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Abstract

Machine Learning, and in particular deep learning, is becom-
ing increasingly ubiquitous, and it is likely to be applied in al-
most every aspect of our lives in the next few years. However,
the careless application of such methods in the real world
can have, and has already had, disastrous consequences. In
order to avoid such undesirable and potentially dangerous
scenarios, a standard approach is to formally specify the de-
sired behavior of the system and then ensure its compliancy
to the specified properties. In this paper, we thus propose to
enhance deep learning models by incorporating background
knowledge as hard logical constraints. The constraints rule
out the models’ undesired behaviors and can be exploited to
gain better performance. In order to achieve the above, we
propose CCN(h), a novel model for multi-label classifica-
tion problems with hard constraints expressed as normal logic
rules. Given any multi-label classification neural network h,
CCN(h) is able to exploit the information expressed by the
constraints to: (i) produce predictions that are guaranteed to
satisfy the constraints, and (ii) improve the performances. We
conduct an extensive experimental analysis showing the supe-
rior performance of CCN(h) when compared to state-of-the-
art models in the setting of multi-label classification problems
with hard logical constraints.

1 Introduction
Machine Learning, and in particular Deep Learning (DL),
is becoming increasingly ubiquitous, and it is likely to be
applied in almost every aspect of our lives in the next
few years. This is happening thanks to the successes of
DL, which allowed to solve problems that were previously
thought to be unbreakable (see e.g., (Senior et al. 2020;
Stokes et al. 2020)). Such results, though ground-breaking,
overshadow the dangers that come with the careless appli-
cation of DL models in the real world. Indeed, while these
models report astonishingly high-performance in terms of
accuracy (or alternatively chosen metric), they do not give
any guarantee that the model will not have any unintended
behaviour when used in practice.

In this paper, we thus propose to enhance DL models
by incorporating background knowledge as hard logic con-
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straints. The constraints rule out the models’ undesired be-
haviors and can be exploited to gain better performance.
In order to achieve the above, we propose coherent-by-
construction network1 CCN(h), a novel model for Multi-
label Classification (MC) problems with hard constraints
over the output space expressed as normal logic rules (Lloyd
1987), that is, expressions of the form:

A1, . . . , Ak,¬Ak+1, . . . ,¬An → A, (0 ≤ k ≤ n), (1)

imposing that whenever the classes A1, . . . , Ak are pre-
dicted, while Ak+1, . . . , An are not, then also the class A
should be predicted. Such constraints generalize hierarchy
constraints (corresponding to the case n = k = 1) used
in the field of hierarchical MC problems. Indeed, consider,
for example, the task proposed by (Dimitrovski et al. 2008),
where a radiological image has to be annotated with an
IRMA code specifying, among others, the biological system
examined. In this setting, we will be able to specify not only
that the prediction {stomach} alone is not possible thanks to
the hierarchical constraint

stomach → gastrointestinalSystem, (2)

but we will be also able to capture constraints like “if a med-
ical image contains the abdomen but neither the middle nor
the upper abdomen, then it contains the lower abdomen”,
which can we written as:

abdomen,¬middleAbdomen,¬upperAbdomen → lowerAbdomen.

CCN(h) is the first model able to deal with MC problems
with such expressive hard constraints. CCN(h) can be built
on top of any multi-label classification neural network h (to
be trained) and is based upon two basic ingredients:

1. the Constraint Module (CM): a constraint layer built on
top of h, which extends the predictions made by h in order
to ensure that the predictions satisfy the constraints, and

2. the Constraint Loss (CLoss) a loss function, teaching
CCN(h) when to exploit the constraints, that is, in
the presence of (1), when to exploit the prediction on
{A1, . . . , An} to make predictions on A.
1As defined in (Giunchiglia and Lukasiewicz 2020), given a

model m and a set of constraints Π, m is coherent with Π if all
its output predictions satisfy Π.



We further show that, if we restrict ourselves to constraints
with stratified negation (Apt, Blair, and Walker 1988), given
a set H of initial predictions made by the underlying model
h, CCN(h) is able to compute the unique minimal set of
classes M such that

1. M extends H, that is, such that H ⊆ M, and

2. M is coherent with (satisfies) the constraints, that is, such
that, given (1), A ∈ M whenever {A1, . . . , Ak} ⊆ M
and {Ak+1, . . . , An} ∩M = ∅.

Indeed, for a non-stratified set of constraints expressed as
normal rules, there can be no or more than one minimal set
of classes having the above two properties, and determining
the non-existence or computing one of them can take expo-
nential time.

2 Coherent-by-Construction Networks
Preliminaries and Notation Let Π be a set of hard con-
straints expressed as normal logic rules, h be a generic neu-
ral network for a MC problem, and H the set of classes pre-
dicted by h.

Given a constraint r ∈ Π, we call head(r)=A the
head of r, and body(r) = body+(r) ∪ body−(r) the body
of r, where body+(r) = {A1, . . . , Ak} and body−(r) =
{¬Ak+1, . . . ,¬An}.

Definition 2.1 A set of constraints Π is stratified if there is a
partition Π1,Π2, . . . ,Πs of Π, with Π1 possibly empty, such
that, for every i ∈ {1, . . . , s},

1. for every class A ∈ ∪r∈Πibody
+(r), all the constraints

with head A in Π belong to ∪i
j=1Πj ;

2. for every ¬A ∈ ∪r∈Πi
body−(r), all the constraints with

head A in Π belong to ∪i−1
j=1Πj .

Π1,Π2, . . . ,Πs is a stratification of Π, and each Πi is a stra-
tum.

Given a rule like the one in Equation (1) and a generic
model m we need to compute the values associated to
¬Ak+1, . . . , ¬An given the output of m. We call such val-
ues mAk+1

, . . . , mAn
, and they must be such that for each

class Ai ∈ {Ak+1, . . . , An} and threshold θ,

1. mAi
= 1 when mAi

= 0, and mAi
= 0 when mAi

= 1,

2. mAi is strictly decreasing and continuous (small changes
to the value of mAi

should correspond to small changes
in the value of mAi

), and

3. mAi = θ when mAi = θ.

For any threshold θ there are infinitely many functions v
satisfying such requirements. A simple solution is to re-
quire v to be piecewise linear with two segments joining
when v = v = θ, in which case, if θ = 0.5, we obtain
v = 1−v, that is the standard negation in fuzzy logics (Met-
calfe 2005). For simplicity, from here on, we assume to have
the standard negation, that is, to fix the threshold θ to 0.5 and
v = 1− v, for each v ∈ [0, 1]. All the definitions and results
generalize to the case in which we have an arbitrary strict
negation with θ = θ.

Constraint Module Given h and a set of stratified con-
straints Π, our goal is to get CCN(h) to predict a final set of
classes M such that:

1. M extends the set of classes H predicted by h (i.e., H ⊆
M) and be coherent with Π;

2. M is such that any class in M \ H is in the head of a
constraint r in Π, with the chain of rules used to satisfy
body(r) grounded in H;

3. M includes only those classes that are either in H or are
forced to be in M through the explicit use of chains of
rules grounded in H;

4. M is unique, that is, there will be no other set of classes
M′ satisfying the above requirements.

The first property is the obvious one: the constraints in Π
must be satisfied, and CCN(h) can only derive more classes
in the head of the constraints. Whereas the second property
is formalized by the concept of supportedness as defined in
the work by (Apt, Blair, and Walker 1988).

Definition 2.2 A set of classes M is supported relative to
H and Π, if for any class A∈M, A∈H, or there exists a
constraint r ∈ Π such that head(r)=A, body+(r) ⊆ M,
and for each ¬B ∈ body−(r), we have B ̸∈M.

The third property is a minimality condition.

Definition 2.3 M is minimal relative to H and Π, if there
exists no set of classes M′ with H ⊆ M′ ⊂ M that is
coherent with Π.

The four properties together ensure that the final predic-
tions made by CCN(h) are coherent with Π and that can be
uniquely explained on the grounds of the initial predictions
made by h and the constraints in Π.

Assuming Π is stratified, in order to compute the output
of CCN(h), we need to first compute the stratification of Π
in the following way:

1. we compute the acyclic component graph (Cormen et al.
2009) of the dependency graph GΠ of Π (as defined in
(Apt, Blair, and Walker 1988)), that is, the DAG obtained
by shrinking each strongly connected component in GΠ

into a single vertex (notice that since Π is stratified, nega-
tive edges are not involved in any cycle in GΠ),

2. we assign to the classes in each node of the DAG the num-
ber 1 plus the maximum number of negative edges con-
necting a root to the node, and

3. we define:

(a) Ai as the set of classes having the number i assigned at
the previous step, and

(b) Πi as the set of constraints in Π whose head is in Ai.

Define Π∗
i to be the set of constraints

1. initially equal to Πi, and then

2. obtained by recursively adding the constraints obtained
from a constraint r already in Π∗

i by substituting a class
A ∈ body+(r) ∩ Ai with body(r′) for any rule r′ with
head(r′) = A (hence, r′ ∈ Πi), and finally



3. eliminating the constraints r such that head(r) ∈
body+(r), or for which there exists another constraint
r′ ∈ Πi with head(r) = head(r′) and body(r′) ⊂
body(r).

Π∗
i is guaranteed to be finite, since the set of classes A is

finite, and we do not allow for repetitions in the body of
constraints. The constraints being eliminated in the third step
are redundant.

Then, for each class A ∈ Ai, we define the output CMA

of the constraint module CM via

CMA = max(hA, h
r1
A , . . . , h

rp
A ), (3)

where
1. r1, . . . , rp are all the constraints in Π∗

i with head A, and
2. assuming r ∈ Π∗

i has the form (1),

hr
A = min(vA1 , . . . , vAk

,CMAk+1
, . . . ,CMAn),

with vA1 = hA1 if A1 ∈ Ai, and vA1 = CMA1 if A1 ∈
∪i−1
j=1Aj . Analogously for vA2

, . . . , vAk
.

The above definition is well-founded:
1. Π∗

1 does not contain negated classes, and thus the defini-
tion of CMA when A ∈ A1 relies only on the outputs of
the bottom module h, and

2. the definition of CMA when A ∈ Ai (i > 1) uses only
outputs of h or of already defined outputs of CM.
Given the above the definition, we can now state that

CCN(h) has the desired properties.

Theorem 2.4 Assume Π is stratified, and let M be the set
of classes predicted by CCN(h). Then, M

1. extends H and is coherent with Π,
2. is supported relative to H and Π,
3. is minimal relative to H and Π, and
4. is the unique set satisfying the previous properties.

Constraint Loss For every data point, the value of the loss
function CLoss used to train CCN(h) is defined as:

CLoss =
∑
A∈A

CLossA,

CLossA being the value of the loss for class A, defined as:

CLossA = −yA ln(CM+
A)− yA ln(CM

−
A),

where:
• yA is the ground truth for class A,
• CM+

A is the value to optimize when yA = 1, and

• CM−
A is the value to optimize when yA = 0.

CM+
A and CM−

A differ from the output value CMA of
CCN(h) for class A, that is, from CCN(h)A.

Consider a class A in the ith stratum (i.e., A ∈ Ai). To
each constraint r with head A in Π∗

i we associate two values

1. h+,r
A to be used with yA = 1, and

h CM
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Figure 1: Visual representation of CCN(h) (left), and details
of the operations associated with each stratum (right).

2. h−,r
A to be used with yA = 0.

Assume yA = 1. Consider a constraint r in Π∗
i with head

A of the form (1). Then, we want to teach CCN(h) to possi-
bly exploit the constraint r for predicting A if yA1 = . . . =
yAk

= 1 and yAk+1
= . . . = yAn

= 0. We thus define,

h+,r
A = min(vA1

yA1
, . . . , vAk

yAk
, vAk+1

yAk+1
, . . . , vAn

yAn
),

where vAl
is

1. hAl
if Al ∈ Ai (and thus 1 ≤ l ≤ k),

2. CM+
Al

if Al ∈ ∪i−1
j=1Aj and 1 ≤ l ≤ k,

3. CM−
Al

if Al ∈ ∪i−1
j=1Aj and k + 1 ≤ l ≤ n.

The value CM+
A associated to class A when yA = 1 is

CM+
A = max(hA, h

+,r1
A , . . . , h

+,rp
A ),

where r1, . . . , rp are all the constraints in Π∗
i with head A.

Assume yA = 0. Consider a constraint r in Π∗
i with head

A of the form (1). Then, for some class Al ∈ body+(r)
yAl

= 0, or for some class Al ∈ body−(r) yAl
= 1, and we

want to teach CCN(h) to not fire the constraint r. We thus
define

h−,r
A = min(vA1

yA1
+ yA1 , . . . , vAk

yAk
+ yAk

,

vAk+1
yAk+1

+ yAk+1
, . . . , vAn

yAn
+ yAn

),

where vAl
now is

1. hAl
if Al ∈ Ai (and thus 1 ≤ l ≤ k),

2. CM−
Al

if Al ∈ ∪i−1
j=1Aj and 1 ≤ l ≤ k,

3. CM+
Al

if Al ∈ ∪i−1
j=1Aj and k + 1 ≤ l ≤ n.

The value CM−
A associated with the class A when yA = 0 is

CM−
A = max(hA, h

−,r1
A , . . . , h

−,rp
A ),

where r1, . . . , rp are all the constraints in Π∗
i with head A.

3 GPU Implementation
Constraint Module The basic idea, starting from the vec-
tor CM0 (which contains the l values resulting from the bot-
tom module h) is to iteratively compute the vector of values



CMi corresponding to the outputs of CM if given the set of
constraints ∪i

j=1Π
∗
j . The final output of CM will correspond

to CMs. Figure 1 shows a visual representation of the pro-
cess and of CCN(h).

For each i ∈ {1, . . . , s}, pi is the number of constraints
in Π∗

i (pi = |Π∗
i |), rij denotes the jth constraint in Π∗

i , and

• B+
i is the pi × l matrix whose j, k element is 1 if Ak ∈

body+(rij), and 0 otherwise;

• B−
i is the pi × l matrix whose j, k element is 1 if ¬Ak ∈

body−(rij), and 0 otherwise;

• Ci−1 is the pi × l matrix obtained by stacking pi times
CMi−1.

Stacking p times a vector v of size q returns the p× q matrix
1Tp × v whose j, k element is v[k].

Then, the jth value vi[j] of the vector vi associated with
the body of the constraint rij is

v+i = min(B+
i ⊙ Ci−1 + (Jpi,l −B+

i ), dim = 1),
v−i = min(B−

i ⊙ (Jpi,l − Ci−1) + (Jpi,l −B−
i ), dim = 1),

vi[j] = min(v+i [j], v
−
i [j]),

where

1. ⊙ represents the Hadamard product,

2. Jp,q is the p× q matrix of ones, and

3. given an arbitrary p × q matrix Q, min(Q, dim=1)
(resp., max(Q, dim=1)) returns a vector of length p
whose ith element is equal to min(Qi1, . . . , Qiq) (resp.,
max(Qi1, . . . , Qiq)).

Then, the output of the ith layer associated with the ith stra-
tum is given by:

CMi = max(IHi ⊙ Vi, dim = 1),

where

• Hi is the l × pi matrix whose j, k element is 1 if Aj =
head(rik), and 0 otherwise,

• IHi is the l× (l+pi) matrix obtained by stacking the l× l
identity matrix and Hi,

• Vi is the l × (l + pi) matrix obtained by stacking l times
the concatenation of CMi−1 and vi.

Constraint Loss The computation of constraint loss on
GPU follows the same reasoning of the constraint module.

4 Experimental Analysis
In order to prove the superiority of our model, we adopted
the same methodology presented in (Feng, An, and He 2019)
and consider the three well-established MC models and
the state-of-the-art MC model tested in (Feng, An, and He
2019), which can be characterized by the order of classes
correlations they exploit. Thus, CCN(h) is compared with

1. BR (Boutell et al. 2004), a first order model which con-
siders each class separately, ignoring class correlations,
and

Metric Average ranking Friedman
CCN(h) CAMEL ECC BR RAKEL test

Average Prec. 1.50 2.17 3.53 3.58 4.22 ✓✓
Coverage Err. 1.22 2.36 3.61 3.92 3.89 ✓✓
Hamming Loss 1.36 2.56 3.39 3.61 3.92 ✓✓
Multi-label Acc. 1.69 3.58 3.19 3.27 3.25 ✓✓
One-error 1.50 2.08 3.67 3.56 4.19 ✓✓
Ranking Loss 1.22 2.19 3.61 3.72 4.17 ✓✓

Table 1: Average ranking for each metric and model, results
of the Friedman. We use ✓✓ to indicate that the test returned
p-value < 0.01.

2. ECC (Read et al. 2009), RAKEL (Tsoumakas et al. 2009)
and CAMEL (Feng, An, and He 2019), which exploit cor-
relations among two or more classes.

BR, ECC, and RAKEL are the well-established MC models,
and CAMEL is the current state-of-the-art MC model (Feng,
An, and He 2019). Since these models are not guaranteed to
output predictions that are coherent with the constraints, we
applied CM as additional post-processing steps. We tested
the models on 16 publicly available datasets.

About the metrics, the analysis of 64 papers on MC
problems conducted by (Spolaôr et al. 2013) and reported
by (Pereira et al. 2018), shows that already in 2013 as many
as 19 different metrics have been used to evaluate MC mod-
els, and still today different papers use different subsets of
such metrics. However, as suggested by (Pereira et al. 2018),
not all subsets can be used, as the experimental results may
appear to favor a specific behavior depending on the sub-
set of measures chosen, thus possibly leading to mislead-
ing conclusions. To avoid such undesired results, the authors
conducted a correlation analysis of the metrics that led to
the individuation of clusters of correlated measures and thus
to the proposal of various subsets of metrics. Following the
above criteria, we used the six metrics listed in Table 1. Due
to lack of space, we cannot report the results of each model,
however, in Table 1, the average rankings of each model can
be found,2 and we can see that CCN(h) outranks all the other
models on all metrics. We also verified the statistical sig-
nificance of the results—as advised by (Demsar 2006)—by
performing the Friedman test for each metric. As reported
in the last column of Table 1, the Friedman test returned p-
value < 0.01 for each metric.

5 Conclusions
In this paper, we proposed to enhance DL models by incor-
porating background knowledge as hard logic constraints.
To this end, we developed CCN(h), a novel model whose
predictions are always coherent with the given constraints
and such that it is able to exploit the background knowledge
expressed by the constraints to gain better performance, as
demonstrated by the fact that it outperforms the state-of-the-
art MC models on 16 datasets. The paper is an extended ab-
stract of (Giunchiglia and Lukasiewicz 2021).

2Since we are considering rankings, for each metric we have
that the lower the better.
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