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Abstract

The development of data-dependent heuristics and representations for biological1

sequences that reflect their evolutionary distance is critical for large-scale biological2

research. However, popular machine learning approaches, based on continuous3

Euclidean spaces, have struggled with the discrete combinatorial formulation of4

the edit distance that models evolution and the hierarchical relationship that char-5

acterises real-world datasets. We present Neural Sequence Distance Embeddings6

(NeuroSEED), a general framework to embed sequences in geometric vector spaces,7

and illustrate the effectiveness of the hyperbolic space that captures the hierarchical8

structure and provides an average 38% reduction in embedding RMSE against the9

best competing geometry. The capacity of the framework and the significance of10

these improvements are then demonstrated devising supervised and unsupervised11

NeuroSEED approaches to multiple core tasks in bioinformatics. Benchmarked12

with common baselines, the proposed approaches display significant accuracy13

and/or runtime improvements on real-world datasets. As an example for hierarchi-14

cal clustering, the proposed pretrained and from-scratch methods match the quality15

of competing baselines with 30x and 15x runtime reduction, respectively.16

1 Introduction17

Over the course of evolution, biological sequences constantly mutate and a large part of biological18

research is based on the analysis of these mutations. Biologists have developed accurate statistical19

models to estimate the evolutionary distance between pairs of sequences based on their edit distance20

D(s1, s2): the minimum number of (weighted) insertions, deletions or substitutions required to21

transform a string s1 into another string s2.22

However, the computation of this edit distance kernel D with traditional methods is bound to a23

quadratic complexity and hardly parallelizable, making its computation a bottleneck in large scale24

analyses, such as microbiome studies [1, 2, 3]. Furthermore, the accurate computation of similarities25

among multiple sequences, at the foundation of critical tasks such as hierarchical clustering and26

multiple sequence alignment, is computationally intractable even for relatively small numbers of27

sequences. Problems that in other spaces are relatively simple become combinatorially hard in the28

space of sequences defined by the edit distance. For example, finding the Steiner string, a classical29

problem in bioinformatics that can be thought of as computing the geometric median in the space of30

sequences, is NP-complete.31

Classical algorithms and heuristics [4, 5, 6, 7] widely used in bioinformatics for these tasks are32

data-independent and, therefore, cannot exploit the low-dimensional manifold assumption that33

characterises real-world data [8, 9, 10]. Leveraging the available data to produce efficient and data-34

dependent heuristics and representations would greatly accelerate large-scale analyses that are critical35

to biological research.36
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Figure 1: On the left, the key idea of NeuroSEED: learn an encoder function fθ that preserves
distances between the sequence and vector space (D and d). The vector space can then be used to
study the relationship between sequences and, potentially, decode new ones. On the right, an example
of the hierarchical clustering produced on the Poincaré disk. The data was downloaded from UniProt
[14] and consists of the P53 tumour protein from 20 different organisms.

While the number of available biological sequences has grown exponentially over the past decades,37

machine learning approaches to problems related to string matching [11, 12] have not been adopted38

widely in bioinformatics due to their limitation in accuracy and speed. In contrast to most tasks39

in computer vision and NLP, string matching problems are typically formalised as combinatorial40

optimisation problems. These discrete formulations do not fit well with the current deep learning41

approaches. Moreover, representation learning methods based on Euclidean spaces struggle to42

capture the hierarchical structure that characterises real-world biological datasets due to evolution.43

Finally, common self-supervised learning approaches, very successful in NLP, are less effective in44

the biological context where relations tend to be between sequences rather than between bases [13].45

In this work, we present Neural Sequence Distance Embeddings (NeuroSEED), a general framework46

to produce representations for biological sequences where the distance in the embedding space is47

correlated with the evolutionary distance D between sequences. NeuroSEED provides fast approxi-48

mations of the distance kernel D, low-dimensional representations for biological sequences, tractable49

analysis of the relationship between multiple sequences in the embedding geometry and a way to50

decode novel sequences.51

Firstly, we reformulate several existing approaches into NeuroSEED highlighting their contributions52

and limitations. Then, we examine the task of embedding sequences to preserve the edit distance that53

is the basis of the framework. This analysis reveals the importance of data-dependent approaches and54

of using a geometry that matches the underlying data distribution well. The hyperbolic space is able55

to capture the implicit hierarchical structure given by biological evolution and provides an average56

38% reduction in embedding RMSE against the best competing geometry.57

We show the potential of the framework and its wide applicability by analysing two fundamental tasks58

in bioinformatics involving the relations between multiple sequences: hierarchical clustering and59

multiple sequence alignment. For both tasks, unsupervised approaches using NeuroSEED encoders60

are able to match the accuracy of common heuristics while being orders of magnitude faster. For61

hierarchical clustering, we also explore a method based on the continuous relaxation of Dasgupta’s62

cost in the hyperbolic space which provides a 15x runtime reduction at similar quality levels. Finally,63

for multiple sequence alignment, we devise an original approach based on variational autoencoders64

that matches the performance of competitive baselines while significantly reducing the runtime65

complexity.66

As a summary our contributions are: (i) We introduce NeuroSEED, a general framework to map67

sequences in geometric vector spaces, and reformulate existing approaches into it. (ii) We show how68

the hyperbolic space can bring significant improvements to the data-dependent analysis of biological69
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sequences. (iii) We propose several heuristic approaches to classical bioinformatics problems that70

can be constructed on top of NeuroSEED embeddings and provide significant running time reduction71

against classical baselines.72

2 Bioinformatics tasks73

The field of bioinformatics has developed a wide range of algorithms to tackle the classical problems74

that we explore. Here we present the tasks and briefly mention their motivation and some of the75

baselines we test. More details are provided in Appendix B.76

Edit distance approximation In this work, we always deal with the classical edit distance where77

the same weight is given to every string operation, but all the approaches developed can be applied to78

any distance function of choice (which is given as an oracle). As baseline heuristic, we take k-mer,79

which is the most commonly used alignment-free method and represents sequences by the frequency80

vector of subsequences of a certain length.81

Hierarchical clustering (HC) Discovering the intrinsic hierarchical structure given by evolutionary82

history is a critical step of many biological analyses. Hierarchical clustering (HC) consists of, given a83

pairwise distance function, defining a tree with internal points corresponding to clusters and leaves84

to datapoints. Dasgupta’s cost [15] measures how well the tree generated respects the similarities85

between datapoints. As baselines we consider classical agglomerative clustering algorithms (Single86

[16], Complete [17] and Average Linkage [6]) and the recent technique [18] that uses a continuous87

relaxation of Dasgupta’s cost in the hyperbolic space.88

Multiple sequence alignment (MSA) Aligning three or more sequences is used for the identifica-89

tion of active and binding sites as well as conserved protein structures, but finding its optimal solution90

is NP-complete. A related task to MSA is the approximation of the Steiner string which minimises91

the sum of the distances (consensus error) to the sequences in a set.92

Datasets To evaluate the heuristics we chose two datasets containing different portions of the 16S93

rRNA gene, crucial in microbiome analysis [19], one of the most promising applications of our94

approach. The first, Qiita [19], contains more than 6M sequences of up to 152 bp that cover the V495

hyper-variable region. The second, RT988 [11], has only 6.7k publicly available sequences of length96

up to 465 bp covering the V3-V4 regions. Both datasets were generated by Illumina MiSeq [20] and97

contain sequences of approximately the same length. Qiita was collected from skin, saliva and faeces98

samples, while RT988 from oral plaques. Moreover, we used a dataset of synthetically generated99

sequences to test the importance of data-dependent approaches. A full description of the data splits100

for each of the tasks is provided in Appendix B.4.101

3 Neural Sequence Distance Embeddings102

The underlying idea behind the NeuroSEED framework, represented in Figure 1, is to map sequences103

in a continuous space so that the distance between embedded points is correlated to the one be-104

tween sequences. Given a distribution of sequences and a distance function D between them, any105

NeuroSEED approach is formed by four main components: an embedding geometry, an encoder106

model, a decoder model, and a loss function.107

Embedding geometry The distance function d between the embedded points defines the geometry108

of the embedding space. While this factor has been mostly ignored by previous work [11, 21, 22,109

23, 24], we show that it is critical for this geometry to reflect the relations between the sequences in110

the domain. In our experiments, we provide a comparison between Euclidean, Manhattan, cosine,111

squared Euclidean (referred to as Square) and hyperbolic distances (details in Appendix D).112

Encoder model The encoder model fθ maps sequences to points in the embedding space. In this113

work we test a variety of models as encoder functions: linear layer, MLP, CNN, GRU [25] and114

transformer [26] with local and global attention. The details on how the models are adapted to the115

sequences are provided in Appendix C. Chen et al. [21] proposed CSM, an encoder architecture116

based on the convolution of subsequences. However, as also noted by Koide et al. [12], this model117

does not perform well when various layers are stacked and, due to the interdependence of cells in the118

dynamic programming routine, it cannot be efficiently parallelised on GPU.119
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Decoder model For some tasks it is also useful to decode sequences from the embedding space.120

This idea, employed in Section 7.2 and novel among the works related to NeuroSEED, enables to121

apply the framework to a wider set of problems.122

Loss function The simplest way to train a NeuroSEED encoder is to directly minimise the MSE123

between the sequences’ distance and its approximation as the distance between the embeddings:124

L(θ, S) =
∑

s1,s2∈S
(D(s1, s2)− α d(fθ(s1), fθ(s2)))2 (1)

where α is a constant or learnable scalar. Depending on the application that the learned embeddings125

are used for, the MSE loss may be combined or substituted with other loss functions such as the126

triplet loss for closest string retrieval (Appendix F), the relaxation of Dasgupta’s cost for hierarchical127

clustering (Section 7.1) or the sequence reconstruction loss for multiple sequence alignment (Section128

7.2).129

There are at least five previous works [11, 21, 22, 23, 24] that have used approaches that can be130

described using the NeuroSEED framework. These methods, summarised in Table 1, show the131

potential of approaches based on the idea of NeuroSEED, but share two significant limitations. The132

first is the lack of analysis of the geometry of the embedding space, which we show to be critical. The133

second is that the range of tasks is limited to edit distance approximation and closest string retrieval.134

We highlight how this framework has the flexibility to be adapted to significantly more complex tasks135

involving relations between multiple sequences such as hierarchical clustering and multiple sequence136

alignment.137

Table 1: Summary of the previous and the proposed NeuroSEED approaches. EDA stands for edit
distance approximation and CSR for closest string retrievals. For our experiments, in the columns
geometry and encoder we report those that performed best among the ones tested.

Method Geometry Encoder Decoder Loss Tasks

Zheng et al. [11] Jaccard CNN 7 MSE EDA
Chen et al. [21] Cosine CSM 7 MSE EDA
Zhang et al. [22] Euclidean GRU 7 MAE + triplet EDA & CSR

Dai et al. [23] Euclidean CNN 7 MAE + triplet EDA & CSR
Gomez et al. [24] Square CNN 7 MSE EDA & CSR

Section 5 Hyperbolic CNN & transformer 7 MSE EDA
Section 6 Hyperbolic CNN & transformer 7 MSE HC & MSA

Section 7.1 Hyperbolic Linear 7 Relaxed Dasgupta HC
Section 7.2 Cosine Linear 3 MSE + reconstr. MSA
Appendix F Hyperbolic CNN & transformer 7 MSE & triplet CSR

4 Related work138

Hyperbolic embeddings Hyperbolic geometry is a non-Euclidean geometry with constant negative139

sectional curvature and is often referred to as a continuous version of a tree for its ability to embed140

trees with arbitrarily low distortion. The advantages of mapping objects with implicit or explicit141

hierarchical structure in the hyperbolic space have also been shown in other domains [27, 28, 29, 10].142

In comparison, this work deals with a very different space defined by the edit distance in biological143

sequences and, unlike most of the previous works, we do not only derive embeddings for a particular144

set of datapoints, but train an encoder to map arbitrary sequences from the domain in the space.145

Sequence Distance Embeddings The clear advantage of working in more computationally146

tractable spaces has motivated significant research in Sequence Distance Embeddings [30] (also known147

as low-distortion embeddings) approaches to variants of the edit distance [31, 32, 33, 34, 35, 36, 37].148

However, they are all data-independent and have shown weak performance on the ‘unconstrained’149

edit distance.150

Hashing and metric learning NeuroSEED also fits well into the wider research on learning to151

hash [38], where the goal is typically to map a high dimensional vector space into a smaller one152

preserving distances. Finally, another field related to NeuroSEED is metric learning [39, 40], where153

models are trained to learn embeddings from examples of similar and dissimilar pairs.154

4



5 Edit distance approximation155

In this section we test1 the performance of different encoder models and distance functions to preserve156

an approximation of the edit distance in the NeuroSEED framework trained with the MSE loss. To157

make the results more interpretable and comparable across datasets, we report results using % RMSE:158

159

% RMSE(θ, S) =
100

n

√
L(θ, S) =

100

n

√ ∑
s1,s2∈S

(ED(s1, s2)− n d(fθ(s1), fθ(s2)))2 (2)

where n is the maximum sequence length. This can be interpreted as an approximate average error in160

the distance prediction as a percentage of the size of the sequences.161

RT988 Qiita

Model Cosine Euclidean Square Manhattan Hyperbolic Cosine Euclidean Square Manhattan Hyperbolic

2-mer 7.782 4.927 8.000 5.036 4.859 21.222 11.752 30.453 11.639 10.481

3-mer 3.392 3.351 3.520 2.987 3.308 12.352 7.962 32.219 7.439 6.657

4-mer 1.790 3.314 1.899 2.318 3.294 6.006 7.015 34.098 5.636 6.728

5-mer 1.409 3.449 1.422 1.801 3.470 5.027 7.638 34.559 5.391 7.600

6-mer 1.471 3.710 1.450 1.686 3.730 5.723 8.383 34.616 5.844 8.275

Linear 0.62±0.03 21.36±7.07 27.28±10.89 - 0.51±0.01 3.38±0.06 4.39±0.09 5.83±0.21 3.82±0.09 2.50±0.01

MLP 1.57±0.16 1.10±0.05 6.78±2.50 1.01±0.04 0.59±0.20 4.98±0.11 4.36±0.19 8.52±0.78 4.92±0.10 1.85±0.02

CNN 0.69±0.03 0.58±0.05 2.95±1.09 0.98±0.06 0.59±0.01 2.54±0.04 2.68±0.05 5.03±0.85 4.06±0.21 1.56±0.01

GRU 14.90±4.56 1.10±0.11 1.96±0.47 1.13±0.15 2.56±3.33 - 3.30±0.06 5.52±0.15 3.74±0.01 2.60±0.16

Global T. 0.49±0.01 0.52±0.01 0.88±0.02 0.44±0.01 0.46±0.01 2.61±0.01 2.10±0.05 3.71±0.04 2.57±0.11 1.83±0.03

Local T. 0.51±0.03 0.57±0.00 0.58±0.02 0.48±0.01 0.45±0.01 2.67±0.04 2.42±0.02 3.72±0.06 2.46±0.02 1.86±0.02

Best

Worst

Figure 2: % RMSE test set results (4 runs). The first five models are the k-mer baselines, each k-mer
has an embedding dimension of 4k. The remaining models all have an embedding space dimension
of 128. In all the tables: T. stands for transformer, - indicates that the model did not converge, bold
the best results and the green-to-white colour scale the range of results best-to-worst.

Data-dependent vs data-independent methods Figures 2 and 3 show that, across the datasets162

and the distance functions, the data-dependent models learn significantly better representations than163

data-independent baselines. The main reason for this is their ability to focus on and dedicate the164

embedding space to a manifold of much lower dimensionality than the complete string space. This165

observation is further supported by the results in Appendix E, where the same models are trained166

on synthetic random sequences and the data-independent baselines are able to better generalise to167

the test set. The results in the RT988 dataset are lower because its sequences contain not only the168

hyper-variable regions but also conserved regions for which distances are low.169

Our analysis also confirms the results from Zheng et al. [11] and Dai et al. [23] which showed that170

convolutional models outperform feedforward and recurrent models. We also show that transformers,171

even when with local attention, produce, in many cases, better representations. Attention could172

provide significant advantages when considering more complex definitions of distance that include,173

for example, inversions [41], duplications and transpositions [42].174

Hyperbolic space The most interesting and novel results come from the analysis of the geometry175

of the embedding space. In these biological datasets, there is an implicit hierarchical structure that is176

well reflected by the hyperbolic space. Thanks to this close correspondence even relatively simple177

models perform very well with the hyperbolic distance. In convolutional and attention models, the178

hyperbolic space provides a 38% average RMSE reduction against the best competing geometry for179

each model.180

The benefit of using the hyperbolic space is clear when analysing the dimension required (Figure 4).181

The hyperbolic space provides significantly more efficient embeddings, with the model reaching the182

‘elbow’ at dimension 32 and matching the performance of the other spaces with dimension 128 with183

only 4 to 16. Given that the space to store the embeddings and the time to compute distances between184

them scale linearly with the dimension, this provides a significant improvement in downstream tasks185

over other NeuroSEED approaches.186

1Code, datasets and tuned hyperparameters can be found at https://anonymous.4open.science/r/NeuroSEED.
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Figure 3: Qualitative comparison in the Qiita dataset between the best performing baseline (5-mer
with cosine distance) and the CNN in the Euclidean and hyperbolic space. For every test set sequence
pair, predicted vs real distances are plotted, the darkness represents the density of points. The CNN
model follows much more tightly the red line of the oracle across the whole range of distances in the
hyperbolic space.
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Figure 4: Edit distance approximation % RMSE on Qiita dataset for a global transformer with
different distance functions.

Running time Computing the pairwise distance matrix of a set of sequences is a critical step187

of many algorithms including the ones analysed in the next section. Taking as an example 6700188

sequences from the RT988 dataset, optimised C code computes on a CPU approximately 2700189

pairwise distances per second and takes 2.5 hours for the whole matrix. In comparison, using a190

trained NeuroSEED model, the same matrix can be approximated in 0.3-3s on the same CPU (similar191

value for the k-mer baseline). The computational complexity for N sequences of length M is192

reduced from O(N2 M2/ logM) to O(N(M +N)) assuming constant embedding size and a model193

linear with respect to the sequence length. The training process takes typically 0.5-3 hours on GPU.194

However, in applications such as microbiome analysis, biologists typically analyse data coming from195

the same distribution (e.g. the 16S rRNA gene) for multiple individuals, therefore the initial cost196

would be significantly amortised.197

6 Unsupervised heuristics198

In this section, we show how competitive heuristics for hierarchical clustering and multiple sequence199

alignment can be built on the low-distortion embeddings produced by the models trained in the200

previous section.201

Hierarchical clustering Agglomerative clustering, the most commonly used class of HC algo-202

rithms, can be accelerated when run directly on NeuroSEED embeddings produced by the pretrained203

model. This reduces the complexity to generate the pairwise distance matrix from O(N2M2/ logM)204
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to O(N(M +N)) and allows to accelerate the clustering itself using geometric optimisations like205

locality-sensitive hashing.206

We test models with no further tuning from Section 5 on a dataset of 10k unseen sequences from the207

Qiita dataset. The results (Figure 5) show that there is no statistical difference in the quality of the208

hierarchical clustering produced with ground truth distances compared to that with convolutional or209

attention hyperbolic NeuroSEED embeddings. Instead, the difference in Dasgupta’s cost between210

different architectures and geometries is statistically significant and it results in a large performance211

gap when these trees are used for tasks such as MSA shown below. The total CPU time taken to212

construct the tree is reduced from more than 30 minutes to less than one in this dataset and the213

difference gets significantly larger when scaling to datasets of more and longer sequences.214

Model Cosine Euclidean Square Manhattan Hyperbolic

4-mer 0.261 0.260 0.242 0.191 0.299

Linear 0.062±0.007 0.172±0.036 0.153±0.037 0.177±0.026 0.028±0.005

MLP 0.169±0.054 0.095±0.021 0.289±0.094 0.178±0.029 0.035±0.004

CNN 0.028±0.003 0.030±0.004 0.067±0.022 0.081±0.047 -0.004±0.015

GRU - 0.042±0.006 0.068±0.010 0.069±0.015 0.066±0.043

Global T. 0.032±0.014 0.003±0.008 0.038±0.005 0.002±0.003 0.000±0.006

Local T. 0.035±0.003 0.022±0.008 0.034±0.005 0.022±0.003 0.000±0.007

Baselines

Single L. 0.628

Complete L. 0.479

Average L. 0.000

Figure 5: Average Linkage % increase in Dasgupta’s cost of NeuroSEED models compared to the
performance of clustering on the ground truth distances, ubiquitously used in bioinformatics. Average
Linkage was the best performing clustering heuristic across all models.

Multiple sequence alignment Clustal, the most popular MSA heuristic, is formed by a phyloge-215

netic tree estimation phase that produces a guide tree then used by a progressive alignment phase216

to compute the complete alignment. However, the first of the two phases, based on hierarchical217

clustering, is typically the bottleneck of the algorithm. On 1200 RT988 sequences (used below),218

the construction of the guide tree takes 35 minutes compared to 24s for the progressive alignment.219

Therefore, it can be significantly accelerated using NeuroSEED heuristics to generate matrix and220

guide tree. In these experiments, we construct the tree running the Neighbour Joining algorithm221

(NJ) [43] on the NeuroSEED embeddings and then pass it on the Clustal command-line routine that222

performs the alignment and returns an alignment score.223

Again, the results reported in Figure 6 show that the alignment scores obtained when using the224

NeuroSEED heuristics with attention models are not statistically different from those obtained with225

the ground truth distances. Most of the models also show a relatively large variance in performance226

across different runs. This has positive and negative consequences: the alignment obtained using a227

single run may not be very accurate, but, by training an ensemble of models and applying each of228

them, we are likely to obtain a significantly better alignment than the baseline while still only taking229

a fraction of the time.230

Model Cosine Euclidean Hyperbolic

Linear 60.6±35.1 111.3±3.6 57.5±22.0

MLP 72.3±11.8 53.6±3.1 -11.7±18.9

CNN 31.0±16.2 4.7±9.7 -16.3±16.1

Global T. 39.4±74.3 1.9±3.8 31.1±21.8

Local T. 31.9±30.5 8.6±14.1 -20.1±7.3

Figure 6: Percentage improvement (average of 3 runs) in the alignment cost (the lower the better)
returned by Clustal when using the heuristics to generate the tree as opposed to its default setting
using NJ on real distances.

7 Supervised heuristics231

In this section we propose and evaluate two methods to adapt NeuroSEED to the tasks of hierarchical232

clustering and multiple sequence alignment with tailored loss functions.233
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7.1 Relaxed approach to hierarchical clustering234

An alternative approach to hierarchical clustering uses the continuous relaxation of Dasgupta’s cost235

[18] as loss function to embed sequences in the hyperbolic space. In comparison to Chami et al. [18],236

we show that it is possible to significantly decrease the number of pairwise distances required by237

directly mapping the sequences into the space. This allows to considerably accelerate the construction,238

especially when dealing with a large number of sequences without requiring any pretrained model.239

Figure 1 shows an example of the relaxed approach when applied to a small dataset of proteins.240
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Figure 7: Average Dasgupta’s cost of the various approaches with respect to the number of pairwise
distances used in the RT988 and Qiita datasets. The performances are reported as the percentage
increase in cost compared to the one of the Average Linkage (best performing). Embedding refers to
the baseline [18] while Linear to the relaxed NeuroSEED approach. The attached number represents
the dimension of the hyperbolic space used.

The results, plotted in Figure 7, show that a simple linear layer mapping sequences to the hyperbolic241

space is capable of obtaining with only N pairwise distances very similar results to those from242

agglomerative clustering (N2 distances) and hyperbolic embedding baselines (N
√
N distances).243

In the RT988 dataset this corresponds to, respectively, 6700x and 82x fewer labels and leads to a244

reduction of the total running time from several hours (>2.5h on CPU for agglomerative clustering,245

1-4h on GPU for hyperbolic embeddings) to less than 10 minutes on CPU for the relaxed NeuroSEED246

approach (including label generation, training and tree inference) with no pretraining required. Finally,247

using more complex encoding architectures such as MLPs or CNNs does not provide significant248

improvements.249

7.2 Steiner string approach to multiple sequence alignment250

An alternative approach to multiple sequence alignment uses a decoder from the vector space to251

convert the Steiner string approximation problem (Appendix B.3) in a continuous optimisation task.252

This method, summarised in Figure 8 and detailed in Appendix G, consists of training an autoencoder253

to map sequences to and from a continuous space preserving distances using only pairs of sequence at254

a time (where calculating the distance is feasible). This is achieved by combining in the loss function255

a component for the latent space edit distance approximation and one for the reconstruction accuracy256

of the decoder. The first is expressed as the MSE between the edit distance and the vector distance in257

the latent space. The second consists of the mean element-wise cross-entropy loss of the decoder’s258

outputs with the real sequences. At test time the encoder embeds all the sequences in the set, the259

geometric median point (minimising the sum of distances in the embedding space) is found with a260

relatively simple optimisation procedure and then the decoder is used to find an approximation of the261

Steiner string. During training, Gaussian noise is added to the embedded point in the latent space262

forcing the decoder to be robust to points not directly produced by the encoder.263
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Figure 8: Diagram for the Steiner string approach to multiple sequence alignment. On the left, the
training procedure using pairs of sequences and a loss combining edit distance approximation and
sequence reconstruction. On the right the extrapolation for the generation of the Steiner string by
decoding the geometric median in the embedding space.

Model Cosine Euclidean Square Hyperbolic

Linear 59.41±0.11 59.96±0.27 60.53±0.49 60.89±0.82

MLP 60.80±0.35 60.00±0.18 59.81±0.22 59.86±0.12

CNN 60.96±0.48 60.20±0.26 60.76±1.09 60.48±0.52

Baselines

Random 75.98

Centre 62.52

Greedy-1 59.43

Greedy-2 59.41

Figure 9: Average consensus error for the baselines (left) and NeuroSEED models (right).

As baselines, we report the average consensus error (average distance to the strings in the set) obtained264

using: a random sequence in the set (random), the centre string of the set (centre) and two competitive265

greedy heuristics (greedy-1 and greedy-2) proposed respectively by [44] and [45].266

The results show that the models consistently outperform the centre string baseline and are close to the267

performance of the greedy heuristics suggesting that they are effectively decoding useful information268

from the embedding space. The computational complexity for N strings of size M is reduced from269

O(N2M2/ logM) for the centre string and O(N2M) for the greedy baselines to O(NM) for the270

proposed method. Future work could employ models that directly operate in the hyperbolic space271

[46] to further improve the performance.272

8 Conclusion273

In this work, we proposed and explored Neural Sequence Distance Embeddings, a framework that274

exploits the recent advances in representation learning to embed biological sequences in geometric275

vector spaces. By studying the capacity to approximate the evolutionary edit distance between276

sequences, we showed the strong advantage provided by the hyperbolic space which reflects the277

biological hierarchical structure.278

We then demonstrated the effectiveness and wide applicability of NeuroSEED on the problems of279

hierarchical clustering and multiple sequence alignment. For each task, we experimented with two280

different approaches: one unsupervised tying NeuroSEED embeddings into existing heuristics and281

a second based on direct exploitation of the geometry of the embedding space via a tailored loss282

function. In all cases, the proposed approach performed on par with or better than existing baselines283

while being significantly faster.284

Finally, NeuroSEED provides representations that are well suited for human interaction as the em-285

beddings produced can be visualised and easily interpreted. Towards this goal, the very compact286

representation of hyperbolic spaces is of critical importance [10]. This work also opens many oppor-287

tunities for future research direction with different types of sequences, labels, architectures and tasks.288

We present and motivate these directions in Appendix A.289
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