recall results are affected by the increasing number of
rotatable bonds in the test molecule. As expected, having more rotatable bonds makes the problem
harder, and this affects all baselines, but GEOMOL maintains a reasonable coverage even for more
difficult molecules. Moreover, in appendix K and table 8 we show energy calculations of the generated
conformers to support their plausibility. Additionally, results with energy-based relaxations are given
in appendix J.

Running time. Fig. 7 shows conformer generation test running times. Our model is the fastest
method from the considered baselines, being much faster than CGCF or ETKDG/RDKit. Moreover,
GEOMOL scales favorably for molecules with increasing number of rotatable bonds.

4 Conclusion

We proposed GEOMOL, an end-to-end generative approach for molecular 3D conformation ensembles
that explicitly models various molecular geometric aspects such as torsion angles or chirality. We
expect that such differentiable structure generators will significantly impact small molecule conformer
generation along with many related applications (e.g. protein-ligand binding), thus speeding up areas
such as drug discovery. GEOMOL’s full source code will be made publicly available.

Limitations & future work. A few current limitations are highlighted and left for future exten-
sions (see also discussion in appendix O). First, our model does not currently support disconnected
molecular graphs, e.g. ionic salts, but it can be applied to each connected component, followed
by a 3D alignment. Next, our approach would benefit from explicit modeling of long distance
interactions, especially for macrocycles or large molecules. This remains to be addressed in an
efficient manner. Third, explicitly using ground truth energy values could further improve GEOMOL.
Last, we look forward to fine-tune GEOMOL on applications such as generating molecular docking
poses or descriptors for 4D QSAR.
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A Proof of proposition 1

Proof. Let’s assume we apply a random CCW torsion rotation of angle γ ∈ (0, 2π) around bond
XY to all bonds XTi. We will prove that the resulting α will be shifted exactly by γ. Let us denote
the current dihedrals after the γ rotation by ∆cur

ij = ∠cur(XY Ti, XY Zj) mod 2π. Also, denote
by ∆ij = ∠(XY Ti, XY Zj) mod 2π the dihedral angles before rotation. We have the relation
∆ij = [∆cur

ij + γ] mod 2π,∀i, j, or, in matrix form:

sij = Aγs
cur
ij (6)

where Aγ :=

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
, sij :=

[
cos(∆ij)
sin(∆ij)

]
and scurij :=

[
cos(∆cur

ij )
sin(∆cur

ij )

]
.

We know use s :=
∑
i,j cijsij ∈ R2 and scur :=

∑
i,j cijs

cur
ij ∈ R2. From the above relation, we

obtain that s
‖s‖ = Aγ

scur

‖scur‖ . Writing s
‖s‖ =

[
cos(α)
sin(α)

]
and scur

‖scur‖ =

[
cos(αcur)
sin(αcur)

]
we obtain that

α = γ + αcur which concludes our proof.

A note on collinear 3D points. In the main text, we always assumed that dihedral angles ∆ij
def
=

∠(XY Ti, XY Zj),∀i ∈ [1..n],∀j ∈ [1..m] exist. However, any such angle will not be defined if X
and Y are collinear with either Ti or Zj . In such cases, we identify those neighbor nodes that are
predicted to be collinear with X and Y (solely based on their respective LS), and then remove them
from the computation of Acur and sγ . In the extreme case when these collinear nodes are the only
neighbors, the torsion angle is not defined by our formulation. We leave this isolated case to be solved
in future extensions of our work.

B Initial assembly of the LSs of the endpoints of a bond XY

We detail here the formulae used in section section 2.4. Let the (predicted) LS of node X be
pX = 0,pY ,pT1

, . . . ,pTn ∈ R3, as in section 2.3. Similarly, let the LS of node Y be qY =
0,qX ,qZ1

, . . . ,qZm ∈ R3. By design of section 2.3, we have that ‖qX‖ = ‖pY ‖. These sets of 3D
points can be aligned by applying any SE(3) transformation to each of them. To achieve alignment,
we first want to match the X and Y points.

For this, we first rotate the LS of X such that pY becomes

[‖pY ‖
0
0

]
and pX remains 0. Next, we

rotate and translate the LS of Y such that qY becomes pY and qX becomes 0. More concretely, let
ηX ∈ R3 be any random unit-norm vector orthogonal to pY . We find a rotation matrix HX,Y =− h>1 −
− h>2 −
− h>3 −

 ∈ R3×3 such that HX,Y pY =

[
a
0
0

]
, with a > 0, and HX,Y ηX =

[
b
c
0

]
, where

b, c ∈ R. This is solved as:

h1 =
pY
‖pY ‖

; h3 =
pY × ηX
‖pY × ηX‖

; h2 = −(h1 × h3)

We now rotate the LS of X by doing: p′Ti
def
= HX,Y pTi ,∀i ∈ [1..n], p′Y

def
= HX,Y pY . We

apply a similar procedure for the LS of Y, computing q′Zj
def
= HY,XqZj ,∀j ∈ [1..m] and

q′X := HY,XqX . We now reflect the LS of Y w.r.t. the first and second coordinate by doing

q′Zj ←

[−1 0 0
0 −1 0
0 0 1

]
q′Zj + p′Y , which centers X in the origin, i.e. q′X = 0, and aligns the two

vectors of Y, i.e. q′Y = p′Y .
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C Dihedral angle formula

The CCW dihedral angle between two intersecting half-planes ABC and ABD with common points
A,B is computed as6

∠(ABC,ABD) = atan2(‖b2‖〈b1,b2 × b3〉, 〈b1 × b2,b2 × b3〉) (7)

where b1 := sA − sC ,b2 := sB − sA,b3 := sD − sB .

D Details of the loss function

Assume, for a molecular graph G = (V,E), that one predicted/generated conformer using one
model is C, while the corresponding ground truth conformer is C∗. We use notations in section 2.
E is the set of edges in graph G. For every chain of 3 edges (u, v), (v, w), (w, y) ∈ E, we define
∠(uvwy)

def
= ∠(uvw, vwy).

Similar to AlphaFold [Senior et al., 2020], we fit distances using normal distributions and angles
using von Mises distributions. The resulting negative log-likelihood loss averages over same types of
terms, being formally written as:

L(C, C∗) def
= ξ1 ·

1

#{(u, v) ∈ E}
∑

{(u,v)∈E}

(d(u, v)− d∗(u, v))2

+ ξ2 ·
1

#{u, v : 2-hops away}
∑

{u,v:2-hops away}

(d(u, v)− d∗(u, v))2

+ ξ3 ·
1

#{u, v : 3-hops away}
∑

{u,v:3-hops away}

(d(u, v)− d∗(u, v))2

− ξ4 ·
1

#(u, v) ∈ E, (v, w) ∈ E
∑

(u,v)∈E,(v,w)∈E

cos (∠uvw − ∠∗uvw)

− ξ5 ·
1

#(u, v), (v, w), (w, y) ∈ E
∑

(u,v),(v,w),(w,y)∈E

cos (∠(uvwy)− ∠∗(uvwy))

(8)

where ξ1, ξ2, ξ3, ξ4, ξ5 > 0 are hyperparameters tuned on the validation set, with ξ1, ξ2, ξ3 represent-
ing inverse standard deviations of the respective normal distributions, while ξ4, ξ5 being the measures
of concentration of the corresponding von Mises distributions.

Figure 8: Nodes A and B are symmet-
ric in this example graph, but not when
placed in the 3D space, as node A will
be spatially closer to node C than node B.
Such cases require a special treatment.

Dealing with node symmetries. A matching loss func-
tion. So far, we haven’t tackled the following difficulty:
symmetric graph nodes that are less than 3 hops away are
indistinguishable by MPNNs in general, and by our cur-
rent model in particular, even if we append initial random
noise feature vectors. However, these nodes have distinct
distances and angles to other nodes in 3D space. Exam-
ples are hydrogen groups as in fig. 8. The difficulty in
our case comes from the fact that the MPNN has lost the
true matching between the graph nodes and the respective
3D points of the ground truth conformer. Our model is
able to differentiate symmetric nodes because of the initial
random noise vectors appended to each atom and feature
vector, but a consistent matching with the ground truth
conformer nodes is lost, and we seek to recover it.

We here address this problem only for symmetric terminal
nodes attached to the same common neighbor. We leave

6See https://en.wikipedia.org/wiki/Dihedral_angle.

15

https://en.wikipedia.org/wiki/Dihedral_angle


further extensions to more general symmetries for future work. Concretely, let X1, . . . , XT be
identical atoms of degree 1, each being connected to the same common node Y in the molecular graph.
Let c1, . . . , cT ∈ R3 be their predicted 3D coordinates in one generated conformer C : V → R3.
Let also c∗1, . . . , c

∗
T ∈ R3 be their corresponding 3D coordinates of some ground truth conformer

C∗ : V → R3. These coordinates are then used for the computation of different loss terms in eq. (8).

We propose a new loss function based on eq. (8) that replaces it:

Lperm(C, C∗) def
= min
π∈ST

L(C, C∗π) (9)

where C∗π : V → R3 is defined as C∗π(v) = C∗(v),∀v ∈ V \ {X1, . . . , XT } and
C∗π(Xi) = C∗(Xπ(i)),∀i ∈ [1..T ]. In a nutshell, this new loss function searches all possible per-
mutations of the symmetric nodes X1, . . . , XT in order to find the "best matching" (based on the
loss value) with the corresponding points in the ground truth conformer C∗. The procedure above is
applied for all groups of symmetric graph nodes that are of degree 1 and attached to a common node
in the molecular graph. The loss in eq. (9) does not significantly affect the speed of our method (as
we show in the experimental section) due to the fact that most groups of symmetric atoms contain at
most 3 nodes. However, it positively affects the quality of the resulting conformers as exemplified in
fig. 6.

OT Loss. During training, the matrix T in section 2.5 is computed for the forward pass using
the Earth Mover Distance (EMD) function from the POT library [Flamary and Courty, 2017] and
kept fixed during backpropagation. The EMD computation cannot be parallelized in mini-batches
in the current version of the library, but everything else is batch-parallelizable in our model (e.g.
computation of L(C, C∗)).

E Details of the full conformer assembly procedure at test time

The training stage happens without assembling the full conformer. However, we desire to generate
the full 3D conformer for test and inference time. This can be done by repeatedly applying the
assembly operation described in section 2.4. We assemble the 3D coordinates of the atoms one
by one, following a fixed arbitrary graph traversal, say Breadth First Search (BFS). Our procedure
described here is deterministic, and any graph traversal will lead to the same final conformer (up to
an SE(3) transformation).

The key step is assembling two sets of 3D points: the set containing the LS of node X (and possibly
other atom coordinates added in previous steps), denoted as SX := {p1, . . . ,pn} ⊂ R3, and the
set containing the LS of node Y, denoted as SY := {q1, . . . ,qm} ⊂ R3. Assume that X and Y are
connected by a bond/edge. Also assume that X is connected to nodes Ti, while Y is connected to
nodes Zj as denoted in fig. 5. We make the clarification that pTi ∈ SX ,pY ∈ SX ,pX ∈ SX and
qZj ∈ SY ,qY ∈ SY ,qX ∈ SY and we expect that ‖pX −pY ‖ = ‖qX −qY ‖ by our design of this
model.

To assemble the sets SX and SY , we follow the steps described in section 2.4 and appendix B, but
using only points in the LS of X from the set SX together with only points of the LS of Y from
SY to compute the torsion angle γ of the bond XY . That is, the torsion angle is computed only
based on the graph neighbors of nodes X and Y. However, all points in SX and SY are used for
all the updates of the 3D coordinates. In the end, we obtain assembled set of points that satisfy

qY = pY =

[
dGNN (hX ,hY )

0
0

]
,qX = pX = 0. Finally, we just merge the two sets SX and SY

into their union.

Dealing with graph cycles. The assembly operation might lead to inconsistencies when a node
is reached the second time after a cycle traversal. We adopt a deterministic approach to tackle this
issue. We first fix one BFS traversal of the graph and assemble the LS in the order given by this
traversal. If the current node is not part of a cycle, then we can perform the assembling as described
before. However, when we first encounter a node that is part of a cycle of nodes X1, X2, . . . , Xn,
we will jointly compute all the 3D coordinates of this cycle and attach the entire ring structure to
the current partial conformer. Concretely, for every i ∈ {1, . . . , n}, we assemble the LS of nodes
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Figure 9: Effect of two assembly techniques. Left: ground truth structure. Middle: our assembly
procedure is applied on a random spanning tree of the molecular graph. Right: our described ring
correction/smoothing algorithm, leading to a visibly improved structure.

i, i+ 1, . . . n, 1, 2, . . . i− 2 resulting in the 3D points xi−1,xixi+1, . . . ,xn,x1,x2, . . . ,xi−2,x
′
i−1,

where node i− 1 has two 3D points xi−1 and x′i−1 computed based on the LS of nodes i and i− 2
respectively. Next, we average the two 3D points of node i− 1 into a single vector denoted as xi−1 ∈
R3. We denote the resulting list of 3D points as Si = {xi−1,xixi+1, . . . ,xn,x1,x2, . . . ,xi−2}. So,
we have obtained n lists of 3D points, Si,∀i ∈ [1..n], that each represents the 3D conformer of the
same cycle when the assembling is done using all nodes except one, in turn. We align all Si together
using Kabsch algorithm [Kabsch, 1976] 7, followed by averaging all vectors of the same cycle node,
for each node in the cycle, thus obtaining a final smoothed set of 3D coordinates for this respective
cycle. We call this procedure "ring correction" or "ring smoothing". We additionally note that, when
aligning two sets Si and Sj , we also have to align the non-cycle points previously assembled. Finally,
after all 3D vectors of a cycle are obtained, we continue to assemble in the order given by the BFS
traversal. We show an example of the effect of this procedure in fig. 9.

F Datasets statistics

Figure 10: Datasets statistics.

We here show several dataset statistics in fig. 10, but point the interested reader to other resources
describing these datasets, e.g. Mansimov et al. [2019], Axelrod and Gomez-Bombarelli [2020a],
Ramakrishnan et al. [2014].

Datasets generation details. The GEOM dataset is generated with semi-empirical tight-binding
DFT (GFN2-xTB) with the CREST software Grimme [2019]. However, such semi-empirical calcu-
lations can be relatively slow in practice–espeically for larger molecules–which is one of the main
motivations of ML models for conformer ensemble prediction.

7https://en.wikipedia.org/wiki/Kabsch_algorithm
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G Data preprocessing

We featurize each .pickle file in the datasets, which correspond to a single molecule and its respective
conformers, to PyTorch Geometric data objects. First, we ensure the provided SMILES strings can be
processed by RDKit, and we discard the few molecules that fail to meet this criteria. We additionally
discard molecules with disconnected fragments (i.e. contains a “.” in the SMILES) and without
any dihedral angles (i.e. fails to match a “[∗] ∼ [∗] ∼ [∗] ∼ [∗]” SMARTS pattern). Finally, some
conformers in the original dataset may have reacted during the original data generation process. We
filter these conformers by inferring the SMILES from the 3D structure, canonicalizing the SMILES
with RDKit, and checking this SMILES with the SMILES reported by the dataset. Any conformers
who fail this check are discarded as reacted conformers. We detail the atom and bond features used
for the final GEOM-DRUGS model in Table 3. Note that the GEOM-QM9 model uses the same
features but restricts the possible atom identities to H, C, N, O, and F.

Table 3: Atom and bond features

Atom features

Indices Description Options Type

0-34 atom identity

H, Li, B, C, N, O, F, Na, Mg, Al, Si, P, S,
Cl, K, Ca, V, Cr, Mn, Cu, Zn, Ga, Ge,

As, Se, Br, Ag, In, Sb, I, Gd, Pt, Au, Hg, Bi one-hot
35 atomic number Z>0 value
36 aromaticity true, false one-hot

37-44 degree 0, 1, 2, 3, 4, 5, 6, other one-hot
45-50 hybridization sp, sp2, sp3, sp3d, sp3d2, other one-hot
51-58 implicit valence 0, 1, 2, 3, 4, 5, 6, other one-hot
59-62 formal charge -1, 0, 1, other one-hot
63-69 presence of atom in ring of size x 3, 4, 5, 6, 7, 8, other k-hot
70-74 number of rings atom is in 0, 1, 2, 3, other one-hot

Bond features

Indices Description Options Type

0-3 bond type single, double, triple, aromatic one-hot

H Additional training details and hyperparameters

We run each model for a fixed 250 epochs with early stopping and keep the model with the best
validation performance. This strategy determines the final hyperparameters chosen for the model,
shown in table 4. We additionally tune the standard deviation s on a sample of the validation set
to maximize recall coverage or precision coverage (depending on the user’s interest), and we show
the corresponding test scores in our tables. To adjust the learning rate during training, we use a
plateau scheduler which automatically decays the learning rate when improvement has stalled, using
a decay factor of 0.7 and a patience of 5 epochs. All models use the same seed to initialize network
weights, ensuring consistency between runs. During training time, we randomly sample a fixed
number of ground truth conformers from each molecule. This fixed number is a hyperparameter in
our optimization, which we set to 10 for GEOM-QM9 and 20 for GEOM-DRUGS. This value is not
relevant during test time, as the model simply generates the number of conformers requested by the
user.

I Confidence intervals

We report in table 5 confidence intervals for GEOMOL on both datasets during test time. The same
trained model is run for 3 times for a given test molecule with K ground truth conformers, where one
run means generating 2K conformers.
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Table 4: Hyerparameter choices

Hyperparameter Final choice (QM9/DRUGS)

True conformers sampled 10/20
Model conformers generated 10/20
Model dimension 25
Random vector dimension 10
Random vector standard deviation s 5
MPNN 1 depth 3
MPNN 1 number of layers 2
MPNN 2 depth 3
MPNN 2 number of layers 2
LS self-attention encoder heads 2
LS coordinate MLP layers 2
LS distance MLP layers 1
hmol MLP layers 1
α MLP layers 2
cij MLP layers 1
Batch size 16
Learning rate 1e-3

Table 5: Confidence intervals for GEOMOL with the default noise s = 5.

COV - R (%) ↑ AMR - R (Å) ↓ COV - P (%) ↑ AMR - P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median

GEOMOL
DRUGS

82.43
± 0.26

95.10
± 0.25

0.8626
± 0.0020

0.8374
± 0.0037

78.52
± 0.02

94.40
± 0.20

0.9336
± 0.0015

0.8567
± 0.0030

GEOMOL
QM9

91.52
± 0.36

100.00
± 0.00

0.2254
± 0.0012

0.1938
± 0.0024

86.71
± 0.29

100.00
± 0.00

0.2702
± 0.0007

0.2413
± 0.0030

J Results with force field optimization

We also show results in table 6 and table 7 for all models after additional fine-tuning with FF energy
minimization. We used MMFF94s Merck Molecular Force Field [Halgren, 1996, 1999]). Note that
the best GEOMOL models here use s = 1 during training rather than s = 5.

Table 6: Results on the GEOM-DRUGS dataset with FF fine-tuning.
COV - R (%) ↑ AMR - R (Å) ↓ COV - P (%) ↑ AMR - P (Å) ↓

Models Mean Median Mean Median Mean Median Mean Median
GraphDG (ML) 85.33 100.00 0.859 0.831 62.65 69.45 1.162 1.121
CGCF (ML) 91.25 100.00 0.723 0.702 63.86 70.43 1.096 1.055
RDKit/ETKDG 77.22 87.62 0.886 0.837 75.98 93.86 0.911 0.803
OMEGA (C) 80.82 94.74 0.840 0.755 81.79 100.00 0.804 0.684
GEOMOL (s = 0.25) 80.73 92.01 0.863 0.809 86.12 100.00 0.751 0.616
GEOMOL (s = 3.00) 91.34 100.00 0.683 0.663 79.64 92.46 0.841 0.756

K Energy calculations

To gauge the plausibility of generated conformers, we compute the energies as defined by the
MMFF force field within RDKit for conformers generated with ML-based methods before force field
fine tuning. We note that an improved demonstration would calculate energies at the GFN2-xTB
semiempirical level of theory, since the training data were generated with this method, but we decided
to use a force field instead, which should retain the qualitative trends. Table 8 illustrates these results,
which support the results from table 1 and table 2. The energy values from GeoMol are the lowest
among the ML methods, indicating greater stability of generated conformers, especially for the
druglike molecules.
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Table 7: Results on the GEOM-QM9 dataset with FF fine-tuning.
COV - R (%) ↑ AMR - R (Å) ↓ COV - P (%) ↑ AMR - P (Å) ↓

Models Mean Median Mean Median Mean Median Mean Median
GraphDG (ML) 88.70 100.00 0.210 0.165 90.14 100.00 0.185 0.129
CGCF (ML) 75.45 100.00 0.313 0.246 50.29 50.00 0.518 0.520
RDKit/ETKDG 83.48 100.00 0.219 0.172 89.78 100.00 0.160 0.116
OMEGA (C) 85.73 100.00 0.177 0.126 83.08 100.00 0.224 0.186
GEOMOL (s = 5.00) 89.37 100.00 0.201 0.157 91.92 100.00 0.173 0.124

Table 8: MMFF energy calculations for ML conformer generators

Model Mean/Median (kcal/mol)
QM9 DRUGS

GeoMol 17.45/17.56 83.72/77.52
GraphDG 26.32/24.44 64350.58/61732.49
CGCF 86.71/87.02 1380.82/556.78

L Compute details

We train GEOMOL using a single Nvidia Volta V100 GPU and eight Intel Xeon Gold 6248 CPUs.
The exact number of hours depends on the cluster load and on early stopping, but training GEOMOL
for the full 250 epochs takes approximately 1.8 days for the QM9 dataset and 6.1 days for the DRUGS
dataset.

M Additional coverage results

We additionally show how the Recall Coverage varies with the threshold δ in fig. 11. Larger thresholds
allow small errors, but penalize large errors, while smaller thresholds penalize both small and large
errors.

N Additional examples

We show additional examples of generated conformers from the GEOM-QM9 test set in fig. 12 and
from the GEOM-DRUGS test set in fig. 13.

O Additional discussion

O.1 Purpose of conformer generation

The purpose of conformer generation in the context of this work warrants some discussion. As stated
in the main text, this purpose is heavily application-dependent. The current method is very helpful for
computing the properties of drug-like molecules at low temperature, where it is necessary to generate
a set of conformers that represents those with high Boltzmann populations. It can also be used for
small molecules, but if the molecules are very small, it may be possible to identify all the important
conformers by exhaustive search. At very high temperatures, where a large number of conformers
are energetically accessible, it may be more convenient to represent the potential energy surface as a
sum of hindered rotor potentials. Yet another common application for 3D conformer generation is the
discovery of docked poses and 4D QSAR, where speed of the conformer generator becomes a crucial
factor for virtually screening millions of structures. Crystal structure prediction (CSP) similarly relies
on screening stable conformations, with recent models placing a greater emphasis on quality over
quantity. These last two applications require modelling conformational flexibility rather than finding
wells in the potential energy surface, as docked and crystallized conformations can fall outside these
wells, carrying additional strain. The methods we present in this work can address any of these
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Figure 11: Recall coverage plotted against varying RMSD thresholds.

latter applications as well. We emphasize that the datasets on which GEOMOL (or any ML model)
is trained guide the downstream usage, but cleverly finetuning GEOMOL on various downstream
applications is an exciting future research direction.

O.2 Comment on evaluation metrics

Additionally, we note that while the evaluation metrics presented in this work are a sensible way to
benchmark ML conformer generators against each other, they do not necessarily present a realistic
evaluation of these algorithms in a production setting. This is why evaluating against the OMEGA
software, which does not allow the user to request a specific number of conformers, is difficult.
Further, for many applications, the generated conformers should be pruned and ranked (e.g., ranking
conformers by energy and stable packing arrangements for CSP), and different conformer generation
methods have varying methods to perform these post-processing steps. Because the scope of the
presented work aims to distinguish our model against the many emerging ML-based conformer
generators, we leave the exploration of such post-processing algorithms and strategies for future
work. Furthermore, both the ETKDG and OMEGA algorithms are optimized to reproduce Protein
Data Bank/Cambridge Structural Database conformations rather than replicate xTB low-energy
conformations. In this sense, the evaluation presented here should not be viewed as a comprehensive
argument for or against any of these methods.

O.3 QM9 results

Focusing on the QM9 results, we see both the power and drawbacks of the popular conformer
generators such as OMEGA and ETKDG. Both methods can successfully generate diverse sets of
conformers for the small molecules in the QM9 dataset, as shown by the high recall coverage values.
However, both methods run into similar issues. That is, they both fail to generate the requested
number of conformers for a few structures in the QM9 dataset, most of which have fused rings and
multiple chiral centers specified. Since OMEGA, which constructs initial 3D structures from its
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Reference GraphDG CGCF ETKDG OMEGA GeoMol

Figure 12: Additional examples of generated conformers for the GEOM-QM9 dataset.
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Reference GraphDG CGCF ETKDG OMEGA GeoMol

Figure 13: Additional examples of generated conformers for the GEOM-DRUGS dataset.
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database of fragments, does not have many of these fragments readily available, both OMEGA and
ETKDG likely run into the same issue: using DG-based methods to generate initial 3D conformers
for molecules with multiple chiral centers is difficult because of the implicit chiral constraints that
must be satisfied. Take for example the following SMILES, which represents a fairly simple fused
ring structure: ’C#C[C@@]1(C)[C@H]2C[C@]1(C)C2’. ETKDG fails to embed a single conformer
for this structure with repeated attempts. Removing the chiral centers specifications (i.e. inputting
’C#CC1(C)C2CC1(C)C2’ as the SMILES) results in a successful structure generation, but many of
the outputs have the incorrect chirality. While these can sometimes be corrected with energy-based
minimization, the key issue of determining chiral centers exactly with DG-based methods remains.
GEOMOL specifically tackles this problem such that all specified chiral centers are solved exactly
(see section 2.3).

O.4 DRUGS results

The results for the DRUGS half of GEOM dataset suggest additional issues with traditional conformer
generation methods. With these larger, drug-like molecules with many rotatable bonds, the search
space of conformers grows exponentially. Here, it is instructive to separate the performance of
ETKDG from OMEGA. ETKDG relies on randomly sampling the space of possible interatomic
distances, which leads to poor coverage for conformers where this space is large. If the goal is to
improve coverage, ETKDG could benefit from improved sampling strategies. OMEGA systematically
varies all torsion angles in the structure to generate ensembles, but since this process can become
prohibitively expensive, we must include an RMSD cutoff for many of these input molecules so as to
return results in a reasonable period of time. Furthermore, not only does OMEGA uses a modified
MMFF94 FF to generate its fragment library, it also uses a FF to score each potential conformer; its
identified low-energy structures will be different than the xTB geometries we use as ground truths.
This is a limitation with the OMEGA algorithm as currently constructed, and it could benefit from
higher quality fragment structures and improved methods to score output conformers. This is not
to understate the power of OMEGA as a conformer generation tool; it significantly outperforms the
other baselines in our study and should be viewed as state-of-the-art in reference.

O.5 Runtime comparison

While the baselines ML methods have not benchmarked the speed of their algorithms, we believe
this is a crucial evaluation of any conformer generator, especially if the intent is to use such a model
for pose prediction and high throughput virtual screening. For each baseline, we request a fixed
number of conformers and record the time necessary to output a single conformer, parallelizing each
model over 40 CPU cores. We repeat this analysis three times for each method and plot the results
in fig. 7. Importantly, we do not include the start up times for any of the methods (i.e. loading the
neural network weights for the ML models). OMEGA, GraphDG, and GEOMOL show comparative
performance, with ETKDG lagging slightly behind. Additionally, GEOMOL scales well for structures
with an increasing number of rotatable bonds, especially compared to GraphDG and ETKDG. The
CGCF model is orders of magnitude slower than the other baselines, which restricts its utility for
high throughput applications of conformer generation.

O.6 Limitations

The most significant drawback of our model is its weakness in capturing long-range interactions,
which can manifest itself in several ways, detailed in fig. 14. First, GEOMOL poorly models
macrocycles. Because of the formulation we use to construct conformers, error accumulation
sometimes leads to imperfect structures, as the ring smoothing algorithm breaks down for large
cycles (top of fig. 14). We also qualitatively observe that large rings with very sparse examples in the
training data can be predicted poorly by our model at test time. The middle of fig. 14 shows one such
example of an eight-membered ring; here, additional training data should help, as there only exist a
few eight-membered rings in the training set. Finally, the presence of steric clashes is an important
issue with the current model. The bottom of fig. 14 shows one such example, being the most common
error mode for GEOMOL. Since global conformer information during torsion predictions is only
conveyed through the graph network representations, it is challenging to account for the position of
atoms far away in graph connectivity, which can lead to overlapping atoms in the final prediction.
This is especially troubling for interactions such as the pi-pi stacking depicted in the figure, which
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Reference GeoMol

Figure 14: Common GEOMOL errors. Top: example of a macrocyle predicted poorly by GEOMOL.
Middle: example of a larger ring with few training set occurrences. Bottom: example of a steric clash
due to weak modeling of long-range interactions.

require moieties in the conformer with large 2D distances in the molecular graph to be predicted
close to one another in 3D space. For this reason, extending GEOMOL with an improved method for
long-range interactions is an exciting future direction.

O.7 Conclusions

In theory, GEOMOL should replicate the quality of conformers on which it was trained, which gives
the model unique power and flexibility for downstream applications. For example, one could easily
construct a smaller database of high-quality conformers optimized at a higher level of theory than
semi-empirical (ex. coupled-cluster) and finetune GEOMOL. These higher-quality conformers could
even include solvent effects in a range of solvents, which are often neglected in traditional conformer
generation methods. Indeed, these downstream modifications could have significant impacts on a
range of applications in cheminformatics and drug discovery.

Both the GraphDG and CGCF models, which represent important steps in ML-enabled conformer
generation, are not quite ready to be used in a production setting without relying on a force field
optimization. This is especially evident given the example structures presented in the main text
and in appendix N. However, both models improve over traditional baselines at searching the
space of interatomic distances and outputting diverse predictions, which is a credit to the search
strategies employed by each model, especially CGCF. Further, the GraphDG model is competitive
with GEOMOL for the QM9 dataset and should be viewed as a viable alternative to GEOMOL for
small molecules with few heavy atoms.

As researchers continue to develop 3D ML-based conformer generators, the discussion between DG-
based and non DG-based algorithms will carry on. Here, we chose to take the latter approach because
we wanted to explicitly model important elements of conformer generation, and this strategy has
been successful. In our experience, modeling these specific geometric elements leads to a significant
improvement in the quality of the output structures. It is still unclear if such an approach can tackle
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long-range interactions, which remains the major drawback of our model. We hope to answer this
question in future work.
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