
Under review as a Tiny Paper at ICLR 2023

MULTI-AGENT REINFORCEMENT LEARNING FOR
COALITIONAL BARGAINING GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

There is growing attention to the application of multi-agent reinforcement learning
(MARL) to coalition formation problems, in particular, on coalitional bargaining
games as a means of negotiating team members and payoffs. However, there is a
lack of theoretical principles for using MARL in coalitional bargaining games. We
address this gap by providing an examination of the theoretical link between, coali-
tional bargaining games, and MARL through the formalism of stochastic games.
Using this analysis, the paper seeks to shed light on the underlying principles that
support the use of MARL in coalitional bargaining and to explore the contributions
and limitations of this approach.

1 INTRODUCTION AND RELATED LITERATURE

Coalition formation enables a mechanism in which self-interested agents can work together to achieve
greater rewards than what they could attain alone. To negotiate the terms of a coalition, parties
engage in coalitional bargaining games (CBG). This involves alternating between making offers and
counteroffers, with the ultimate objective of reaching an agreement on both the participants in the
coalition and the distribution of payoffs Rubinstein (1982). The coalitional bargaining process is
lengthy and inefficient, thus prior work introduced multi-agent reinforcement learning (MARL) to
speed up the bargaining rounds by creating negotiating agents (Bachrach et al., 2020; Chen et al.,
2022; Hughes et al., 2020; Taywade, 2021; Chalkiadakis et al., 2011; Mak et al., 2021). Despite
increasing interest, the application of MARL to CBG is hampered by the absence of a theoretical
framework linking stochastic games (the framework for MARL) and CBG; resulting in limited
reproducibility and generalization of the results (as aspects crucial for AI research Hutson (2018);
Haibe-Kains et al. (2020)).1. The aim of this paper is to answer: first, given MARL provides an
empirical framework for stochastic games, which theoretical principles make it suitable for CBG?
Secondly, what are the advantages/limitations of MARL over traditional game theoretic solutions?

Contributions. First, we provide a unified conceptual framework for the application of MARL to
CBG. From there, we then present a formal representation of turn-based stochastic games and use it
to connect MARL to CBG in a principled way. Second, we provide a discussion on the benefits and
limitations of MARL as a computational method for CBG problems.

2 CBG, STOCHASTIC GAMES AND MARL - A GOLDEN BRAID

In this section, we answer the first question posed in the Introduction 1. The relationship between
CBG and MARL can be established by characterizing the former as a subclass of stochastic sequential
games, namely, turn-based stochastic games (TBSG), which is a subset of stochastic games (the
framework for MARL). See Appendix A.4 for additional background on bargaining games.

Definition 1 (Coalitional bargaining game) Consists of a tuple (N,T,A, δ) where N is the set of
agents with |N | = n the number of agents, T is the maximum length of the game (can be infinite), A
is the set of available actions (proposals and responses) for the n agents at time t < T and δ is the
discount factor accounting for the value of time. The set of all bargaining games is denoted by B.
The solution is given by the function f : B → (2n,Rn) that maps proposals to the set of coalition
structures and stable profits.

1For a connection between stochastic games and MARL refer to Appendix A.2.
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With the above definition, we next argue that a TBSG is superset of a CBG where each state A
(proposals and responses) is controlled by a disjoint subset of players, the states are stochastic and
governed by transition dynamics.

Definition 2 (Turn-based stochastic game (TBSG)) Is defined by the tuple (N,T, S,A, R, τ, γ)
where N is the set of agents, T is the maximum bargaining rounds,S is the set of proposing states, A
denotes the set of joint responses to the proposals, τ is the transition dynamics between the states (S
and A), R is the vector of reward functions for each agent and γ is the discount factor.

To strengthen the argument for similarity with stochastic games, the solution of a TBSG is a policy
set composed of the optimal policies π∗ = (π∗

1 , . . . π
∗
n) such that each agent maximizes its reward

conditional on the other agent’s policy: ∀i : π∗
i ∈ argmaxπ′

i
E
[
Ri|π′

i, π
′
−i

]
where π′

−i = π∗\πi

and π∗ is a Nash Equilibrium. Since we have shown that CBG are a subset of TBSG; MARL can
be used as a framework to approximate an optimal policy, π′∗ when the transition dynamics, τ and
rewards, R are unknown. The following clarifies the equivalencies between a TBSG and stochastic
games. In turn-based games, the action of one player (for example, a proposal) is the next players’
observations (acting as responders). In other words, the traditional action space from MARL games
has been split into two set of actions (proposals S and responses A). In TBSG, a reward is received
when all coalition members agree on a proposal, otherwise the reward is zero and the game continues
in a sequential manner. Most importantly, in a TBSG, the transition dynamics τ , capture how agents
negotiate and make decisions in the game, and this is one of the key differences between the traditional
game-theoretic solutions and MARL algorithms. In game theory, the game’s transition dynamics are
given by a model of the player’s beliefs as rational agents (Rubinstein, 1982); while under the MARL
framework, there is no assumption over preferences or utility functions, and the transition dynamics
(and rewards) can be learned through exploration (Sutton & Barto, 2018).

3 CONTRIBUTIONS AND LIMITATIONS OF MARL IN CBG

This section addresses the second question posed on the Introduction 1.

MARL provides an algorithmic solution to CBG As opposed to game-theoretic solutions, where
the interest is on finding equilibria for a game, MARL methods learning optimal policies for each
agent given the other agents’ policies. Since agents learn through best responding to their training
partners, the optimal joint policy converged upon is an equilibrium of the game.

MARL provides an adaptive and tractable solution to CBG. According to Jin et al. (2022), the
exact solution to an infinite-horizon TBSG is PPAD complex, while MARL provides a tractable
approximation to CBG (Bab & Brafman, 2008). Moreover, MARL provides adaptive optimal control
of non-linear Markov process with unknown transition dynamics (Sutton et al., 1992). Policies
are adaptive to small changes in the environment, avoiding the recalculation of coalitional values
following a small change in the environment.

MARL provides decentralized learning. MARL methods overcome the exponential complexity of
multi-agent games by enabling learning of decentralized agent policies (Yang & Wang, 2020).

Challenges in the use of MARL for CBG. As with any multi-agent game, the stationarity of the
policies is not guaranteed (Lowe et al., 2017), and most importantly, the Markovian property of the
game’s states is not guaranteed. In a CBG, the environment states are the agents’ proposals, and in
bargaining games, past rejected proposals cannot be repeated in the future; therefore, the history of
past proposals needs to be accounted for at each step. As a result, the probability of transitioning
from one state to another depends not only on the current state and last action taken, but also on the
entire history of past rejected proposals. One approach to addressing this issue is to augment the state
definition by including the history of proposals so the process becomes a Markov process (Fudenberg
& Tirole, 1991), however, this exponentially increases the computational complexity of the problem.

Conclusions. The paper provides the principles for the use of MARL in CBG and highlights its
contributions and limitations. It provides a new way to formalize the CBG as a subset of stochastic
games, provides analysis on the tractability of MARL techniques and offers insights to improve its
effectiveness as well as reproducibility and generalisation.
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A APPENDIX

This section provides further definitions and contextual information relevant to the content of the
paper.

A.1 STOCHASTIC GAMES

A stochastic game (Shapley, 1953) generalises Markov Decision Processes to involve multiple agents,
being the reason why they are the mathematical framework for MARL 2. The idea behind a stochastic
game is that the history at each period can be summarized by a state. Stochastic games are defined
as a tuple <N,S,A, T,R, γ> where: N denotes the set of n agents, S denotes the set of states,
A = Ai . . . An denotes the set of joint actions, where Ai is player i′s set of actions. T : S ×A → S
denotes the transition dynamics, R : S×A×S×N → R denotes the reward function and γ denotes
the discount factor.

The image below depicts the relationship between the different categories of stochastic games and
CBG.

A.2 CONNECTION BETWEEN MARL AND STOCHASTIC GAMES

Multi-Agent Reinforcement Learning (MARL) tackles the challenge of learning optimal behavior
by engaging in trial and error interactions within a dynamic multi-agent environment, where the
environmental dynamics and the algorithms utilized by other agents are initially unknown. To
model the multi-agent environment interaction, MARL adopts the Game Theory model of stochastic
games (Shapley, 1953), which are essentially n-agent Markov Decision Processes. In MARL, we
are interested in learning a stationary stochastic policy that maps the game’s states to a probability
distribution over the agent’s actions. The goal is to find such a policy that maximizes the agent’s
discounted future reward. The connection between MARL and stochastic games is further discussed
in Littman (1994); Bowling & Veloso (2000)

2MARL is a useful computational framework for stochastic games when the transition dynamics are unknown.
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Figure 1: Relationship between stochastic games, sequential stochastic games and coalitional bar-
gaining games.

A.3 THE COALITION STRUCTURE GENERATION PROBLEM

The Coalition Structure Generation (CSG) problem is the process of forming coalitions among
agents in such a way that the agents within each coalition coordinate their activities, but there is no
coordination between coalitions. This entails dividing the set of agents into exhaustive and mutually
exclusive coalitions. The resulting partition is referred to as a Coalition Structure (CS). After defining
the optimal Coalition Structure, a new game starts to divide the value of the generated solution among
agents.

A.4 NON-COOPERATIVE BARGAINING THEORY OF COALITION GENERATION

The non-cooperative game approach to the problem of cooperation was initiated in the seminal works
of Nash (1950; 1953), who presented equilibrium results for finite-horizon two-person bargaining
game known as the Nash Program. The approach aims to explain cooperation as the result of
individual players’ payoff maximization in an equilibrium of a non-cooperative bargaining game that
models pre-play negotiations. Nash stated the seminal results that cooperation should be strategically
stable. The approach re-examines a widely held view in economics, called the efficiency principle,
that a Pareto-efficient allocation of resources can be attained through voluntary bargaining by rational
agents if there is neither private information nor bargaining costs. After Nash, the theory centered
its attention into extending the result to infinite-horizon bargaining. The work of Rubinstein (1982)
introduces the alternating offers model as an equilibrium bargaining protocol for two-person infinite-
horizon bargaining. The expansion of this model to n-person bargaining came later with the work
of several authors (see Chalkiadakis et al. (2011) for a literature review). One example is the
protocol proposed by Okada (1996), which presents a sequential bargaining game in which players
propose coalitions and feasible payoff allocations until an agreement is reached. Under this protocol,
agreement can be reached in one bargaining round if the proposer is chosen randomly.

Example of an n-person alternating offers bargaining protocol. As an example of a sequential
bargaining protocol, we describe the one proposed by Okada (1996).

The process of bargaining involves the agents taking turns to make proposals to form a coalition and
to allocate the payoffs among the coalition members, while the rest of the agents provide responses
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on whether to accept or reject the proposal. The goal is to find a coalition c∗ and payoff allocation
u(c∗) such that the agents reach an agreement, where u(c∗) is the vector of optimal payoffs for each
agent in the coalition.

Let Nt be the set of ”active” players who do not belong to any coalitions on round t, let S be the
set of possible coalitions that the Nt players can form, and let c ∈ S be a possible coalition. At the
beginning of each round t, a proposer i ∈ Nt is selected according to a certain probability distribution
θ(Nt). The selected player makes a proposal which is a tuple formed by a coalition S (where i ∈ c)
and a profit-sharing scheme u(c) (i.e., a payoff vector). In the same time step, all other members
in c, (i.e., the responders) either accept or reject the proposal sequentially following a randomly
chosen order. The responders have full information of the responses from previous responders in
c. If all responders accept the proposal (c, u(c)) then it is binding, and another round of bargaining
starts with Nt+1 = Nt\S. Otherwise, if any responder rejects the proposal, with probability 1− ϵ,
(ϵ > 0) another proposer is selected randomly and the game continues. The negotiation process ends
when every player in N joins some coalition, and thus, we say a stable solution to the game has been
reached.

The image below depicts the stages of a coalitional bargaining game.

Figure 2: Bargaining game as an extensive-form game.
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