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Abstract

Video prediction and infilling require strong, temporally coherent generative ca-1

pabilities. Diffusion models have shown remarkable success in several gener-2

ative tasks, but have not been extensively explored in the video domain. We3

present Random-Mask Video Diffusion (RaMViD), which extends image dif-4

fusion models to videos using 3D convolutions, and introduces a new condi-5

tioning technique during training. By varying the mask we condition on, the6

model is able to perform video prediction, infilling, and upsampling. Due to7

our simple conditioning scheme, we can utilize the same architecture as used8

for unconditional training, which allows us to train the model in a conditional9

and unconditional fashion at the same time. We evaluate the model on two10

benchmark datasets for video prediction, on which we achieve state-of-the-art11

results, and one for video generation. High-resolution videos are provided at12

https://sites.google.com/view/video-diffusion-prediction13

1 Introduction14

Videos contain rich information about the world, and a vast amount of diverse video data is available.15

Training models on this data for video prediction or video infilling—i.e., observing a part of a16

video and generating missing frames —can be used in planning, estimating trajectories, and video17

processing. In addition, video models can be valuable for downstream tasks such as action recogni-18

tion [17] and pose estimation [26]. Video prediction can be modelled in a deterministic or stochastic19

form. Deterministic modelling [34, 35, 41, 42] tries to predict the most likely future, but this often20

leads to averaging the future states [19]. Therefore, most recent methods are based on generative21

modeling, either using variational methods [2, 3, 8, 30, 44] or GANs [7, 20]. Diffusion models22

[1, 10, 13, 21, 23, 31, 32] have seen tremendous progress on static visual data, even outperforming23

GANs in image synthesis [9]. Only a few concurrent works have recently considered diffusion models24

for video generation. [47] uses diffusion models for autoregressive video prediction, by modeling25

residuals for a predicted frame, [14] focuses on unconditional video generation, [12] uses diffusion26

models to predict long videos, and [39], the most closely related to our work, also considers video27

prediction and infilling.28

The essence of diffusion models are two stochastic (diffusion) processes implemented by Stochastic29

Differential Equations (SDEs), a forward and a backward one. Let x0 ∈ Rd be a sample from the30

empirical data distribution, i.e., x0 ∼ pdata(x0) and d be the data dimension. The forward diffusion31

process takes x0 as the starting point and creates the random trajectory x[0,T ] from t = 0 to the32

final time t = T . The forward process is designed such that p(xT |x0) has a simple unstructured33

distribution. One example of such SDEs is34

dxt = f(xt, t)dt+ g(t)dw :=

√
d[σ2(t)]

dt
dw, (1)
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where w is the Brownian motion. A desirable property of this process is the fact that the conditional35

distribution p(xt |x0) takes a simple analytical form:36

p(xt |x0) = N
(
xt;x0,

(
σ2(t)− σ2(0)

)
I
)
. (2)

Upon learning the gradient of p(xt) for each t, one can reverse the above process and obtain the37

complex data distribution from pure noise as38

dxt = [f(xt, t)− g2(t)∇x log p(xt)]dt+ g(t)dw′, (3)

where w′ is a Brownian motion independent of the one in the forward direction. Hence, generating39

samples from the data distribution boils down to learning ∇x log p(x).40

The original score matching objective [15]:41

Ext

[
∥sθ(xt, t)−∇xt log p(xt)∥22

]
(4)

is the most intuitive way to learn the score function, but is unfortunately intractable. Denoising Score42

Matching (DSM) provides a tractable alternative objective function:43

JDSM
t (θ) = Ex0Ext|x0

[
∥sθ(xt, t)−∇xt log p(xt |x0)∥22

]
(5)

whose equivalence with the original score matching objective was shown by [38] and used to train44

energy models in [29]. Similar to many recent works, we use the DSM formulation of score matching45

in this work to learn the score function.46

In this paper, we extend diffusion models to the video domain via several technical contributions.47

We use 3D convolutions and a new conditioning procedure incorporating randomness. Our model is48

not only able to predict future frames of a video but also fill in missing frames at arbitrary positions49

in the sequence. Therefore, our Random-Mask Video Diffusion (RaMViD) can be used for several50

video completion tasks. We summarize our technical contributions as follows:51

• A novel diffusion-based architecture for video prediction and infilling.52

• Competitive performance with recent approaches across multiple datasets.53

• Introduce a schedule for the random masking.54

2 Random-Mask Video Diffusion55

Our method, Random-Mask Video Diffusion (RaMViD), consists of two main features. First, the56

way we introduce conditional information to the network is different from what has been used so far.57

Second, by randomizing the mask, we can directly use the same approach for video prediction and58

video completion (infilling). In the following, we detail each of these aspects of the proposed method.59

2.1 Conditional training60

Let x0 ∈ RL,W,H,C be a video with length L. We partition the video x0 into two parts, the unknown61

frames xU
0 ∈ RL−k,W,H,C and the conditioning frames xC

0 ∈ Rk,W,H,C , where U and C are sets of62

indices such that U ∩ C = ∅ and U ∪ C = {0, 1, . . . , L − 1}. We write x0 = xU
0 ⊕ xC

0 with the63

following definition for the ⊕ operator:64

(aU ⊕ bC)i :=

{
ai if i ∈ U
bi if i ∈ C

(6)

where the superscript i indicates tensor indexing and in our case corresponds to selecting a frame65

from a video, and the subscript t indicates the diffusion step, with t = 0 corresponding to the data and66

t = T to the prior Gaussian distribution. If we use an unconditionally trained model and sample via67

the replacement method [32], we find that the predicted unknown frames xU
0 do not harmonize well68

with the conditioning frames xC
0 . To mitigate this issue, we propose to train the model conditionally69

with randomized masking.70

Conditional diffusion models usually optimize71

Ex0

{
Ext|x0

[∥∥sθ(xt,x
C
0 , t)−∇xt log p(xt |x0)

∥∥2
2

]}
(7)
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where xC
0 is typically given as a separate input through an additional layer [6] or it is expanded to72

the dimension of xt (e.g., via padding) and concatenated with the input [4, 24, 25]. We, on the73

other hand, feed the entire sequence to the network sθ but only add noise to the unmasked frames:74

xU
t ∼ N

(
xU
0 ,

(
σ2(t)− σ2(0)

)
I
)
. The input to the network is then a video where some frames are75

noisy and some are clean: xt = xU
t ⊕ xC

0 . The loss is computed only with respect to xU
t :76

JRaMViD
t (θ) = Ex0

{
ExU

t |x0

[∥∥∥sθ(xt, t)
U −∇xU

t
log p(xU

t |x0)
∥∥∥2
2

]}
. (8)

Note that the score function ∇xU
t
log p(xU

t |x0) has the same dimension as xU
t , whereas in Eq. (7) it77

had the dimension of the entire video xt. The reversed diffusion process then becomes:78

dxU
t = [f(xU

t , t)− g2(t)∇xU
t
log p(xU

t |xC
0 )]dt+ g(t)dw′ (9)

2.2 Randomization79

As previously mentioned, the proposed model is able to perform several tasks. We achieve this by80

sampling C at random. At each training step, we first choose the number of conditioning frames81

|C| = k ∈ {1, . . . ,K}, where K is a chosen hyperparameter. Then we define C by selecting k random82

indices from {0, . . . , L− 1}, and we refrain from applying the diffusion process to the corresponding83

frames. After training, we can use RaMViD by fixing C to the set of indices of the known frames84

(C can be any arbitrary subset of {0, . . . , L− 1}) and generating the unknown frames (those with85

indices in U). Our approach allows us to use the exact same architecture of unconditionally trained86

models, thus enabling mixed training, where we train the model conditionally and unconditionally at87

the same time. We set C = ∅ (i.e., the model does not have any conditional information xC
t ) with88

probability pU , which is a fixed hyperparameter. If C = ∅, our objective in Eq. (8) becomes the same89

as the objective in Eq. (5) used for unconditional training.90

3 Experiments91

To compare our model to prior work, we train it on three datasets: BAIR robot pushing [11] and92

Kinetics-600 [5] for video prediction and completion and UCF-101 for unconditional generation93

[33]. We train all datasets on 64 × 64 resolution and choose K = 4. To quantitatively evaluate94

prediction, we use the Fréchet Video Distance (FVD) [37],1 and to evaluate unconditional generation95

the Inception Score (IS) [28] with the implementation from [27].2.96

3.1 BAIR97

We train four models on the BAIR dataset on 20 frames with pU ∈ {0, 0.25, 0.5, 0.75} respectively.98

The models are trained for 250,000 iterations with a batch size of 32 on 8 GPUs. First, we test our99

method with the typical evaluation protocol for BAIR (predicting 15 frames, given one conditional100

frame). With all values of pU , we can achieve state-of-the-art performance, as shown in Table 1. By101

using pU > 0, we can even increase the performance of our method. However, it seems that there is a102

tipping point after which the increasing unconditional rate hurts the prediction performance of the103

model.104

Thanks to the randomized masking, RaMViD is also able to perform video infilling. Quantitative105

results are shown in Appendix B. The method works very well for prediction and infilling. However,106

since the BAIR dataset is arguably rather simple and not very diverse, we will now evaluate RaMViD107

on the significantly more complex Kinetics-600 dataset.108

3.2 Kinetics-600109

For the Kinetics-600 dataset, we increase the batch size to 64 and train for 500,000 iterations on 8110

GPUs, but train only on 16 frames. First, we evaluate the model on prediction (predict 11 frames111

given 5 frames). When comparing our models to concurrent work, we find that RaMViD achieves112

1https://github.com/google-research/google-research/tree/master/frechet_video_
distance

2https://github.com/pfnet-research/tgan2
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Table 1: Prediction performance on BAIR. The values are taken from [3] after inquiring about the evaluation
procedure. We have obtained the parameter counts either directly from the papers or by contacting the authors.

Method FVD (↓) # parameters
SAVP [18] 116.4

DVD-GAN-FP [7] 109.8
TrIVD-GAN-FP [20] 103.3

VideoGPT [46] 103.3 40M
Video Transfomer [43] 94.0 373M

FitVid [3] 93.6 302M
MCVD [39] 89.5 251.2M
NÜWA [45] 86.9

RaMViD (pU = 0,K = 4) 86.41 235M
RaMViD (pU = 0.25,K = 4) 84.20 235M
RaMViD (pU = 0.5,K = 4) 85.03 235M
RaMViD (pU = 0.75,K = 4) 86.05 235M

Table 2: Prediction performance on Kinetics-600. Values are taken from [22] after inquiring about the evaluation
procedure. We have obtained the parameter counts either directly from the papers or by contacting the authors.

Method FVD (↓) # parameters
Video Transfomer [43] 170 ± 5 373M

DVD-GAN-FP [7] 69 ± 1
CCVS [22] 55 ± 1 366M

TrIVD-GAN-FP [20] 26 ± 1

RaMViD (pU = 0) 18.69 308M
RaMViD (pU = 0.25) 16.46 308M
RaMViD (pU = 0.5) 17.61 308M
RaMViD (pU = 0.75) 27.64 308M

state-of-the-art results by a significant margin (see Table 2). Nevertheless, it struggles with fast113

movements: objects moving quickly often get deformed. Similar to what we have seen in Table 1,114

having an unconditional rate pU > 0 increases the performance up to a tipping point. However,115

differently from the model trained on BAIR, the FVD score now drops significantly with pU = 0.75.116

We conjecture that this drop in performance is due to the complexity of the data distribution. In117

BAIR, the conditional and unconditional distributions are rather similar, while this is not true for118

Kinetics-600.119

Also on Kinetics-600 we can perform several video completion tasks. For further experiments,120

we refer to Appendix C. Since we were able to generate videos unconditionally with the models121

RaMViD (pU = 0.5) and RaMViD (pU = 0.75), we show quantitative comparision on UCF-101 in122

Appendix D.123

4 Conclusion124

We have shown that diffusion models, which have been demonstrated to be remarkably powerful for125

image generation, can be extended to videos and used for several video completion tasks. The way126

we introduce conditioning information is novel, simple, and does not require any major modification127

to the architecture of existing diffusion models, but it is nonetheless surprisingly effective. Although128

the proposed method targets conditional video generation, we also introduce an alternative masking129

schedule in an attempt to improve the unconditional generation performance without sacrificing130

performance on conditional generation tasks. Finally, the focus of this work has been on the diffusion-131

based algorithm for videos rather than on optimizing the quality of each frame. It has been shown132

in concurrent works that including super-resolution modules helps create high-resolution videos.133

Adding a super-resolution module to RaMViD would be a relevant direction for future work.134
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A Implementation details250

Our implementation relies on the official code of [23], and we use the same U-Net architecture but251

adapted to video data by using 3D convolutions.3 We do not encode the time dimension and we252

use two ResNet blocks per resolution for the BAIR dataset, and three blocks for Kinetics-600 and253

UCF-101. We set the learning rate for all our experiments to 2e-5, use a batch size of 32 for BAIR254

and 64 for Kinetics-600 and UCF-101, and fix T = 1000. We found, especially on the more diverse255

datasets like Kinetics-600 and UCF-101, that larger batch sizes produce better results. Therefore, to256

increase the batch size, we use gradient accumulation by computing the gradients for micro-batches257

of size 2 and accumulate for several steps before doing back-propagation. Even though most previous258

work uses the cosine noise schedule, we found that the linear noise schedule works better when259

training the model conditionally. A detailed graphic of our model is shown in Fig. 1.260

B BAIR261

Since we train with randomized masking, we can also perform video infilling with the same models,262

without retraining. We condition on the first and last frame (i.e., set C = {0, 15} for sampling) and263

compute the FVD of the 14 generated frames. Again we find that the performance is very similar for264

different values of pU (see Table 3), however, similarly to Table 1, we observe the best results when265

using pU = 0.25.266

Table 3: Infilling performance on BAIR.

Method FVD (↓)

RaMViD (pU = 0) 85.68
RaMViD (pU = 0.25) 85.02
RaMViD (pU = 0.5) 87.04
RaMViD (pU = 0.75) 87.85

C Kinetics-600267

We also evaluate RaMViD on two video completion tasks on Kinetics-600. The first task is to fill in a268

video given the two first and last frames (i.e., C = {0, 1, 14, 15}): the challenge here is to harmonize269

the observed movement at the beginning with the movement observed at the end. In the second task,270

the conditioning frames are distributed evenly over the sequence (i.e., C = {0, 5, 10, 15}), hence271

the model has to infer the movement from the static frames and harmonize them into one realistic272

video. RaMViD excels on both tasks, as shown quantitatively in Table 4. Especially when setting273

C = {0, 5, 10, 15} RaMViD is able to fill the missing frames with very high quality and coherence.274

This setting can be easily applied to upsampling by training a model on high-FPS videos and then275

sampling a sequence conditioned on a low-FPS video.276

Table 4: Performance of RaMViD on Kinetics-600, when conditioning on different frames.

Method {0, 1, 14, 15} {0, 5, 10, 15}
RaMViD (pU = 0) 10.68 6.28

RaMViD (pU = 0.25) 10.85 4.91
RaMViD (pU = 0.5) 10.86 5.90

RaMViD (pU = 0.75) 17.33 7.29

D UCF-101277

We have mentioned that we found that RaMViD (pU = 0.5) and RaMViD (pU = 0.75) can generate278

unconditional videos on Kinetics-600. To quantify RaMViD’s unconditional generation, we will279

3https://github.com/openai/improved-diffusion
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evaluate these models on the UCF-101 dataset and compare it to other work. We train RaMViD280

with the same setting as used for Kinetics-600 but for 450,000 iterations. Table 5 shows that our281

model achieves competitive performance on unconditional video generation, although it does not282

reach state-of-the-art. The trained models can successfully generate scenes with a static background283

and a human performing an action in the foreground, consistent with the training dataset. However,284

the actions are not always coherent and moving objects can deform over time. Note that UCF-101285

is a very small dataset given its complexity. Therefore we do observe some overfitting. Since for286

each action we only have around 25 different settings, our model does not learn to combine those287

but generates very similar videos to the training set. Due to the characteristics of this dataset we288

think with more extensive hyperparameter tuning, one can achieve better results with RaMViD in289

unconditional generation. But our focus does not lie on this.290

Table 5: Generative performance of RaMViD on UCF-101. We only compare to models which are also trained
on 64 × 64 resolution. Since the IS score is computed with 112 × 112 resolution, models trained on higher
resolution would have an advantage.

Method IS (↑)

VGAN [40] 8.31 ± 0.09
MoCoGAN [36] 12.42 ± 0.03 3.3M

TGAN-F [16] 13.62 17.5M
TGANv2 [27] 26.60 ± 0.47 200M

Video Diffusion [14] 57 ± 0.62

RaMViD (pU = 0.5) 20.84 ± 0.08 308M
RaMViD (pU = 0.75) 21.71 ± 0.21 308M
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Figure 1: Sketch of our method. In the last step, we only compute the loss with respect to the frames that were
corrupted with noise. The number of channels c is 128, and l is the video length.
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