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ABSTRACT

The control of turbulent fluid flows represents a problem in several engineering ap-
plications. The chaotic, high-dimensional, non-linear nature of turbulence hinders
the possibility to design robust and effective control strategies. In this work, we
apply deep reinforcement learning to a three-dimensional turbulent open-channel
flow, a canonical flow example that is often used as a study case in turbulence, aim-
ing to reduce the friction drag in the flow. By casting the fluid-dynamics problem
as a multi-agent reinforcement-learning environment and by training the agents
using a location-invariant deep deterministic policy gradient algorithm, we are
able to obtain a control strategy that achieves a remarkable 30% drag reduction,
improving over previously known strategies by about 10 percentage points.

1 INTRODUCTION

Turbulent flows have been extensively studied in different fields, as they appear in a large number
of engineering applications. Experimental studies are prohibitively complicated and costly, so com-
putational fluid dynamics (CFD) has been an important investigation tool for scientific discovery in
the last decades. Recently, machine learning models have been used to enhance several aspects of
CFD, as summarized by Vinuesa & Brunton (2022). Added to these applications, the possibility to
control turbulent flows has been investigated in a number of research works (Duriez et al., 2017;
Pino et al., 2022). For this, deep learning tools such as convolutional neural networks (CNNs) have
been employed: either directly, for the computation of the control (Park & Choi, 2020), or indirectly
with non-intrusive sensing, helping to provide the flow measurements that are necessary for closed-
loop control systems (Guastoni et al., 2021). The objective of these control studies is to mitigate the
losses associated with wall-bounded turbulence, for example reducing the viscous drag on wings and
the associated fuel consumption Spalart & McLean (2011). One possible approach to achieve such
a reduction is reactive flow control, where a certain actuation is applied, typically to suppress the
near-wall turbulent structures. Since turbulence is a stochastic, non-linear phenomenon with high
dimensionality, it is difficult to design effective control strategies. Traditional well-established tech-
niques such as opposition control (Choi et al., 1994) are typically based on ad-hoc hand-engineered
control laws and they only provide a limited drag reduction.

In this regard, reinforcement learning represents a promising framework to discover novel turbulent
flow control strategies because of its end-to-end formulation: all the features of the flow are included
in the environment and as long as the simulation is physically-accurate, the agent can experience all
consequences of the actions performed on the environment. Starting from the control of the wake
behind a cylinder by Rabault et al. (2019) and until very recently, most application focused on two-
dimensional environments at relatively low Reynolds numbers. The Reynolds number provides an
intuition of the flow characteristics and how turbulent the flow is. It is a parameter that can signifi-
cantly change the policy chosen by the reinforcement learning agent, as shown in the cylinder case
by Varela et al. (2022). When even higher Reynolds numbers are considered, three-dimensional en-
vironments become necessary to simulate all the turbulence features and mechanisms. Recent works
by Sonoda et al. (2022) and Zeng et al. (2022) have applied DRL to three-dimensional flow cases.
The former targets a Poisueille flow in a channel, while a Couette flow is controlled in the latter,
using two streamwise parallel slots. Other notable applications of reinforcement learning in fluid
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Figure 1: Overview of our multi-agent DRL approach to drag reduction. The simulation domain
is shown on the left. The agents are organized in a grid NCTRLx ×NCTRLz. Each agents observes
the velocity fluctuations in the streamwise (u′) and wall-normal (v′) direction. The reward is the
percentage variation of the wall-shear stress τw. Based on the state, each agent acts by imposing a
wall-normal velocity v at the wall.

mechanics include maximization of the efficiency of agents swimming in a turbulent flow (Biferale
et al., 2019; Verma et al., 2018) and turbulence modelling (Novati et al., 2021; Kurz et al., 2023).

Our contributions are as follows:

• We introduce and publicly release a new reinforcement learning environment aiming to
reduce the friction drag in a three-dimensional, fully-turbulent fluid flow. This represents
a significant jump in complexity with respect to the two-dimensional flow cases used as
benchmarks in the literature.

• We reproduce the results of the traditional state-of-the-art control strategy reported in the
literature. Then, we use the DDPG algorithm to train a DRL agent on the proposed envi-
ronment. We show that DDPG leads to the discovery of an efficient drag-reduction policy
that performs significatly better than the strategies previously available in the literature.

2 METHODOLOGY

A summary of our work is shown in figure 1. In the left part, we show the numerical domain in
which an open channel flow is simulated. We indicate the streamwise, wall-normal and spanwise
directions with (x, y, z), respectively and their corresponding velocity components by (u, v, w).
Periodic boundary conditions are imposed in the streamwise and spanwise directions, while a no-slip
condition and a symmetry conditions are imposed at the two wall-normal boundaries. Two domain
sizes are considered: the first one is a minimal channel (Jiménez & Moin, 1991), which represents
the minimal flow unit in which a self-sustained turbulent flow is possible. A larger channel is also
considered, with a different domain Ω and resolution Nx×Ny×Nz . Further details are available in
appendix A. The Reynolds number used in this study and in the fluid-dynamics literature for wall-
bounded flows is the friction Reynolds number, defined as Reτ = uτh/ν, where the friction velocity
uτ =

√
τw/ρ (based on the the wall-shear stress τw and the fluid density ρ). ν is kinematic viscosity

of the fluid. We consider Reτ = 180, to compare the drag reduction with the corresponding results
in previous active flow control works (Choi et al., 1994).

In order to control the flow and reduce the overall drag, a wall-normal velocity is applied at the
wall. For the action space, a naive design would be to let a single agent learn a policy that de-
cides the wall-normal velocity in all the points. While this allows for the maximum control on all
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the simulated time- and length-scales in the flow, the resulting action space becomes prohibitively
large, i.e. A ∈ RNx×Nz , making it difficult to explore it in an efficient and comprehensive way.
Therefore, hinging on the inherent translational invariance of the physical system with respect to
streamwise and spanwise directions, we opted for a multi-agent reinforcement-learning (MARL)
approach where there are as many agents as action locations all of whom share, and thus contribute
to learning, a single policy. We consider a grid of NCTRLx × NCTRLz = Nx × Nz agents in the
streamwise and spanwise directions, respectively. Taking advantage of the invariance by transla-
tion of the system can have a decisive impact on the success of the learning process, as highlighted
by Belus et al. (2019). This approach makes the learning more sample efficient by not only signifi-
cantly reducing the action space (down to a single scalar) but also effectively increasing the number
of learning samples proportional to the number of agents. We further extend the sample efficiency by
limiting the observable state of each agent to its local neighborhood, in fact every agent receives as
observation the velocity fluctuations in the streamwise and wall-normal directions at a given distance
from the wall, above the area where it is selecting the actuation. We measure the sampling height
using the inner-scaled coordinate y+ = yuτ/ν = y/ℓ∗ ∈ [0, Reτ ], where ℓ∗ is also termed viscous
length. Based on these observations, the policy of the agent determines the intensity of the actuation
within a prescribed range. Following the previous studies on opposition control (Hammond et al.,
1998), we consider a sampling plane at y+ = 15. The policy is then updated based on the reward,
defined as the percentage variation of the wall-shear stress with respect to the uncontrolled flow. The
reward is computed on the entire wall and the resulting value is provided to all MARL agents.

We perform the learning process using deep deterministic policy gradient (DDPG, Lillicrap et al.,
2015) algorithm in the minimal channel. The flow dynamics in this computational domain is simpler
while maintaining a good agreement in the low-order statistics with larger domains and experimental
data. Once the learning is performed, the policy can be applied without modifications to a larger
domain, with a more complete representation of all the physical features that characterize turbulent
flows. Such policy transfer is possible thanks to the local nature of the control.

3 EXPERIMENTS

In order to evaluate the performance of the learnt policy, we consider a well-established control
baseline from the literature, namely opposition control (Choi et al., 1994). Furthermore, it is possible
to compute an upper-bound for the drag reduction, by considering the case in which the flows re-
laminarize (Fukagata et al., 2009). At Reτ = 180, the maximum drag reduction is 73.9%. This
value depends on the Reynolds number, the higher the Re, the higher is the potential drag reduction.

The control strategies are tested in the larger channel with different initial conditions in order to
verify their robustness in different settings. The drag reduction comparison between opposition con-
trol and the DRL policy learnt in the minimal channel is shown in the left panel of figure 2. Our
policy is consistently providing an average drag reduction that is higher than the one obtained with
opposition control. After the initial transient (t+ > 500) the DDPG policy provides 30% drag reduc-
tion, whereas opposition control is limited to 20%. Figure 2 (right) shows the effect of the control
on the velocity-fluctuations distribution. This joint probability density function is used in quadrant
analysis (Wallace et al., 1972) to identify the different physical mechanisms characterizing the flow.
Opposition control reduces the ranges of the fluctuations, both in streamwise and wall-normal di-
rection. However, only a small variation of the overall distribution shape can be observed. This
means that opposition control does not alter the physical mechanism in turbulence, rather it reduces
their intensity. The fluctuations distribution after the application of the DRL policy is fundamentally
different, with a reduction of the range of the streamwise fluctuations and an increase of the wall-
normal fluctuations. The DRL policy has a significant impact on the flow physics, modifying the
distribution of the events among the four quadrants and the general flow configuration.

4 CONCLUSION

In this paper, we have described the coupling of a high-performance fluid dynamics solver and
a (deep) multi-agent reinforcement-learning framework, aiming to discover novel drag-reduction
strategies. By casting the fluid dynamics simulation as a multi-agent reinforcement-learning prob-
lem, we were able to discover a local and translational-invariant policy that provides a sensible
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Figure 2: (Left) Drag reduction obtained in the larger channel with respect to the uncontrolled
case, when using the DRL policy learnt in the minimal channel versus using opposition control. The
result is averaged over six different initial conditions. The shaded area represents the variance of the
drag reduction with the different initial conditions. (Right) Distribution of the inner-scaled velocity-
fluctuation components after the initial transient (t+ > 500) in the streamwise (u) and wall-normal
(v) directions, for the uncontrolled case (top), with opposition control (middle) and when using DRL
(bottom).

improvement over existing control policies such as opposition control. We have also successfully
transferred the learnt policy to a larger domain, where the training would be computationally more
expensive. The drag reduction achieved in the larger channel is 30%, with around 10% improve-
ment over opposition control, providing a new state-of-the-art reference for turbulent flow control
in channel flows. The significant improvement of this study over long-established designed control
strategies demonstrates the potential of data-driven control methods for applications involving tur-
bulent flows. Furthermore, the gap from the our achieved results to the theoretical upper bound of
the relaminarized flow makes the released environment an exciting test-bed for novel reinforcement
learning algorithms. Finally, despite the encouraging results, this represents only a first step towards
the application of DRL policies in more realistic wall-bounded flows. For instance, the current
policy does not take into account the cost of actuation, which plays a deciding role in determining
whether the net-energy saving is positive or negative. The cost could be included in the reward
function to obtain more energy-efficient policies, but the different terms in the reward function need
to be balanced, so this extension is left for future work.
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A TRAINING SETUP AND IMPLEMENTATION DETAILS

In this appendix we describe the solver and reinforcement learning setup used to obtain the results
presented in the paper.

Our numerical solver is a pseudo-spectral solver, similar to the one used in Kim et al. (1987),
with Chebyshev polynomials in the wall-normal direction. The numerical schemes used for time-
advancement are a third-order Runge-Kutta method for the nonlinear terms and a second-order
Crank-Nicolson algorithm for the linear ones. The timestep used in the simulation is ∆t+ = 0.6
(where the time units are scaled with t∗ = ν/u2

τ ). In the minimal channel, the simulation domain
has size Ω = Lx×Ly×Lz = 2.67h×h×0.8h (where h is the open-channel height) and resolution
Nx ×Ny ×Nz = 16× 65× 16. The larger channel has size Ω = Lx × Ly × Lz = 2πh× h× πh
and resolution Nx ×Ny ×Nz = 64× 65× 64.

Deep deterministic policy gradient is the reinforcement learning algorithm used to train the agents.
The policy is updated every ∆t+ = 180, with 64 mini-batch gradient updates. The (state, action,
reward) tuples are sampled from a replay buffer of size 5,000,000. The agents are trained in the
minimal channel for 400 episodes, each one consisting of 3000 interactions. The overall temporal
length of each episode is then T+ ≈ 1500.

Examples of the agent training runs in the minimal channel are shown in figure 3. The agents are
able to reduce the drag in the open channel after 10-15 episodes, however the performance can
change significantly during training, without converging to a specific policy. We do not show it in
the figure, but it has to be noted that not all the training runs provide a successful policy. In these
cases, the drag reduction achieved is close to zero.

The code is running entirely on CPUs. The training and evaluation were performed on recent Intel
Xeon processors. The minimal channel solver was compiled to run on 4 cores, while the larger
channel solver was run on 16 cores. The evaluation on a single episode takes about 4 core-hours
(i.e. 15 minutes in wall-clock time). A detailed study on the scaling performance of the solver when
coupled with the DRL framework is left for future work.
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Figure 3: Running mean of the drag reduction with respect to the reference uncontrolled case
during agent learning in the minimal channel. Coloured lines represent individual runs, the black
line shows the average over the different runs.
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