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Abstract

Humans can recognize categories, shapes, colors, grasp/manipulate objects, run or1

take a plane. To reach this level of cognition, developmental psychology identifies2

two key elements: 1- children have a spontaneous drive to explore and learn3

open-ended skills, called intrinsic motivation; 2- perceiving and acting are deeply4

intertwined: a chair is a chair because I can sit on it. This supports the hypothesis5

that the development of perception and skills may be continually underpinned6

by one guiding principle. Here, we investigate the consequence of maximizing7

the multi-information of a simple cognitive architecture, modelled as a causal8

model. We show that it provides a coherent unifying view on numerous results in9

unsupervised learning of representations and intrinsic motivations. This poses our10

framework as a serious candidate to be a guiding unifying principle.11

1 Introduction12

Children spontaneously explore their environment and learn skills in an open-ended way [Piaget and13

Cook, 1952, Ryan and Deci, 2000], driven by the so called intrinsic motivation (IM). During this14

process, perception and action selection are deeply intertwined. Humans gather observations as a15

result of their actions, select actions based on their representation of their state [Byrge et al., 2014]16

and perceive by looking at their action effect O’regan and Noë [2001], Gibson [1977]. It results a17

progressive construction of perception and skills.18

Yet, in machine learning (ML), IMs objectives are often unrelated to unsupervised representation19

learning objectives like invariances learning Chen et al. [2020], covariances learning Dangovski et al.20

[2021] or disentanglement Kingma and Welling [2014]. In practice, even intrinsic motivations are21

highly heterogeneous; for example, one can maximize like bottleneck research [McGovern and Barto,22

2001, Menache et al., 2002], expected cover time [Jinnai et al., 2019], saliency search [Bruce and23

Tsotsos, 2005] or novelty seeking behaviors Bellemare et al. [2016]. The information compression24

principle, which states that biological organisms aim to compress the data, is a natural candidate to25

unify IMs and representation learning objectives. This is because of its ability to explain diverse26

behaviors (e.g novelty) and feelings (e.g subjective beauty) [Schmidhuber, 2008]. However it lacks a27

quantitative instance of this principle that could guide unsupervised learning methods.28

Here, we hypothesize that an agent is driven to maximize the information it compresses in its29

cognitive architecture. We model the cognitive architecture of an agent as a modular Bayesian30

network (BN) decomposed into modular goal/representation loops. We quantify the compressed31

information as the multi-information of the BN and propose that an agent maximize it through32

learning representations and skills. By introducing a lower-bound on the multi-information, we show33

that our framework unifies: 1- two information-theoretic formalisms of IMs [Aubret et al., 2021]34

accounting for exploration behaviors and the learning of a hierarchy of skills; 2- several approaches35
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Figure 1: Left: BN B that sums up a simplified HRL-based cognitive model of an agent. We assume
through the dotted arrows that the model is consistent through time and hierarchie. Please refer
to the text for more information about the semantic of variables. Right: BN that considers initial
independent modalities (multimodality). In our generic model, fusion of modalities may occur at an
arbitrary level.

in unsupervised representation learning based on learning invariant, covariant and disentangled36

representations. 3- the framework of Active Efficient Coding (AEC) [Teulière et al., 2015], which37

simulates early infants behaviors. For an introduction to information theory, Bayesian networks and38

hierarchical reinforcement learning (HRL), please, refer to Appendix A.39

2 Information compression in goal/representation loops40

Causal model of the cognitive architecture. We consider a simple architecture endowed with41

high-level findings in the brain: we integrate neural-based representations [Kruger et al., 2012,42

Quiroga et al., 2005] and goals [Koechlin et al., 2003]. These groups of neurons perceive and act43

over increasingly larger time windows [Badre and D’Esposito, 2007] and increasingly larger number44

of modalities [Wallace and Stein, 1997].45

Figure 1 shows the Bayesian network B of a goal-making step at the first and second level of a46

HRL framework, assuming for simplicity that the second-level goals last for two timesteps. Each47

module (e.g M1) corresponds to a tuple (Representation, Goal) at one level of hierarchy with one48

set of modalities. First, an observation ot is processed through a representation function to get49

a representation RM1
t = f(ot) and reprocessed with potentially other representations RM1

∆t =50

(RM1
t−1, R

M1
t ) into a higher-level representation RM2

t = fM2(RM1

∆t ). Then it uses a high-level goal-51

conditioned policy, πM2 to select a goal GM2
t ∼ πM2(·|RM2

t , . . . ). The goal-conditioned policy52

that achieves the goal GM2
t in RM2

t , also named a skill, selects the ground action at = GM1
t ∼53

πM1(·|RM2
t , GM2

t , RM1
t ) and at+1. The agent assumes that the environment deals with the ground54

action and the previous observation to output a new observation. The sensori-motor loop continues55

this way56

In Figure 1(right), each observation corresponds to a modality, which is initially assumed indepen-57

dent from other modalities by the agent. Actions can impact several observations (here all) and58

representations can aggregate different modalities (like visual, auditory, proprioceptive, . . . ).59

Information compression. Our principle can be summed up as maximizing the information com-60

pressed by our causally represented modular cognitive model. We do so by deriving its multi-61

information. The multi-information between random variables of a BN can be rewritten as the sum of62

mutual information terms between a node and its parents [Slonim et al., 2001]. Then, we assume that63

our variables are stationary over time, i.e p(Xt|Pa(Xt)) = p(X|Pa(X)) where X represent any64

random variables and Pa represent the time-dependent parents (cf. Appendix B). It leaves us with:65

MI(B) =
∑

M∈Mods
t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )︸ ︷︷ ︸
Goal achievement

+ I(RMT ;R
Mprev

∆t )︸ ︷︷ ︸
Compression/Novelty

+
∑
o∈O

I(OoT ;OoT−1, G
o
T−1)︸ ︷︷ ︸

Controllability

where T0 is the current step for a given module (VT0) = V for all random variables V ) and T66

the step corresponding to the computation of the next representation; O the set of modal-specific67

observations; Mnext are the modules that directly follow M (immediate larger timescale or set of68
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Objective Representation functions Policies
I(RMT ;R

Mprev

∆t ) Compression Novelty

I(R
Mnext

apnext

T ;GMnext , RMnext |RMapnext) Covariance Skill learning
I(OoT ;OoT−1, G

o
T−1) ∅ Controllability

Table 1: Summary of functions of the three parts of the lower bound.

modalities); Mprev the ones that precede M including observations and RMprev

∆t the representations69

of Mprev between RM and RMT . Goal achievement does not relate to current losses in the machine70

literature. To compensate this, we propose to relate information transmission of the Goal achievement71

to information transmission between two high-level representation. We can quantify the relation72

between the two and we exhibit our lower-bound in Equation 1 (cf. Appendix C for the derivation),73 ∑
M∈Mods

∑
t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )︸ ︷︷ ︸
Goal achievement

≥ I(R
Mnext

apnext

T ;GMnext , RMnext |RMapnext)︸ ︷︷ ︸
Covariance/Skill learning

(1)

withMapnext being all the modules that precede those that followM . In the next section, we interpret74

the different parts of our lower bound and multi-information relatively to IMs and representation75

learning methods.76

3 Works unified through the compressed information77

Let us look at the maximization of our lower bound with the representation functions and the policies.78

We sum up our set of objectives in Table 1.79

Compression Compression typically refers to an infomax loss [Linsker, 1990, Hjelm et al., 2019].80

Originally, infomax maximizes the mutual information between inputs X and ouputs Y of a neural81

network I(X;Y ). In our case, we set X = R
Mprev

∆t and Y = RMT such that an agent builds a82

representation that maximally keeps information about downstream trajectories and modalities. In83

some case, we may have Hmax(RMT ) < Hmax(R
Mprev

∆t ) because of some architectural constrains. It84

results in a lossy compression setup, i.e the agent necessarily lose information.85

In the case of a multimodal agent, lossy compression induces an interesting property. Our architecture86

implies that incoming modalities are a priori independent, which may be wrong in practice: haptic87

feedbacks possibly give information about visual inputs. As a consequence of such wrong a priori,88

the agent may focus on redundant information across modalities [Wilmot and Triesch, 2021] (cf.89

Appendix D). In developmental psychology, this privileged perception refers to the intersensory90

redundancy hypothesis [Wilcox et al., 2007, Bahrick et al., 2004]. For example, an agent endowed91

with touch and vision and subject to this hypothesis may encode the shape of the object as a priority.92

We leave to Appendix E an analysis of how compression can induce disentanglement.93

Covariance. The Covariance impacts what information is kept in a representation. We are only94

aware of works considering its non-hierarchical unimodal variant without considering ground obser-95

vations (Mapnext ≈ ∅) through contrastive learning approximations [Poole et al., 2018].96

Let us first consider the time-contrastive learning lower-bound I(RMT , R
M ) of the Covariance Poole97

et al. [2019]. The loss discards temporally frequently changing features (e.g quick motion) and thus98

learn temporally invariant features [Wiskott and Sejnowski, 2002, Schneider et al., 2021]. We can list99

3 application domains: 1) in reinforcement learning (RL), some implementation examples capture the100

action-based geometry of an environment, like (x,y) coordinates using ground observations [Li et al.,101

2021, Zhou et al., 2019]; 2) in video contrastive learning, agents manage to learn representations of102

time-extended behaviors displayed in a clip [Feichtenhofer et al., 2021, Qian et al., 2021, Liu et al.,103

2021]; 3) in visual contrastive learning, several works showed that, along with object interactions and104

gaze control, Covariance improves object recognition [Schneider et al., 2021, Wang et al., 2021] and105

categorization [Aubret et al., 2022].106

Now let us focus on extensions that include the action A (or similarly goal GM in our case) to107

maximize I(RMT ;GM , RM ) [Nachum et al., 2019, Shu et al., 2020]. This makes RM covariant to108
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GM , meaning that the agent must keep both low-frequency information (as before) and the higher-109

frequency variation caused by the action (or augmentation). In RL, the resulting representation can110

be optimal to solve a RL task [Rakelly et al., 2021]. In visual/video contrastive learning, explicit111

sensitivity to some augmentations GM can improve object categorization [Dangovski et al., 2021,112

Zhang et al., 2019, Xiao et al., 2020], even though they mostly apply biologically not plausible image113

transformation like color jittering. We note an exception [Jenni and Jin, 2021] which shows improved114

video representations. Our derivation essentially augments this loss to scale it to hierarchically115

ordered representations. Details (e.g ground observation O ∈ RMapnext) may be discarded by a116

low-level modules but re-encoded in high-level modules. For instance, "I saw shoes" (low-level117

representation) is informative about the fact that "I am going to the school" (high-level representation).118

Novelty The Novelty has recently been formalized in Aubret et al. [2021] as maximizing I(O;R) =119

H(O) − H(O|R). This tells us where an agent must go to improve its representation of the120

environment and is known to incite a wide exploration of an environment (maximizing H(O)) Aubret121

et al. [2021]. Our derivation emphasizes the need of looking for new trajectories and multi-modal122

combinations rather than simple observations.123

In case of multimodal agents, we have seen with the Compression term that multimodal compression124

favors cross-modal redundant information. An agent may also actively look for such redundant125

information. It has been explored under the principle of Active Efficient coding (AEC) [Teulière126

et al., 2015], which is an intrinsic motivation that states humans act and perceive to better compress127

their sensory inputs. Several formalisms of AEC consider multimodal agents, an agent that separately128

perceives through its two eyes [Zhao et al., 2012, Eckmann et al., 2020, Vikram et al., 2014] or through129

visual and proprioceptive inputs [Wilmot and Triesch, 2021]. Our formalism of multimodal novelty130

directly matches [Eckmann et al., 2020], where they show that it can model the accommodation-131

convergence reflex in humans. This reflex describes the ability of humans to focus or defocus the132

vision on nearby or distant objects. Our loss suggests that similar results could be obtained for higher133

level behaviors.134

Skill learning. Skill learning makes possible learrning of reusable skills, i.e goal-conditioned135

policies that have a predictable trajectory. In the DRL literature, an agent learns abstract skills136

by ensuring that low-level skills follow its high-level assigned goals [Aubret et al., 2021]. This is137

formalized as maximizing I(G;Rδt) where u extracts a subpart of the trajectory (e.g a state). For an138

agent that controls its torques (low-level actions), an example of time-extended skill can be to directly139

navigate in cardinal directions in a maze [Li et al., 2021]. Our derivation differs from the original140

formalism [Aubret et al., 2021] by including the previous representations RMapnext . This highlights141

two properties. First, skills are relative to their starting position, so that they apply a shift in the142

representation (like going to the right) rather than targeting a particular representation (reaching the143

wall). In practice, this may require to know which skill can be executed where, i.e skills affordances144

[Gibson, 1977, Khetarpal et al., 2020]. Second, it scales the loss to a hierarchy of time-extended145

skills as they also impact lower-level representations. At the lowest observations/actuators level, skill146

learning collapses to Controllability such that the agent tries to smartly select the actions to make147

according to how well the consequences are predictable [Touchette and Lloyd, 2004].148

4 Conclusion149

We hypothesized that an intrinsically motivated entity spontaneously tries to compress information.150

We propose to instantiate it as the maximization the multi-information of the constrained cognitive151

architecture of an agent. We showed that this amounts to maximize close-to previously known152

objectives within a modular hierarchy of goals/representations loops, thereby accounting for the153

autonomous learning of temporally/modality-extended representations and skills. By grounding our154

framework in ML research, our principle (thanks to the Novelty) avoids the dark-room problem faced155

by the Free-Energy Principle (FEP) [Friston, 2010] without adding ad hoc priors [Friston et al., 2012].156

Our framework presents several limitations. First, we consider a very simple cognitive architecture.157

Second, our framework does not aim to explain how to maximize the local information theoretic158

terms. It implies to approximate information theoretic values which is known difficult [Belghazi159

et al., 2018, Poole et al., 2019]. Third, we hope future works will connect our contribution to studies160

about the impact of multi-information maximization at the level of neurons [Ay, 2002].161
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Figure 2: Left: Simple example of Bayesian network. Right: Simple example of Bayesian net-
work.Bayesian network which sums up the perception-action loop of an agent, adapted from Klyubin
et al. [2004]. t refers to the discrete time index, S are the hidden states of an environment, O the
observations of an agent, A the ground actions of an agent, M the memory or internal state of an
agent.

A Background350

In this section, we introduce the basic components of our theory, namely Bayesian networks, infor-351

mation theory and hierarchical reinforcement learning.352

A.1 Bayesian networks353

Bayesian networks (or graphical models) are directed acyclic graphs for which 1-vertices correspond354

to random variables which represent part of the state of the system; 2-edges reflect statistical depen-355

dencies between these variables, i.e a causal relationship. Figure 2 (left) illustrates a simple example356

of Bayesian network. Given the dependencies, a joint probability p(X,Y,C, Z) is conform to the357

graphical model if p(X,Y,C, Z) = p(X)p(Y |X)p(Z)p(C|Z, Y ). More generally, if (V0, . . . , VN )358

are the N + 1 vertices of a graph, and Pa(V ) sums up the parents of V with respect to the edges, we359

can write [Pearl, 2014]:360

p(V0, . . . , VN ) =

N∏
i=0

p(Vi|Pa(Vi)). (2)

These models are convenient to model action-perception loops [Touchette and Lloyd, 2004, Klyubin361

et al., 2004, Levine, 2018] and allow to compute information theoretic measures. In this setting,362

parameters, actions, states, decisions etc. . . are all random variables. Figure 2 (right) shows the363

Bayesian network induced by a typical perception-action loop which is unrolled through time. This364

kind of unrollment is typical through Dynamical Bayesian networks [Dagum et al., 1992]. In the365

following, while we could also use a Structured Graphical Model [Pearl, 2010], we assume that the366

standard Bayesian network is simpler and makes our results more reachable.367

A.2 Measuring information368

The Shannon entropy quantifies the mean necessary information to determine the value of a random369

variable. Let X be a random variable, its entropy is defined by:370

H(X) = −
∫
X

p(x) log p(x). (3)

The entropy is maximal when p(X) encodes a uniform distribution, and minimal when p(X) follows371

a Dirac distribution. Similarly to the entropy, we can define the entropy conditioned on a random372

variable Y :373

H(X|Y ) = −
∫
Y

p(y)

∫
X

p(x|y) log p(x|y). (4)

Using these definition, we can introduce the mutual information, which quantifies the information374

that a random variable Y contains about another random variable X:375

I(X;Y ) = H(X)−H(X|Y ) (5)
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The mutual information between two independent variables equals zero (since H(X|Y ) = H(X)).376

Similarly to the conditional entropy, we can introduce the mutual information between variables X377

and Y knowing another random variable W :378

I(X;Y |W ) = H(X|S)−H(X|Y,W ) (6)

= DKL

[
p(X,Y |W )||p(X|W )p(Y |W )

]
. (7)

Following Equation 7, one can interpret the mutual information as being the difference between the379

joint distribution of two variables and the distributions of variables assuming they are independent.380

It is straightforward to generalize mutual information to several random variables, it leads to the381

multi-information [Slonim et al., 2001], also named total correlation [Watanabe, 1960]:382

MI(X0, . . . , XN ) = DKL

[
p(X0, . . . , XN )||

N∏
i=0

p(Xi)
]

(8)

It quantifies the information that variables X0, . . . , XN contain about each other. As above, it is383

described as the discrepancy between the joint distribution p(X0, . . . , XN ) and the same distribution384

if variables were independent.385

A.3 Hierarchical and developmental reinforcement learning386

A Markov Decision process (MDP) is defined through S the set of possible states; A the set of387

possible actions; T the transition function T : S × A × S → p(s′|s, a); R the reward function388

R : S ×A× S → R; ρ0 : S → R the initial distribution of states.389

An agent starts in a state s0 given by ρ0. At each time step t, the agent is in a state st and performs390

an action at; then it waits for the feedback from the environment composed of a state st+1 sampled391

from the transition function T , and a reward rt given by the reward function R. The agent repeats392

this interaction loop until the end of an episode. In reinforcement learning [Sutton and Barto, 1998],393

an agent aims to associate actions a to states s through a policy π in order to maximize the expected394

discounted reward defined by
∑∞
t=0 γ

tR(st, at, st+1.395

In developmental machine learning [Colas et al., 2020], a goal is defined by the pair (g,RG)396

where G ⊂ Rd, RG is a goal-conditioned reward function and g ∈ G is the d-dimensional goal397

embedding. We can now define the skill associated to each goal as the goal-conditioned policy398

πg(a|s) = π(a|g, s); in other words, a skill refers to the sensori-motor mapping that achieve a goal399

[Thill et al., 2013]. This skill may by learnt or unlearnt according to the expected intrinsic rewards400

it gathers. It implies that, if the goal space is well-constructed (as often a ground state space for401

example, RG = S), the agent can generalize its policy across the goal space, i.e the corresponding402

skills of two close goals are similar.403

The approach can be extended to a hierarchy of RL agents, which is then denoted as hierarchical404

reinforcement learning. Typically, in feudal reinforcement learning [Dayan and Hinton, 1993], an405

upper-level manager learns a policy that assigns goals g ∈ G to workers. To guide the learning406

process of the workers, the manager rewards them according to their actions. Once a worker achieves407

its goal, the manager sets another one and the execution loop continues. In practice, we can stack408

several levels of managers, so that there may be k > 2 levels in the hierarchy.409

B Time independence410

Let us derive of the time-independent mutual information between variables. Assuming we have411

p(Xt) = p(X|t) = P (X) and p(Xt|Pa(Xt)) = p(X|Pa(X)) where X can represent any random412

variables and Pa represent the time-dependent parents, we have, with t = 0, . . . , N :413
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Symbol Description
Mnext Modules that directly depend on M
Mprev Modules that directly condition M
Maprev Modules that directly and indirectly condition M
Mapnext Modules that directly/indirectly conditions a module that follows M
GM∆T All goals generated in M between two higher level representations.

Table 2: The notations used to discuss modules.

∑
t

I(Xt;Xt−1, Yt) =
∑
t

I(X ′;X,Y |t)

=
∑
t

H(X ′|t)−H(X ′|X,Y, t)

=
∑
t

−
∑
X′

p(x′, t) log p(x′|t) +
∑

X′,X,Y

p(x′, x, y, t) log p(x′|x, y, t)

= −
∑
X′

∑
t

p(x′|t)p(t) log p(x′|t) +
∑
X′

∑
X,Y

∑
t

p(x′, x, y|t)p(t) log p(x′|x, y, t)

(1)
= −

∑
X′

∑
t

p(x′)p(t) log p(x′) +
∑
X′

∑
X,Y

∑
t

p(x′, x, y)p(t) log p(x′|x, y)

(2)
= −

∑
X′

∑
t

p(x′)
1

N
log p(x′) +

∑
X′

∑
X,Y

∑
t

p(x′, x, y)
1

N
log p(x′|x, y)

=
∑
t

1

N

[
−
∑
X′

p(x′) log p(x′) +
∑
X′

∑
X,Y

p(x′, x, y) log p(x′|x, y)
]

= I(X ′;X,Y ) (9)

where we applied p(X|t) = p(X) in (1) and noticed that p(t) = 1
N in (2).414

C Proof of Equation 1415

Before startign the proof, let us rigorously define a module and its corresponding notations. A module416

represents a bio-inspired building block [Mussa-Ivaldi and Solla, 2004, Mussa-Ivaldi and Bizzi,417

2000, Butz, 2016] associated to 1- a temporal/inter-modal receptive field over incoming observations418

[Hasson et al., 2015]; 2- an independent part of a lateral decomposition. The temporal receptive field419

refers to the number of temporally different indirectly processed observations, while the inter-modal420

receptive field refers to the set of indirectly processed modalities. This generic module is composed421

of a representation and goal variables (and their respective functions f and π) with the temporally-422

dependent causal relationships displayed in Figure 1 that makes them interact with each other. Let us423

define a module formally, assuming causal relationships are consistent over time:424

Definition 1. A module M is a set of random variables (GMt , R
M
t ) with a causal relation RMt → GMt425

and a conditioning module.426

Definition 2. A module M depends on an other module Mp according to a temporal scale ∆T if427

we have for a given T 1- one causal relation RMp

∆T → RMT where RMp

∆T = {RMp

T−∆T , ..., R
Mp

T }; 2-428

several (RMT−∆T , G
M
T−∆T )→ G

Mp

t for each t ∈ [T −∆T, ..., T [. Inversely, Mp conditions M .429

Table 2 sums up the notations that derive from these two definitions.430
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Now, let us recall Equation ?? and start our derivation.431

MI(BG) =
∑

M∈Modules

[ ∑
GM

t ∈[RMnext ;R
Mnext
T ]

[I(GMt ;GMnext , RMnext , RM )] + I(RMT ;R
Mprev

∆t )︸ ︷︷ ︸
Compression/Novelty

]
+
∑
o∈O

I(OoT ;Oo, Go)︸ ︷︷ ︸
Controllability

To derive the lower-bound of the Skill learning, we mostly take advantage of the data processing432

inequality (DPI):433

We want to lower-bound:∑
t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMt )

Thanks to conditional independence, add representations conditioning RMnext :

=
∑

t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMapnext , RMt )

Apply DPI to condition all goals on the same representations:

≥
∑

t∈[T0;T ]

I(GMt ;GMnext , RMnext , RMapnext)

Bring together sequential goals into one group of variables:

≥ I(GM∆T ;GMnext , RMnext , RMapnext) (10)

We separate the term in two parts with the chain rule:

= I(GM∆T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

Thanks to conditional independence, we can extend the left part:

(11)

= I(GM∆T , G
Mapnext , OMapnext ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

We can aggregate all goals and observations at the current timestep like in Figure 3 [Chang and Fung,
1989]:

= I(EM ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

We apply the DPI on EM to exhibit RMapnext

T :

≥ I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext)

(12)

The first and last lower-bounds becomes narrow when lower-level modules maximize their own434

objectives. For the second lower-bound we use the fact that I(X,Y ;V |W ) ≤ I(X;V |W ) +435

I(Y ;V |W ).436

Finally, we leave a rigorous proof to future work and hypothesize that the lower-bound in Equation 14437

is narrow. It may be because the right-hand term is unlikely to also maximize our Novelty/Covariance438

term.439

I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) + I(GM∆T ;RMapnext) (13)

≥ I(R
Mapnext,next

T ;GMnext , RMnext |RMapnext) (14)
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Figure 3: Bayesian network that replicates B, but illustrates how we can aggregate different variables
in E.

Figure 4: Module-based Bayesian network inducing the disentanglement of a representation.

D Multi-modal Compression/Novelty440

According to our objective, a multimodal agent subject to lossy compression favors cross-modal441

redundant information with its novelty/compression term. Let us formalize this observation. In Figure442

1 (right), our agent processes each modality independently and maximizing our Novelty amounts443

to compression maximization. Since our modal-specific modules M1 and M2 have a timescale444

equal to one, our Novelty becomes I(RM1

T , RM2

T ;RM3

T ) where M3 depends on M1 and M2. We can445

decompose it into446

I(RM1

T , RM2

T ;RM3

T ) = I(RM1

T ;RM3

T ) + I(RM2

T ;RM3

T )

− I(RM1

T , RM2

T ) + I(RM1

T , RM2

T |R
M3

T )

= I(RM1

T ;RM3

T ) + I(RM2

T ;RM3

T ) (15)

where we apply the independence assumption in Equation 15. The best way to maximize Equation 15447

under lossy compression is to first maximize I(RM1

T , RM2

T )−I(RM1

T , RM2

T |R
M3

T ), i.e the information448

shared by RM1

T and RM2

T about RM3

T as it will simultaneously maximize both terms. We will now449

review this objective through concrete works applied to multimodal agents.450

E Disentanglement451

Let us consider the architecture in Figure 4, displayed with notations introduced in Appendix C. It452

displays a typical separate/rebranch pattern without extension of the temporal receptive field. Unlike453

when compressing multimodal data, we can not assume M2, ...,Ml to be independent because of454

their common predecessor. Let us compute the compression term of Ml+1:455

Ldis = I(R
Ml+1

T ;RM2 , ..., RMl−1
)

=

l−1∑
i=2

[
H(RMi))︸ ︷︷ ︸

Individual information

]
+H(RM2 , ..., RMl−1 |RMl+1)︸ ︷︷ ︸

Global information preservation

−MI(RM2 , ..., RMl−1)︸ ︷︷ ︸
Independency

. (16)

Interestingly, Independency objective has been explored in the context of (Beta-) Variational Auto-456

Encoder (VAE) [Esmaeili et al., 2019, Chen et al., 2018, Gao et al., 2019, Kim and Mnih, 2018] and457
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independent component analysis [Bell and Sejnowski, 1995, Lee et al., 2000]. These work suggest458

that it rules the disentanglement of a representation, i.e its decomposition into semantically different459

parts of the data (color, shape, motion, size, orientation . . . ).460
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