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Abstract

Client selection schemes are widely adopted to
handle communication-efficient problems in re-
cent studies of Federated Learning (FL). However,
the large variance of the model updates aggregated
from the randomly-selected unrepresentative sub-
sets directly slows the FL convergence. We present
a novel clustering-based client selection scheme to
accelerate the FL convergence by variance reduc-
tion. Simple yet effective schemes are designed to
improve the clustering effect and control the effect
fluctuation, therefore, generating the client subset
with certain representativeness of sampling. Theo-
retically, we demonstrate the improvement of the
proposed scheme in variance reduction. We also
present the tighter convergence guarantee of the
proposed method thanks to the variance reduction.
Experimental results confirm the exceed efficiency
of our scheme compared to alternatives.

1 INTRODUCTION

Federated Learning (FL) is a distributed learning paradigm
for training a global model from data scattered across dif-
ferent clients Konečnỳ et al. [2015]. During the training
process, all the clients need to operate data locally and trans-
fer the model updates between servers and themselves back
and forth. Such a training process may raise many chal-
lenges, with communication cost often being the critical
bottleneck Kairouz et al. [2021].

Many studies have found that different clients might transfer
similar (or redundant) model updates to the server, which is
a waste of communication costs Balakrishnan et al. [2022],
Fraboni et al. [2021], Karimireddy et al. [2020b]. Client
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selection schemes are widely adopted to reduce the waste of
communication costs, e.g., Federated Averaging (FedAvg)
where only the randomly-selected subset of clients trans-
fer their model updates to the server instead of yielding
all clients involved McMahan et al. [2017]. FedAvg can
maintain the learning efficiency with reduced communica-
tion costs, since the random selection schemes can reduce
the redundant update transmission. When FedAvg meets
client sets with low similarity, the server can not accurately
pick out the representative clients. The large variance of
the update gradient aggregated from the unrepresentative
subset directly slows the training convergence Fraboni et al.
[2021].

To accelerate the training convergence by variance reduction,
many client selection criteria have been proposed in recent
literature, e.g., importance sampling, where the probabili-
ties for clients to be selected is proportional to their impor-
tance measured by the norm of updates Chen et al. [2022],
data variability Rizk et al. [2021], and test accuracy Mo-
hammed et al. [2020]. However, importance sampling could
not effectively capture the similarities among the clients. As
shown in Figure 1(a), applying importance sampling could
cause learning inefficiency as the clients transfer excessive
important yet similar updates to the server. To make bet-
ter use of the similarities among clients, some researchers
propose raw gradient-based cluster sampling schemes. As
shown in Figure 1(b), they first group the clients with similar
model updates together Fraboni et al. [2021], Muhammad
et al. [2020], and apply random selection within each clus-
ter. However, cluster sampling schemes only work under
the strong assumption that we can have a decent clustering
effect all the time, i.e., almost all clusters have small intra-
cluster distances, with little variation from cluster to cluster.
Unfortunately, the effect of raw gradient-based clustering
methods faces the following problems: (i) Poor Effect, the
high dimension gradient of a client is too complicated to
be an appropriate cluster feature, which can not bring small
intra-cluster distances. (ii) Effect Fluctuation, due to the
limitations of the clustering algorithm, the clustering effect
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Figure 1: The differences among client selection schemes. The heights represent the norm of the gradients. The different
colors denote different clusters. We highlight the main difference by red bold font.

tends to fluctuate greatly, i.e., clusters tend to have diverse
heterogeneity. In practice, such diverse heterogeneity always
leads to the intra-cluster distances of different clusters vary-
ing greatly. After clustering with poor and fluctuant effects,
there always exists some clusters with low client similarity
(please refer to Figure. 2). Applying client selection in the
clusters with low client similarity may slow the overall train-
ing convergence. Besides, cluster sampling methods require
all the clients to return the raw gradient for better selection,
which runs against the communication reduction objective.

We propose HCSFed, a novel Hybrid Clustering-based
client Selection scheme for heterogeneous Federated learn-
ing that further accelerates the FL convergence. To improve
the poor clustering effect, different from using the high di-
mension gradient, we adopt the compressed gradient as the
cluster feature. Adopting the compressed gradient as a clus-
ter feature not only allows a better clustering effect but also
is communication-efficient since the compression operation
filters out the redundant information within each gradient.
Besides, to control the effect fluctuation, we reset the num-
ber of clients to be selected in each cluster based on the
client similarity and the size of the cluster, which we term
as sample size re-allocation. As shown in Figure 1(c), the
sample size re-allocation scheme makes the cluster with low
similarity have more clients to be selected. The sampling
effect becomes stable because the poor effect of random
sampling in the clusters with low similarity is greatly miti-
gated by the sample size re-allocation scheme. Theoretically,
we demonstrate the improvement HCSFed in variance re-
duction. Extensive experiments show the exceed efficiency
of the proposed scheme compared to the cutting-edge FL
client selection criteria in both convex and non-convex set-
tings. Our main contributions are summarized below:

• To the best of our knowledge, this work provides the
first insight into modeling the diverse heterogeneity of
clusters which leads to the client sampling effect fluc-
tuation. (please refer to our sample size re-allocation
part section 3)

• We present the explicit cross-client variance compari-
son among different client selection methods which is
a new perspective to watch the convergence improve-
ment of the advanced selection method. We also pro-
vide detailed discussion and proof of Theorem 2, prov-

ing that HCSFed has a convergence guarantee. (please
refer to our theoretical analysis part section 4)

• A series of experiments in different settings verify the
effectiveness of our proposed method and the correct-
ness of our theoretical results.

2 SYSTEM SETUP AND PRIOR WORK

The Federated Learning Optimization Settings. In fed-
erated learning, a total number of N clients aim to jointly
solve the following distributed optimization model:

min
w∈Rd

F (w) :=

N∑
k=1

ωkFk(w) :=
1

nk

nk∑
j=1

f(w;xk,j), (1)

where ωk is the weight of the kth client, s.t. ωk ≥ 0 and∑N
k=1 ωk = 1. Suppose the kth client possesses nk training

data: {xk,1, xk,2, ... , xk,nk
}. The local objective function

Fk(w) is defined as the average of f(w;xk,j), which is
a user-specified loss function (possibly non-convex) made
with model parameters w ∈ Rd and training data xk,j .

FedAvg Description. In the tth train round of the
FedAvg, the server broadcasts the latest global model wt

to all the clients. The kth client sets wk
t ← wt and performs

local training for E epochs:

wk
t+1 ←− wk

t − ηt∇Fk

(
wk

t , ξ
k
t

)
, (2)

where ηt is the learning rate and ξkt is a data sample uni-
formly selected from the local data. In the communication
round, the server aggregates the local model updates to pro-
duce the new global model wt+E . In fact, to reduce the
communication cost, FedAvg randomly generates a subset
St consisting of m clients from the entire client set and
aggregates the model updates, {w1

t+E ,w
2
t+E , · · · ,wm

t+E},

wt+E ←−
N∑

k=1

ωkw
k
t+E︸ ︷︷ ︸

Full Participate

←−
∑
k∈St

N

m
ωkw

k
t+E︸ ︷︷ ︸

Partial Participate

. (3)

LAG Chen et al. [2018] is a improved aggregation scheme
where it triggers the reuse of outdated gradients for the non-
selected clients, but the variance of the aggregated gradient



is still large, which directly slows the FL convergence. To ac-
celerate the convergence by variance reduction, many client
selection criteria have been proposed in recent literature,
including importance-based and clustering-based methods.

Importance Sampling. Importance sampling is a non-
uniform client selection method, where the probabilities
for clients to be chosen are proportional to their impor-
tance Katharopoulos and Fleuret [2018], Zhao and Zhang
[2015]. Different methods to measure the importance are
proposed, including data variability Rizk et al. [2021], the
norm of updates Chen et al. [2022], test accuracy Mo-
hammed et al. [2020], local rounds Singh et al. [2019], and
local loss Cho et al. [2020]. Such methods can yield better
selection by activating the clients with more importance.
However, they could not capture the similarities among the
updates of clients, therefore, triggering the communication
redundancy.

Cluster Sampling. To make better use of similarities
among clients, some researchers propose raw gradient-based
cluster sampling schemes that group the clients with similar
gradients together Fraboni et al. [2021], Muhammad et al.
[2020]. However, the effect of cluster sampling strongly
relies on the performance of the clustering process. Unfor-
tunately, the high dimension gradient of a client is too com-
plicated to be an appropriate cluster feature, which can not
bring a good clustering effect. Besides, meticulous one-by-
one client selection Balakrishnan et al. [2022], Dieuleveut
et al. [2021] is introduced to FL. It could achieve better se-
lection outcomes but with extra expensive computation for
solving each noncommittal submodular maximization. We
want to claim that cluster sampling needs to transmit the raw
gradient information of all the clients to the server, which
would bring unacceptable communication costs. And if the
server has received all the updates, why don’t we aggregate
them immediately? When all the clients participate in the
training, there is no cross-client anymore.

Difference from SCAFFOLD. While SCAFFOLD Karim-
ireddy et al. [2020b], Gorbunov et al. [2021], Karimireddy
et al. [2020a] appears to be similar to our method, there are
fundamental differences. SCAFFOLD augments the updates
with extra “control-variate” item that is also transmitted
along with the updates to reduce the variance, while we
reduce the variance by selecting a more representative sub-
set. The former focuses on update control, while the latter
focuses on better update selection, indicating that they are
orthogonal and compatible with each other.

3 METHOD

How to explore and make use of the similarities among
clients with acceptable resource costs is the key issue in
constructing client selection criteria. We propose HCSFed,

a selection scheme that exploits three components (cluster
sampling, sample size re-allocation, importance selection)
guaranteeing convergence speedup by variance reduction.

The Compressed Gradient-Based Cluster Selection. To
make use of the similarity among clients, we develop clus-
ter selection that groups the similar clients together based
on the client characteristic. The following is a mathemat-
ical description of cluster selection. Generating a subset
St consisting of m clients by clustering selection can be
regarded as selecting m clients using H different probability
distributions {Ph}Hh=1 where Ph =

{
phk
}N
k=1

. For example,
if we select a client from the hth cluster, the probability
distribution Ph will be used, and the phk comes as follows:

phk =

{
0, if kth client /∈ hth cluster
1
Nh

, if kth client ∈ hth cluster
(4)

where Nh denotes the number of clients in the hth clus-

Algorithm 1: ClientClustering

Input: compressed gradient of all the clients in the tth

round {Xk
t }Nk=1

Input: The number of the clusters H
1 Initialize Randomly select H clients as cluster centers
{µ1,µ2, . . . ,µH};

2 Initialize Ci = ∅ (1 ≤ i ≤ H);
3 repeat
4 for each client k=1,2,. . . ,N do
5 λk = argmini∈{1,2,...,H}

∥∥Xk
t − µi

∥∥
2
;

6 Cλk
= Cλk

⋃{
kth client with Xk

t

}
;

7 end
8 for each cluster i=1,2,. . . ,H do
9 New center µ′

i =
1

|Ci|
∑

Xk
t ∈Ci

Xk
t ;

10 µi ← µ′
i;

11 end
12 until ∀ i = {1, 2, . . . ,H},µ′

i = µi;
Output: G = {C1, C2, . . . , CH};

ter s.t.
∑H

h=1 Nh = N . Prior cluster selections Fraboni
et al. [2021] prefer to develop clustering based on the raw
high dimension gradient (shown in Figure 2), which is too
complicated to distinguish clients and brings unacceptable
communication costs running against the original objective.
Different from the previous raw gradient-based clustering
methods, we develop clustering based on compressed gra-
dient Han et al. [2015] which is the information-preserving
representation of the model updates. As shown in Figure 2,
different components of the gradient are grouped based on
their numerical value1, only the center of the group are re-

1Typical approaches like PCA cannot be adopted in our work:
each client operates data locally, which means reduced dimension
d′ is strictly lower than the min value of the number of samples m
and the number of raw dimension d.
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Figure 2: The visualizations of the raw gradient (left) and the clustered compressed gradient (right). Each point denotes
the update gradient of one client. The gi is the ith component of the update gradient. The ci ci denotes the ith group of
component.

tained to form the compressed gradient. The compression
rate R can be obtained by evaluating the quotient of d and d′,
i.e., d′

d , where d′ and d are the total dimension of the com-
pressed gradient and raw gradient, respectively. Adopting
the compressed gradient as cluster feature not only allows
better clustering effect but also is communication-efficient,
since the compression operation filters out the redundant
information within each gradient. The pseudo-code of Gra-
dient Compress (GC) can be found in Appendix A.2. Al-
gorithm 1 summarizes the main steps of client clustering.
Ideally, after clustering, the clients in the same cluster are
similar to each other. However, as shown in Figure 2, some
clusters always exist with low similarity (purple cluster),
since the effect of the clustering process fluctuates, which
may also lead to performance degradation.

Sample Size Re-allocation Scheme. Concentrating on the
diverse heterogeneity of clusters, we make the first attempt
to develop a sample size re-allocation scheme that pays more
attention to the cluster with great heterogeneity. HCSFed
redetermines the sample size mh, namely, the number of
clients sampled from the hth cluster, by considering both
the cluster size Nh and variability.

mh =
NhSh∑H
h=1 NhSh

·m, (5)

where Sh = 1
Nh−1

∑Nh

j=1,i̸=j

∥∥∥Xi
t −Xj

t

∥∥∥2
2
, mh denotes the

number of clients in the subset St from the hth cluster
s.t.
∑H

h=1 mh = m. Sh denotes the variability of the hth

cluster where we use Cluster Cohesion based on the com-

pressed model updates to approximate. The introduction of
sample size re-allocation can further reduce the variance by
assigning more sample chance to those clusters with greater
heterogeneity. Due to the limited total number of clients
to be selected, sometimes some clusters with great hetero-
geneity still can not have an adequate sample chance, which
indeed need extra care.

Importance Selection. We introduce importance selec-
tion to optimize the probabilities for clients to be selected in
one cluster, which is based on the norm of the compressed
gradient, i.e., GC(Gk

t ) = Xk
t . We re-determine the proba-

bility for each client to be sampled in tth round as follows,

pkt =

∥∥GC(Gk
t )
∥∥∑Nh

k=1

∥∥GC(Gk
t )
∥∥ =

∥∥Xk
t

∥∥∑Nh

k=1

∥∥Xk
t

∥∥ ,
if kth client ∈ hth cluster in tth round.

(6)

After completing the importance selection, the client with
a higher norm of gradient (more importance) will have a
higher probability to be sampled, which brings representa-
tive outcomes under an inadequate sampling ratio. Impor-
tance selection provides a fine-grained optimization over
cluster selection with sample size re-allocation, i.e., assign-
ing more attention to the more representative clients.

These ideas of selection discussed in this subsection together
constitute the HCSFed to optimize the client selection in
FL. HCSFed selects representative clients via allocating
appropriate probability for each client to be selected, with
the promise of reducing the variance between the model



Algorithm 2: HCSFed
Input: updates in the tth round of all clients {Gk

t }Nk=1

1 Initialize w0;
2 Initialize St = ∅;
3 Server executes:
4 for each round t = 1, 2, · · · do
5 m← max(qN, 1);
6 G ← ClientClustering (Xt,H);
7 for each cluster h = 1, 2, · · · ,H do
8 mh ← NhSh∑H

h=1 NhSh
·m;

9 compute {pkt }k∈Nh
using Equation 6;

10 St = St
⋃
mh clients selected with Ph;

11 end
12 for client ∈ St in parallel do
13 wk

t+1 ← ClientUpdate(k,wk
t );

14 end
15 wt+1 ←

∑
k∈St

N
mωkw

k
t+1;

16 end
17 ClientUpdate(k,wk

t ):
18 for each local epoch i from 1 to E do
19 wk

t+i+1 ←− wk
t+i − η∇Fk

(
wk

t+i, ξ
k
t+i

)
;

20 end
21 if k ∈ St then
22 return wk

t+1 ← wk
t+E , Xk

t ← GC(Gk
t );

23 else
24 return Xk

t ← GC(Gk
t );

25 end

update aggregated from the sampled subset St and the entire
set K. Algorithm 2 summarizes the main steps of HCSFed.

4 THEORETICAL ANALYSIS

4.1 VARIANCE RELATIONSHIP AMONG
SELECTION SCHEMES

Theorem 1 (Variance Reduction). If the population is large
compared to the subset, m

N , mh

Nh
, 1
mh

and 1
N are negligible,

then the cross-client variance of different selection schemes
satisfy

V (whybrid) ≤ V (wcludiv) ≤ V (wcluster) ≤ V (wrand) ,

where whybrid,wcludiv,wcluster,wrand denote the model
update aggregated from the subset St that generated by
HCSFed, clustering selection scheme under re-allocation,
clustering selection scheme under plain allocation and sim-
ple random selection scheme, respectively.

Proof Sketch. Below we provide a proof sketch to reveal
the relationship among the variance of different client selec-
tion schemes, and then we naturally state when our HCSFed
scheme could achieve variance reduction. We defer the de-
tails of proof to Appendix B.

Comparison of Random and Clustering Selection. We
derive the Equation 7 to show the relationship between
V (wcluster) and V (wrand):

V (wrand) = V (wcluster) +

H∑
h=1

Nh ∥Wh −W(K)∥22
mN

,

(7)
where K denotes the set of all the clients. We
have V (wcluster) < V (wrand), unless ∀h ∈
{1, · · · ,H},Wh = W(K), i.e., each cluster has the same
averaged model update with the entire population, which
indicates that all the clusters are homogeneous in terms of
the mean model update.

Comparison of Plain Clustering and Clustering with
Re-allocation. We derive the Equation 8 to show the rela-
tionship between V (wcludiv) and V (wcluster):

V (wcluster) = V (wcludiv) +

H∑
h=1

Nh(Sh − S)2

mN
. (8)

We have V (wcludiv) < V (wcluster), unless ∀h ∈
{1, · · · ,H}, Sh = S, i.e., each cluster has equal variability,
which indicates that all the clusters are homogeneous in
terms of the variability.

Comparison of Clustering with Re-allocation and
HCSFed. We derive the Equation 9 to show the relation-
ship between V (wcludiv) and V (whybrid):

V (wcludiv) =

V (whybrid) +

(∑Nh

i=1 ∥Gi∥2
)2

Nh

Nh∑
i=1

(
Ii −

1

Nh

)2

. (9)

We have V (whybrid) < V (wcludiv), unless ∀i ∈
{1, · · · , Nh}, Ii =

∥Gi∥2∑Nh
i=1∥Gi∥2

= 1
Nh

, i.e., each client in

hth cluster has equal norm of model update.

Remark 1. Theorem 1 verifies the capability of HCSFed in
variance reduction. The proof sketch indicates that the vari-
ance difference of different selections will vanish only if all
the clusters and the norm of the gradients are identical. The
proposed approach can achieve variance reduction, since
each cluster never has identical update mean, variability,
and norm in heterogeneous FL.

4.2 CONVERGENCE BEHAVIOR OF HCSFED

We emphasize that the convergence analysis of FedAvg
with random selection is NOT our contribution, we just fol-
low the previous analysis work Li et al. [2019] to verify that
HCSFed could maintain the same convergence guarantees



Table 1: Required rounds for different methods with convex model (logistic regression) to achieve 80% accuracy on non-IID
MNIST and FMNIST. 200+ indicates 80 % accuracy was not reached after 200 rounds.

Methods Sampling Ratio 10% Sampling Ratio 30% Sampling Ratio 50%

Num. of Rounds Speedup Num. of Rounds Speedup Num. of Rounds Speedup

MNIST

Random 96 (1.0×) 42 (1.0×) 28 (1.0×)
SCAFFOLD 74 (1.3×) 36 (1.2×) 21 (1.3×)
Importance 35 (2.7×) 24 (1.8×) 22 (1.3×)
Cluster 31 (3.1×) 16 (2.6×) 8 (3.5×)
HCSFed 9 (10.7×) 8 (5.2×) 8 (3.5×)

FMNIST

Random 200+ (1.0×) 200+ (1.0×) 158 (1.0×)
SCAFFOLD 180 (>1.1×) 144 (>1.4×) 115 (1.4×)
Importance 180 (>1.1×) 116 (>1.7×) 100 (1.6×)
Cluster 145 (>1.4×) 104 (>1.9×) 75 (2.1×)
HCSFed 81 (>2.5×) 80 (>2.5×) 75 (2.1×)

as a random selection in the worst case and in most cases,
HCSFed will enjoy tighter convergence.

We next state the assumptions used in our theorem and proof,
which are common in FL optimization literature, e.g., Zhou
and Cong [2017], Li et al. [2019], Wang and Joshi [2021],
Stich [2018], Haddadpour and Mahdavi [2019], Haddadpour
et al. [2019]. Assume each function Fk(k ∈ [N ]) is µ-
strongly convex and L-smooth. Suppose that for all k ∈ [N ]
and all t, the variance and expectation of stochastic gradients
in each client on random samples ξ are bounded by σ2

k

and G2, i.e., E
[∥∥∇Fk

(
wk

t , ξ
)
−∇Fk

(
wk

t

)∥∥2
2

]
≤ σ2

k and

E
[∥∥∇F 2

k

(
wk

t , ξ
)∥∥2

2

]
≤ G2, respectively. And Γ is used to

quantify the heterogeneity, where Γ = F ∗ −
∑N

k=1 pkF
∗
k .

Theorem 2 (Convergence Bound). Let Assumptions above
hold and L, µ, σk, G be defined therein. Consider FedAvg
when sampling m clients, then HCSFed satisfies:

E [F (wT )]− F ∗

≤ O

(∑N
k=1 p

2
kσ

2
k + E2G2 + γG2

µT

)
+O

(
LΓ

µT

)
︸ ︷︷ ︸

Full participation

+O
(
E2G2

mµT

)
−O

(
ρ2

m

)
−O

(
χ2

m

)
︸ ︷︷ ︸

variance

(10)

Remark 2. Theorem 2 Li et al. [2019] gives the conver-
gence upper bound of FedAvg with hybrid client selection.
The first term is used to bound the FedAvg with full client
participant, while the second term is used to bound the vari-
ance of the model update aggregated from the subset. In
Theorem 1, we demonstrate the effectiveness of HCSFed
in variance reduction. HCSFed achieves a lower variance,
which indicates that HCSFed enjoy a tighter convergence
bound.

Remark 3. Theorem 2 Li et al. [2019] uses Lemma 1-3
to bind the error of FedAvg with full participation corre-
sponding to the first term, while using Lemma 4 to verify
the unbiased property and Lemma 5 to bind the variance
resulting from the client selection. Naturally, HCSFed satis-
fies the Lemma 5, since the Theorem 1 shows that HCSFed
could achieve variance reduction. The dependency between
the Lemmas and Theorem 2 indicates that the proof the
Lemma 4 is enough to maintain the convergence bound. We
defer the proof to Appendix A.3.

We demonstrate the convergence guarantee of HCSFed un-
der µ-strongly convex assumption. As for the non-convex
loss function, we refer to the previous proved proposition
that FedAvg with any unbiased selections maintains the
same FL convergence bound of random selection (Theorem
2 in Fraboni et al. [2021]).

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We run logistic regression (convex) and a fully connected
network with one hidden layer of 50 nodes (non-convex) on
MNIST [LeCun, 1998]. As for CIFAR-10 [Krizhevsky et al.,
2009] and FMNIST [Xiao et al., 2017], we use the same
classifier of FedAvg [McMahan et al., 2017] composed of
3 convolutional and 2 fully connected layers. We partition
the dataset into 100 clients under both IID and non-IID data
distribution. IID data partition strategy employs the idea of
random split to create a uniform federated dataset. As for
non-IID data partition, we use Dirichlet distribution to parti-
tion the entire client set. Dirichlet distribution, i.e., Dir(α),
gives to each client the respective partitioning across labels
by changing the value of α. Specifically, the lower the value
of α, the more heterogeneous the dataset is. The schematic
table of the Dirichlet distribution is presented in Appendix
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Figure 3: Required rounds for random, cluster, importance sampling, SCAFFOLD, IFCA and HCSFed to achieve 60%
accuracy with q = 0.1, N = 100, nSGD = 50, η = 0.01, B = 50 on MNIST and FMNIST, with α ∈ {0.01, 0.001},
q = 0.1, N = 100, nSGD = 80, η = 0.05, B = 50 on CIFAR-10.

A.1. As for the hyperparameters, N is the number of all
clients, q is the sampling ratio, nSGD is the times of SGD
running locally, η is the learning rate, B is the batch size,
T is the terminate round. For better comparison, we set all
the hyperparameters following the FL optimization work
FedProx [Li et al., 2020].

5.2 MAIN RESULTS

Our evaluation target is to compare the convergence speed
of different methods in convex and non-convex FL context.
We choose image classification as our downstream task and
compare HCSFedwith simple random sampling [McMahan
et al., 2017], norm-based importance sampling [Chen et al.,
2022], cluster sampling [Fraboni et al., 2021], IFCA Ghosh
et al. [2020], and SCAFFOLD [Karimireddy et al., 2020b].
For better representation of the convergence speed, we fol-
low the previous FL acceleration work setting [Karimireddy
et al., 2020b] and report the required rounds for different
methods with convex model to reach the target test accu-
racy in Table 1. We can observe that HCSFed consistently
achieves the fastest convergence (has the fewest required
rounds to reach the target accuracy) across all settings, sur-
passing not only the client selection schemes but also the
SOTA variance-reduced method SCAFFOLD [Karimireddy
et al., 2020b].

For better representation of the convergence speed, we fol-
low the previous FL acceleration work setting [Karimireddy
et al., 2020b] and report the required rounds for different
methods with convex model to reach the target test accu-
racy in Table 1. We can observe that HCSFed consistently
achieves the fastest convergence (has the fewest required
rounds to reach the target accuracy) across all settings, sur-
passing not only the client selection schemes but also the
SOTA variance-reduced method SCAFFOLD [Karimireddy
et al., 2020b]. We also run HCSFed with non-convex model
on different datasets. The result of non-convex experiment

is presented in Figure 3. HCSFed consistently requires the
fewest rounds to reach the target accuracy. All the results
reveal that HCSFed can greatly accelerate the convergence,
especially in the low sampling ratio and date heterogeneity
case. As we emphasized in the theoretical analysis, the im-
provement of HCSFed depends on the sampling ratio and
the client heterogeneity.
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(a) The impact of different numbers of clusters.

10% 20% 30% 50% 100%
Compression Rate

0

50

100

150

200

250

300

Ro
un

ds

50

60

70

80

90

100

Be
st

 A
cc

ur
ac

y

rounds
best_acc

(b) The impact of different compression rates.

Figure 4: Visualization of Sensitivity Study Results on
MNIST (non-IID).

The lower the sampling ratio and the more heterogeneous
the dataset, the more improvement HCSFed can enjoy. Nat-
urally, such great improvement in convergence speed can be
attributed to the two key components in HCSFed: (i) Differ-
ent from the previous raw gradient-based methods, we intro-
duce gradient compression to improve the clustering effect
by using the more expressive cluster feature representation.



(ii) To further guarantee the robustness of the sampling ef-
fect, we introduce a sample size re-allocation scheme and
extra importance sampling to control the sampling effect
fluctuation in the cluster with low client similarity. For more
details, please refer to Appendix C.

5.3 PARAMETER SENSITIVITY STUDY

The Number of Clusters (H). This experiment demon-
strates the sensitivity of HCSFed to the different numbers
of clusters. We run convex model-based HCSFed on non-
IID MNIST with different numbers of clusters, i.e. with
H ∈ {5, 6, · · · , 10}. We report the best classification ac-
curacy and the required rounds for HCSFed with different
numbers of clusters to reach the best test accuracy in Fig-
ure 4(a). HCSFed achieves stable classification accuracy
and similar convergence speeds (measured by the required
rounds to achieve the best accuracy), which highlights the
robust efficiency of HCSFed. The results also reveal that the
clustering effect of HCSFed is robust regardless of the num-
ber of clusters. Such merit might attribute to the sample size
re-allocation scheme or the importance sampling scheme
that we use to control the clustering effect fluctuation.
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(b) The impact of different compression rates.

Figure 5: Visualization of Sensitivity Study Results on
CIFAR-10 ( α = 0.01).

The Compression Rate (R). We also evaluate how dif-
ferent compression rates affect the global model perfor-
mance. We run convex model-based HCSFed on non-IID
MNIST with different compression rates (R), i.e. with
R ∈ {5%, 10%, 20%, 40%, 100%}. We report the best ac-
curacy and the required rounds of HCSFed with different
compression rates to reach the best test accuracy in Fig-
ure 4(b). The results show that HCSFed achieves different

convergence speed as the compression rate changes. The
noticeable information is that both too high and too low
compression rates can not achieve good learning efficiency.
Intuitively, the low compression rate can not ensure the in-
tegrity of gradient information while the high compression
rate is too complicated to learn efficiently. When we set the
compressed rate to 100%, i.e., without gradient compres-
sion, the results show that both the convergence speed and
final accuracy of the model are not satisfactory, which con-
firms the effectiveness of gradient compression. In practice,
following the previous compression work Han et al. [2015],
we set the compression rate with the highest within-group
sum of squares to get a good sampling effect.

To further verify the influence of parameters, we provide
the sensitivity study results on CIFAR-10 in Figure 5 and
CIFAR-100 in Figure 6.
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Figure 6: Visualization of Sensitivity Study Results on
CIFAR-100 ( α = 0.01).

5.4 ABLATION STUDY

We run logistic regression (convex) on non-IID MNIST
with q = 0.1, nSGD = 50 to analyze the individual con-
tributions of different components of HCSFed in both final
accuracy and convergence speed. In Figure 7(a), HCSFed
is represented as the green line starting from the accuracy
of 10% and ending at 91%, whereas FedAvg is the yellow
line starting also from the same position as HCSFed but
ending at 81% after 200 rounds, i.e., 10% less. We report
the required rounds for different methods to achieve 80%
accuracy in Figure 7(b). Compared with the plain FedAvg,
FedAvg combined with cluster (blue) or importance sam-
pling (purple) can accelerate the convergence speed (mea-



sured by the required rounds to achieve the target accuracy)
by 2.6× and 2.1× times. The experimental results confirm
the important role of the two in improving learning effi-
ciency. Impressively, compared with importance sampling,
the improvement of the clustering process is more obvious.
This is because clustering can make better use of the corre-
lation among clients, thereby selecting more representative
clients to participate in model training. We also compare
FedAvg combined with cluster, FedAvg combined with
cluster and re-allocation, FedAvg combined with cluster
and importance sampling, and HCSFed. All the latter meth-
ods can achieve a faster convergence in model training than
the former, which validates the effectiveness of re-allocation
and extra importance sampling. We also make a comparison
with the result of SCAFFOLD after convergence, which fur-
ther demonstrates that the effect of HCSFed is convincing.
These results indicate that each component of HCSFed is
complementary to each other, and also show the correctness
of the variance reduction theory.
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Figure 7: Visualization of Ablation Study Results.

6 CONCLUDING REMARKS

In this paper, we propose HCSFed, a novel clustering-based
selection scheme to accelerate the training convergence by
variance reduction. Theoretically, we demonstrate the im-
provement of the proposed scheme in variance reduction.
We present the convergence guarantee of HCSFed under
the convex assumption. Experimental results demonstrate
the superiority and the effectiveness of our method with
both the convex and non-convex models. In the future, the
co-variance among different clients and unavailable client
settings will be considered, since it may also lead to perfor-
mance degradation in FL. In the theoretical aspect, following

the latest convergence analysis Khaled et al. [2020], we plan
to loose the widely used but strict assumption “bounded
gradient” and convexity for more general analysis of the
faster convergence achieved by HCSFed.
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