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Abstract

We present a neuro-symbolic visual question answering
(VQA) approach for the CLEVR dataset that is based on the
combination of deep neural networks and answer-set program-
ming (ASP), a logic-based paradigm for declarative problem
solving. We provide a translation mechanism for the questions
included in CLEVR to ASP programs. By exploiting choice
rules, we consider deterministic and non-deterministic scene
encodings. In addition, we introduce a confidence-based inter-
face between the ASP module and the neural network which
allows us to restrict the non-determinism to objects classified
by the network with high confidence. Our experiments show
that the non-deterministic scene encoding achieves good re-
sults even if the neural networks are trained rather poorly in
comparison with the deterministic approach. This is important
for building robust VQA systems if network predictions are
less-than perfect.

1 Introduction
The capability of perceiving visual information and to reason
about it is vital for many tasks. While humans have little trou-
ble solving such problems, they often pose a hard challenge
for machines; this motivates approaches for visual question
answering (VQA) (Antol et al. 2015).

We consider VQA tasks, where the goal is to find the
answer to a question using information from a scene. To
this end, a system must understand the question, extract the
relevant information from the corresponding scene, and per-
form some kind of reasoning. To examine the strengths and
weaknesses of VQA systems, several data sets have been pub-
lished (Malinowski and Fritz 2014; Antol et al. 2015; Ren,
Kiros, and Zemel 2015; Zhu et al. 2016; Johnson et al. 2017;
Sampat et al. 2021). We use the CLEVR dataset (Johnson
et al. 2017) for our purposes, since it has detailed annotations
describing the kind of reasoning each question requires.

Neuro-symbolic approaches combine deep learning with
symbolic reasoning (Xu et al. 2018; Manhaeve et al. 2018; Yi
et al. 2018; Yang, Ishay, and Lee 2020; Basu, Shakerin, and
Gupta 2020; Mao et al. 2019). The basic idea is to separate
perception and reasoning, i.e., deep learning models are used
for perception (e.g., object detection or natural language
processing), and logic-based inference is used for reasoning;
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as the semantics of the employed reasoning formalism is
known, the way in which an answer is reached is transparent.

We present a neuro-symbolic VQA approach for the
CLEVR dataset that is based on the combination of deep neu-
ral networks and answer-set programming (ASP) (Brewka,
Eiter, and Truszczyński 2011),1 a logic-based paradigm for
declarative problem solving, where we focus on object detec-
tion and reasoning while we omit natural language process-
ing for the VQA tasks. CLEVR provides in fact structured
representations of the natural language questions, so-called
functional programs. We encode functional programs as well
as the output of a neural network in an ASP program, such
that the answer sets of the program represent the answers
to the given question w.r.t. to the scene information. More
specifically, we use YOLOv3 (Redmon and Farhadi 2018) for
bounding-box prediction and object classification. The scene
encoding in the ASP program makes use of non-deterministic
choice rules for the objects predicted with high confidence
by the network. This means that we do not only consider the
prediction with the highest score, but also reasonable alter-
natives with lower ones. This allows our approach to make
up for mistakes made in object classification in the reasoning
component as the constraints in the program exclude choices
that do not lead to an answer. To determine what we regard as
predictions of high confidence, we use statistical analysis on
the distribution of network prediction values and disregard
predictions that are below a threshold defined as a function
of mean and standard deviation of the distribution.

We emphasise that our goal is not to achieve better results
on CLEVR than related approaches, in fact the dataset can
be considered solved, but rather to explore to what extent
non-determinism helps when network predictions are wrong.
Our experiments show that our system performs well on the
CLEVR dataset and that the non-deterministic scene encod-
ing achieves good results even if the neural networks are
trained rather poorly in comparison with the deterministic
approach where we only consider predictions with maximal
scores. This is important for building robust VQA systems if
predictions by the network are less-than perfect. Even well-
trained networks can be negatively affected by noise or if
settings like illumination change. Also, our method of in-
corporating neural network output into ASP programs leads

1https://anonymous.4open.science/r/submission/.



to a drastic performance improvement in terms of run time
compared to a previous neuro-symbolic ASP approach (Yang,
Ishay, and Lee 2020).

The remainder of this paper is organised as follows. We
first discuss relevant related work in Section 2 and review
ASP and CLEVR in Section 3. Our approach to VQA us-
ing ASP and confidence-thresholds is detailed in Section 4.
Afterwards, we present an experimental evaluation of our
approach in Section 5, and we conclude in Section 6.

2 Related Work
Purely deep-learning-based approaches (Yang et al. 2016; Lu
et al. 2016; Jabri, Joulin, and Van Der Maaten 2016) led to
significant advances in VQA. Some systems rely on attention
mechanisms to focus on certain features of the image and
question to retrieve the answer (Yang et al. 2016; Lu et al.
2016). Jabri, Joulin, and Van Der Maaten (2016) achieved
good results by framing a VQA task as a classification prob-
lem. Some VQA systems are however suspected to not learn
to reason but to exploit dataset biases to find answers, as
described by Johnson et al. (2017).

Besides these purely data driven attempts, there are also
systems which incorporate symbolic reasoning in combina-
tion with neural-based methods for VQA (Yi et al. 2018;
Basu, Shakerin, and Gupta 2020; Mao et al. 2019). The sys-
tem proposed by Yi et al. (2018) consists of a scene parser,
which retrieves object level scene information from images, a
question parser, which creates symbolic programs from natu-
ral language questions, and a program executor that runs these
programs on the abstract scene representation. Our system
is akin to this system, but we use ASP for scene representa-
tion as well as question encoding, and our program executor
is an ASP solver. A similar system architecture appears in
the approach by Mao et al. (2019) with the difference that
scene and question parsing is jointly learned from image and
question-answer pairs, whereas the components of Yi et al.’s
system are trained separately. This means that annotated im-
ages are not necessary for training, which makes the system
much more versatile. The approach of Basu, Shakerin, and
Gupta (2020) builds like ours on ASP. They use object-level
scene representations and parse natural language questions
to obtain rules which represent the question. The answer to
a question is given by the answer set for the image-question
encoding which is combined with commonsense knowledge.
However, their approach is not amenable to non-determinism
for the scene encoding in order to deal with competing object
classifications as we do.

Our non-deterministic scene encoding approach was in-
spired by the DeepProbLog (Manhaeve et al. 2018) and
NeurASP (Yang, Ishay, and Lee 2020) frameworks. Deep-
Problog uses ProbLog, which is a probabilistic extension of
Prolog, as the logical language, in which Manhaeve et al. in-
troduced neural-annotated disjunctions to pass the output of
the neural network as an input to the logic program. NeurASP
uses the same bridging idea, now called neural atom, but
uses ASP instead of ProbLog; notably, ProbLog is query-
based, while ASP is model-based. Intuitively, neural atoms in
NeurASP give rise to choice rules from the set of all random
events and their respective outcomes for a specific problem.

The neural network is used to predict confidence scores for
the latter, which are treated as probabilities associated with
respective atoms from which probabilities for answer sets
are calculated. Our approach differs as we discard random
event outcomes with confidence scores not exceeding a preset
threshold.

3 Background
We next provide preliminaries on ASP and background on
the CLEVR dataset.

3.1 Answer-Set Programming
Answer-set programming (ASP) is a declarative problem
solving paradigm, where a problem is encoded as a logic
program such that the models of the program, the answer
sets, correspond to the solutions of the problem. Answer sets
can be computed using dedicated ASP solvers.2 We provide a
short introduction to the most important ASP concepts and re-
fer to background literature (Brewka, Eiter, and Truszczyński
2011; Gebser et al. 2012) for more details.

An ASP program is a set of rules of the form

a1 ∣ . . . ∣ ak ← b1, . . . , bm, not c1, . . . , not cn . (1)

where all ai, bj , cl are atoms, not denotes default negation,
and k,m, n ≥ 0. We call {ai, . . . , ak} the head of r and
{b1, . . . , bm, not c1, . . . , not cn} the body of r. Intuitively,
a rule expresses that whenever all atoms b1, . . . , bm are true,
and there is no evidence for any of the default negated atoms
c1, . . . , cn, then some atom in the head has to be true. If
m = n = 0 and k = 1, then r is called a fact and ← is omitted.
A fact represents definite knowledge, since its body is always
satisfied. A rule with an empty head is called constraint and
is used to eliminate unwanted answer sets.

An interpretation I is a set of atoms. It satisfies a rule r if
it contains at least one ai from its head whenever it satisfies
its body, i.e., {b1, ..., bm} ⊆ I and {c1, ..., cn} ∩ I = ∅
holds. Furthermore, I is a model of a program P if I satisfies
each rule in P . An answer-set of P is a model of P where
each atom can be derived in a consistent and non-circular
way (Gelfond and Lifschitz 1991).

A program can have no, one, or more than one answer sets.
For illustration, the simple program

a ← not b . b ← not a .

has the answer sets I1 = {a} and I2 = {b}. If we add the
constraint ← a. to the above program, the only remaining
answer set is {b} since {a} is eliminated.

We will also use choice rules which are of the form

i {a1; . . . ; an} j ← b1, . . . , bm, not c1, . . . , not cn.

Such a rule says that when its body is satisfied, at least i
and at most j atoms from {a1, . . . , an} must be true in every
answer set. For example, the following program

2 {a; b; c} 2 . (also written {a; b; c} = 2 )

has the answer sets {a, b}, {a, c} and {b, c}.

2E.g., potassco.org, www.dlvsystem.com.

potassco.org
www.dlvsystem.com


ASP also features weak constraints, sometimes called soft
constraints, to solve optimisation problems. A weak con-
straint is a rule of form

↜ b1, . . . , bm, not c1, . . . , not cn. [w]

where w is an integer weight. Informally, whenever the
body of a weak constraint is satisfied in an answer set, then
a penalty of w is incurred; optimal answer sets are those
minimising the total penalty of all weak constraints.

While the modelling language of ASP solvers contain vari-
ables, ASP is in essence a propositional formalism where
variables are replaced by constant symbols in a preprocessing
step called grounding, and a program with variables is ef-
fectively a short-hand for its ground version. For illustration,
consider the following program, where variables start with
an upper-case letter, and constant symbols are lower case:

p(a) . p(b) .
q(X) ← p(X) .

The last rule will be replaced by the two ground rules

q(a) ← p(a) .
q(b) ← p(b) .

3.2 The CLEVR Dataset
CLEVR (Johnson et al. 2017) is a dataset designed to test
and diagnose the reasoning capabilities of VQA systems. It
consists of pictures showing scenes with objects and ques-
tions related to them; there are about ten questions per image.
The dataset was created with the goal of minimising biases in
the data, since some VQA systems are suspected to exploit
them to find answers instead of actually reasoning about the
question and scene information (Johnson et al. 2017). The
dataset can be downloaded from the project website.3

Each CLEVR image depicts a scene with objects in it.
The objects differ by the values of their attributes, which
are size (big, small), color (brown, blue, cyan, gray, green,
purple, red, yellow), material (metal, rubber), and shape
(cube, cylinder, sphere). Every image comes with a ground
truth scene graph describing the scene depicted in it. Figure 1
contains three images from the CLEVR validation dataset
with corresponding questions.

Questions in CLEVR are constructed using functional pro-
grams which represent the question in a structured format.
These are symbolic templates for a question which are instan-
tiated with the corresponding values. For each such question
template, there are one or more natural language sentences to
which they are mapped. For illustration, the question “How
many large things are either cyan metallic cylinders or yellow
blocks?” from Fig. 1 can be represented by the functional
program shown in Fig. 2. There, function scene() returns the
set of objects of the scene, the filter functions restrict a set of
objects to subsets with respective properties, union() yields
the union of two sets, and count() finally returns the number
of elements of a set. A detailed description of functional pro-
grams in CLEVR can be found in the documentation of the
dataset (Johnson et al. 2017).

3https://cs.stanford.edu/people/jcjohns/clevr/.

4 VQA with ASP and Confidence-Thresholds
Before going into detail, we present a bird’s eye view of our
approach to VQA for the CLEVR dataset, which consists of
the following elements:

1. Object detection: we train neural networks for bounding-
box prediction and object classification of the CLEVR
scenes;

2. Confidence thresholds: we determine a threshold for net-
work predictions that we consider to be of high confidence
by statistical analysis on the distribution of prediction val-
ues of the neural networks;

3. ASP encoding: we translate CLEVR functional programs
that represent questions as well as network predictions
that pass confidence thresholds into ASP programs and
use an ASP solver to compute the answers.

4.1 Object Detection
We use YOLOv3 (Redmon and Farhadi 2018) for bounding-
box prediction and object classification, and assume the ob-
ject detector’s output is a matrix whose rows correspond
to the bounding-box predictions in the input picture. More
specifically, we assume each bounding-box prediction to be
a vector of the form (c1, ..., cn, x1, y1, x2, y2), where the
pairs (x1, y1) and (x2, y2) give the top-left and bottom-
right corner point of the bounding box, respectively. Fur-
thermore, c1, ..., cn are class confidence scores with ci ∈

[0, 1] for 1 ≤ i ≤ n. As customary, higher confidence
scores represent higher confidence of a correct prediction.
Each ci represents the score for a specific combination
of object attributes size, color, material and shape and
their respective values; we call this combination the object
class of position i. For any object class c, let c̄ be the list
size, shape,material, color of its attribute values. For ex-
ample, assume c is the object class “large red metallic cylin-
der”, then c̄ = large, cylinder,metallic, red. Note that there
are n = 96 object classes in CLEVR.

Every row of the prediction matrix has also its own
bounding-box confidence score. The number of bounding-
box predictions of the object detection system depends on
the bounding-box threshold, which is a hyper-parameter used
to filter out rows with a low confidence score. For exam-
ple, if this threshold is set to 0.5, then all predictions with
confidence score below 0.5 are discarded.

4.2 Confidence Thresholds
Given class confidence scores c1, ..., cn from an object de-
tection prediction, we would like to focus on classifications
that have reasonable high confidence and discard ones with
low confidence for the subsequent reasoning process. Using
a fixed threshold hardly achieves this, since it does not take
the distribution of confidence scores in the application area
(or validation data for experiments) into consideration. Our
approach solves this problem by fixing the threshold based
on the mean and the standard deviation of prediction scores.

More formally, given a list of prediction matrices
X

1
, ...,X

m, where any X
i is of dimension N

i × M , we

https://cs.stanford.edu/people/jcjohns/clevr/


Q: Is there a big brown object of the same
shape as the green thing?
A: Yes

Q: How many large things are either cyan
metallic cylinders or yellow blocks?
A: 0

Q: The tiny shiny cylinder has what color?
A: Brown

Figure 1: Three scenes and question-answer pairs from the CLEVR validation set.

count()

filter_size(large)

union()

filter_shape(cylinder)

filter_color(cyan)

filter_material(metal)

scene()

filter_shape(cube)

filter_color(yellow)

scene()

Figure 2: CLEVR functional program representing the ques-
tion: “How many large things are either cyan metallic cylin-
ders or yellow blocks?”.

compute the mean µ and standard deviation σ for the maxi-
mum class confidence scores:

µ =
1

∑m
k=1 N

k

m

∑
k=1

N
k

∑
i=1

max
1≤j≤n

(Xk
i,j) (2)

σ =

√
√√√√√√⎷

1

∑m
k=1 N

k

m

∑
k=1

Nk

∑
i=1

(max
1≤j≤n

(Xk
i,j) − µ)2 (3)

We suggest computing these values on the validation dataset
used in training the object detector. Then, we define the
confidence threshold θ that determines what is considered a
confident class prediction as follows:

θ = max(µ − α ⋅ σ, 0) (4)
We consider class predictions as sufficiently confident if their
confidence score is not lower than the mean minus α many
standard deviations. The value for α in Eqn. (4) is a parameter
that must be provided, and it should depend on how well the
network is trained. We observed that bigger values can be
beneficial if the network is better trained even though the
improvement might not be all too great. For poorly trained
models, a big alpha value does not lead to improvements, and
a smaller value is sufficient, as the standard deviation is high
anyway.

4.3 ASP Encoding

To solve VQA tasks, we rely on ASP to infer the right answer
given the neural network output and a confidence threshold.
We outline the details in the following.

Question encoding. The first step of our approach is to
translate the functional program that represents a natural lan-
guage question into an ASP fact representation. We illustrate
this for the question “How many large things are either cyan
metallic cylinders or yellow blocks?” from Section 3.2. The
functional program for this question from Fig. 2 is encoded
by the following ASP facts:

end(8) .
count(8, 7) .

filter_large(7 , 6 ) .
union(6, 3, 5) .

filter_cylinder(3, 2) . filter_cube(5, 4) .
filter_cyan(2, 1) . filter_yellow(4, 0) .
filter_metal(1, 0) .

scene(0) .

It should be intuitively clear how the structure of the func-
tional program is encoded using indices that refer to output
(first arguments) and input (remaining arguments) of the re-
spective basic functions.

Scene encoding. Let X be a prediction matrix, θ be a
confidence threshold that was determined as described in
Section 4.2, and k, 1 ≤ k ≤ 96, be a further integer parameter
of the translation. Recall that the output of the basic CLEVR
function scene() corresponds to the objects detected in the
scene which in turn correspond to the individual rows of X .

For a row Xi with confidence class scores c1, ..., cn, set Ci

contains every object class with score greater or equal than θ.
If no such class exists, Ci contains the k object classes with
highest class confidence scores. Intuitively, k is a fall-back
parameter that ensures that some classes are selected in case
all scores are low.

For every row Xi with bounding-box corners (x1, y1) and
(x2, y2), as well as Ci = {c1, . . . cl} , we construct a choice



rule of form

{obj (O, i, c̄1, x1, y1, x2, y2);
⋮

obj (O, i, c̄l, x1, y1, x2, y2)} = 1 ← scene(O).
Every object with sufficiently high confidence score will
thus be considered for computing the final answer in a non-
deterministic way. Furthermore, for every c ∈ Ci, we add the
weak constraint

↜ obj (O, i, c̄, x1, y1, x2, y2) [wc]
where the weight wc is defined as ⌊1000 − s ⋅ 1000⌋, and s
is the class confidence score for c in Xi. This approach is
inspired by the NeurASP implementation. It achieves that
object selections are penalised by a weight which corresponds
to the object’s class confidence score. Resulting answer sets
can thus be ordered according to the total confidence of the
involved object predictions. We refer to this encoding as
non-deterministic scene encoding, but we also consider the
simpler special case of a deterministic scene encoding where
each Ci is defined to contain only the single object class with
the highest confidence score.

Encoding of the basic CLEVR functions. We next present
encodings for the remaining CLEVR functions.
Filter rules: The CLEVR filter rules restrict sets of objects.
We only present the rule for filter_color(yellow), the rules
for the other colours, materials, and shapes are defined analo-
gously:

obj (T, I, . . . , yellow, . . .) ← filter_yellow(T, T1),
obj (T1, I, . . . , yellow, . . .) .

Variables T , resp., T1 are used to indicate output, resp.,
input, references, and I represents the object identifier. We
omit arguments that are not relevant for the particular filter
functions.
Count rule: Function count() returns the number of ele-
ments of a given set. We encode it as follows:
int(T, V ) ← count(T, T1), #count{I ∶ obj(T1, I, ...)} = V.

Here, #count is an ASP aggregate function that computes
the numbers of object identifiers referenced by variable T1.
Rules for set operations: The two set operation functions
in CLEVR are intersection and union. We present respective
ASP rules for each of them:

obj (T, I, . . .) ← and(T, T1, T2), obj (T1, I, . . .),
obj (T2, I, . . .) .

obj (T, I, . . .) ← or(T, T1, T2), obj (T1, I, . . .) .
obj (T, I, . . .) ← or(T, T1, T2), obj (T2, I, . . .) .

Uniqueness constraint: The CLEVR function unique() is
used to assert that there is exactly one input object, and, if
this is the case, it is propagated to the output. We encode
this in ASP using one rule for propagation and one constraint
to eliminate any answer set if the uniqueness assumption is
violated:

← unique(T, T1), obj (T1, I, . . .), obj (T1, I
′
, . . .), I /= I

′
.

obj (T, . . .) ← unique(T, T1), obj (T1, . . .) .

Spatial-relation rules: A number of CLEVR functions al-
lows to determine objects that are in a certain spatial relation
with another object. We present the rule that allows to iden-
tify all objects that are left relative to a given reference, the
rules for right, front, and behind, are defined analogously:

obj (T, I, . . .) ← relate_left(T, T1, T2), I /= I
′
,X1 < X

′
1,

obj (T1, I, . . . ,X1, . . .), obj (T2, I
′
, . . . ,X

′
1, . . .) .

Exist rule: The exist() rule in CLEVR returns true if the
referenced set of objects is not empty. Respective ASP rules
look as follows:

bool(T, true) ← exist(T, T1), obj (T1, . . .) .
bool(T, false) ← exist(T, T1), not bool(T, true) .

Query rules: Query functions allow to return an attribute
value of a referenced object. We present a rule to query for
the size of an object, the rules for colour, material, and shape
look similar:
size(T,Size) ← query_size(T, T1), obj (T1, . . . ,Size, . . .) .

Same-attribute-relation rules: Similar to the spatial-
relation functions, same-attribute-relation rules allow to se-
lect sets of objects if they agree on a specified attribute with
a specified reference object. We illustrate the ASP encoding
for the size attribute, the ones for colour, material and shape
are defined with the necessary changes:
obj (T, I, . . .) ← same_size(T, T1, T2),

obj (T1, I, . . . ,Size, . . .), obj (T2, I
′
, . . . ,Size, . . .), I /= I

′
.

Integer-comparison rules: CLEVR supports the common
relations for comparing integers like “equals”, “less-than”,
and “greater-than”. We present the ASP encoding for
“equals”:
bool(T, true) ← equal_integer(T, T1, T2), int(T1, V ),

int(T2, V ) .
bool(T, false) ← equal_integer(T, T1, T2), not bool(T, true) .

Attribute-comparison rules: To check if two objects have
the same attributes, like size, colour, material, or shape,
CLEVR provides attribute-comparisons rules. The one for
size can be represented in ASP as follows, the others are
defined analogously:
bool(T, true) ← equal_size(T, T1, T2), size(T1, V ),

size(T2, V ) .
bool(T, false) ← equal_size(T, T1, T2), not bool(V, true) .

In addition to the rules above, we also use rules to derive
the ans/1 atom that extracts the final answer for the encoded
CLEVR question from the output of the basic function at the
root of the computation:

ans(V ) ← end(T ), size(T, V ) .
ans(V ) ← end(T ), color(T, V ) .
ans(V ) ← end(T ),material(T, V ) .
ans(V ) ← end(T ), shape(T, V ) .
ans(V ) ← end(T ), bool(T, V ) .
ans(V ) ← end(T ), int(T, V ) .
← not ans(_).



The last constraint enforces that a least one answer is derived.
Putting all together, to find an answer to a CLEVR ques-

tion, we translate the corresponding functional program into
its fact representation and join it with the rules presented
above. Each answer set then corresponds to a CLEVR an-
swer that is founded in a particular choice for scene objects.
If the deterministic scene encoding is used, there will be
at most one answer set, for the non-deterministic encoding,
there can be multiple ones. No answer set may exist due to
imperfect object recognition.

5 Experiments on the CLEVR Dataset
Recall that the parameters of our approach are (i) the
bounding-box threshold for object detection, (ii) α for com-
puting the confidence threshold as distance from the mean
in terms of standard deviations, which is relevant for the
non-deterministic scene encoding, and (iii) k as a fall-back
parameter for object-class selection. We experimentally eval-
uated our approach on the CLEVR dataset to study the effects
of different parameter settings. In particular, we study

• the effects of different bounding-box thresholds and train-
ing epochs for object detection,

• how the deterministic scene encoding compares to the
non-deterministic one for question answering, and

• the run-time performance of our approach in comparison
with the related VQA system NeurASP.

For computing the non-deterministic scene encodings, we set
α = 1 and k = 2.4

5.1 Object-Detection Evaluation
For object detection, we used an open source implementation
of YOLOv3 (Redmon and Farhadi 2018).5 The system was
trained on 4000 CLEVR images with bounding box annota-
tions, as suggested in related work (Yi et al. 2018). We used
models trained for 25, 50 and 200 epochs, respectively, to
obtain different levels of training for the neural networks.
Regarding the bounding-box thresholds, we considered two
settings, namely 0.25 and 0.50.

Table 1 summarises the results of the evaluation of how
the differently well-trained networks perform for detecting
the objects in the CLEVR scenes. We report on precision
and recall, which are defined as usual in terms of true posi-
tives (TP), false positives (FP), and false negatives (FN). A
TP is a prediction that indeed contains an object class with
high confidence that is correct w.r.t. the scene annotations
in CLEVR. A FP is a prediction that does not contain any
correct object class with sufficiently high confidence. A FN
is an object that exists according to the scene annotations, but
there is no prediction with a corresponding object class of
high confidence. Note that high confidence refers to above
the confidence threshold for the non-deterministic setting and
to the highest confidence score for the deterministic one.

4All experiments were carried out on an Ubuntu (20.04.3 LTS)
system with a 3.60GHz Intel CPU, 16GiB of RAM, and an NVIDIA
GeForce GTX 1080 GPU with 8GB of memory installed.

5https://github.com/eriklindernoren/PyTorch-YOLOv3.

As expected, our results show that the total number of FP
and FN decreases for the better trained YOLOv3 models.
Naturally, a low bounding-box threshold yields more FP
detections, while the number of FN decreases. Setting the
bounding-box threshold to a higher value usually leads to
fewer FP but also more FN.

5.2 Question-Answering Evaluation

We used the ASP solver clingo6 to compute answer sets.
Table 2 sheds light on the impact of the training level and
bounding-box thresholds of the models on question answer-
ing for the deterministic and non-deterministic scene encod-
ings. Our system yields either correct, incorrect, or no an-
swers to the CLEVR questions, and we report respective
rates. The non-deterministic scene encoding outperformed
the deterministic approach for all settings of training epochs
and bounding-box thresholds. This suggests that the improve-
ments in precision and recall seen in Table 1 for the non-
deterministic encoding in comparison with the deterministic
case carries over to question answering. It thus seems ben-
eficial to consider more than one prediction of the object
detection system when in doubt.

5.3 Comparison with NeurASP

As discussed in the related work section, NeurASP is closely
related to our approach. There, neural network outputs are
interpreted as probability distributions that are extended from
atoms to the models of the program. A potential drawback
is that calculating probabilities for models involves model
counting which is an expensive operation. While NeurASP
also embodies the idea of non-determinism for object classifi-
cations, it does not incorporate a mechanism to restrict object
classes to ones with high confidence like in our approach.

The choice rules in NeurASP always contain all 96
CLEVR object classes, and their probabilities come from
the YOLO network. We also consider a setup for NeurASP
where only the best prediction is considered, while the prob-
abilities of all other atoms are set to zero. In principle, our
approach resembles the one of NeurASP for our ASP en-
coding by using weak constraints instead of probabilities.
However, run-time performance and memory consumption
are quite different. We could not run NeurASP on the entire
set of questions due to memory problems and thus restricted
our analysis to a smaller random sample. Table 3 summaries a
comparison of our approach and NeurASP on 15000 CLEVR
questions. NeurASP outperforms our approach in terms of
correct answers, because it does not restrict the number of
atoms for the choice rules as we do. However, this comes at
a price as run-times are much longer, which can be explained
by the inflation of the search space due to the unrestricted
choice rules. Overall, the experiments further support our be-
lief that non-determinism is useful for neuro-symbolic VQA
systems and suitable mechanisms to restrict it do reasonable
choices allows for more efficient implementations.

6https://potassco.org/clingo/.

https://github.com/eriklindernoren/PyTorch-YOLOv3
https://potassco.org/clingo/


Training Epochs/Bounding-Box Threshold
25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

Deterministic Scene Encoding
true positives 69347 93841 96576 43240 86703 95442
false positives 13433 1651 406 1260 629 175
false negatives 28011 3517 782 54118 10655 1916
recall 71.23% 96.39% 99.20% 44.41% 89.06% 98.03%
precision 83.77% 98.27% 99.58% 97.17% 99.28% 99.82%

Non-Deterministic Scene Encoding
true positives 86986 95645 96978 85396 95023 96666
false positives 10455 2061 604 10923 1566 389
false negatives 10372 1713 380 11962 2335 692
recall 89.35% 98.24% 99.61% 87.71% 97.60% 99.29%
precision 89.27% 97.89% 99.38% 88.66% 98.38% 99.60%

Table 1: Precision and recall for object detection on CLEVR scenes.

Training Epochs/Bounding-Box Threshold
25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

Deterministic Scene Encoding
correct 65.11% 93.01% 96.90% 42.88% 82.97% 95.29%
wrong 17.04% 3.05% 1.08% 28.63% 8.53% 2.04%
no answer 17.85% 3.94% 2.02% 28.49% 8.50% 2.67%

Non-Deterministic Scene Encoding
correct 80.27% 94.54% 97.23% 78.69% 93.95% 96.93%
wrong 12.64% 2.73% 1.08% 13.61% 3.12% 1.27%
no answer 7.09% 2.73% 1.70% 7.7% 2.93% 1.80%

Table 2: Results for question answering based on deterministic and non-deterministic scene encodings.

6 Conclusion
We introduced a neuro-symbolic VQA system for the CLEVR
dataset based on ASP. We presented a translation from
CLEVR questions in the form of functional programs to
ASP rules, where we propose a non-deterministic and a deter-
ministic approach to encode object-level scene information.
We have shown that our system yields very good results on
the CLEVR validation dataset. Question answering based on
non-deterministic scene encodings has achieved better results
compared to the deterministic approach, especially if the neu-
ral networks for object classification are trained poorly. This
is important to ensure robustness of VQA systems if network
predictions are not perfect.

For future work, it would be interesting to to learn the con-
fidence threshold instead of relying on statistical measures.
We also plan to apply our approach to other datasets, espe-
cially ones that do not use synthetic scenes, and to extend our
system with natural-language processing.
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