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Abstract

Metamaterials are emerging as a new paradigmatic material system, providing1

unprecedented and customizable properties for various engineering applications.2

However, the inverse design of metamaterials, which aims to retrieve the meta-3

material microstructure according to a given electromagnetic response, is very4

challenging as it is non-trivial to unveil the nonintuitive and intricate relation-5

ship between the microstructures, and their functional responses. In this study,6

we resolve this critical problem by extending the classic conditional variational7

autoencoder for discrete responses to a more general version that can handle func-8

tional responses. By encoding microstructures and their electromagnetic response9

curves into common latent spaces via deep neural networks and aligning them via10

a specific loss function, the proposed functional response conditional variational11

autoencoder can unveil the implicit relationship between microstructures and their12

electromagnetic responses efficiently. The proposed novel learning framework13

not only facilitates metamaterial design greatly by avoiding the time-consuming14

case-by-case numerical simulations in the traditional forward design, but also has15

the potential to resolve other problems with similar structures.16

1 Introduction17

Metamaterials are macroscopic composites that contain artificial, three-dimensional, periodic (or18

not) unit-cell patterns engineered to produce optimized responses to a specific excitation that is19

unseen in natural materials [1–4]. Due to their great potentials to manipulate electromagnetic waves,20

metamaterials have drawn great interests in achieving novel physics phenomenon [5], and become a21

breakthrough technology to realize unique functionality in various fields [6–12].22

Like atoms forming a molecule in natural materials, metamaterials with various microstructures (i.e,23

facility topologies) can lead to different response curves. To be concrete, for a microstructure with24

facility topology x, its responses to electromagnetic wave of different frequencies form a complex25

response curve y. The laws of physics determine that there exists a deterministic function y = f(x)26

that maps the facility topology x to its response curves y. In the forward design of metamaterials, we27

aim to learn the unknown mapping function f(·), i.e., predict y for a given x; in the inverse design,28

we focus on learning the inverse mapping f−1(·) instead, i.e., finding an appropriate x in a pre-given29

design space X whose response curves y is close enough to given target response y∗.30

In practice, researchers and designers utilize full-wave simulations via finite element method (FEM) to31

obtain mapping pairs of facility topology and its response curves in high-throughput, and try to learn32

the forward or inverse mapping functions, i.e., f(·) or f−1(·), from the simulated data. Consider the33

design space X as the assemble of all images with L× L binary pixels, where the black pixels stand34

for substrate, while the white ones are metal material. Figure 1 demonstrates a typical microstructure35

of the I-shape and the corresponding response curves composed of four channels (two magnitude36
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Figure 1: The proposed model for metamaterial design, characterization and classification.

channels and two phase channels). More microstructures of different topology types are illustrated in37

Figure 2 and Figure 3. For a collection of design points x1, ..,xn ∈ X , let τi be the topology type38

of xi (e.g., I-shape, hexagon-shape and so on), and yi = f(xi) being the corresponding response39

curves obtained via FEM simulation. Our goal in this study is to learn the inverse mapping function40

f−1(·) from a collection of triplets {(τi,xi,yi)}ni=1.41

Leveraging on the quick development of deep neural network (DNN) in recent years, DNN-based42

inverse design via variational auto-encoder (VAE) [13] and conditional variational auto-encoder43

(CVAE) [14] has gained great successes in a broad range of applications [15–20]. However, available44

methods for inverse design based on CVAE assume that the responses are discrete classification labels,45

and cannot handle complex response curves as encountered here. In this work, we fill in this gap by46

proposing a novel CVAE framework with functional responses as conditional input (referred to as47

FR-CVAE) that can successfully map the unstructured design space X and the complex functional48

response space Y = {y = f(x) : x ∈ X}. A series of simulation experiments confirm that the49

proposed method is effective to achieve high-quality inverse design for metamaterials.50

2 Method51

Figure 1 illustrates the overall architecture of the proposed FR-CVAE, which is composed of four52

components: (1) an encoding network of x, φα : x → z, that maps a design x ∈ X to a lower53

dimension latent space representation z ∈ Z (Z ∈ Rp), which can also be expressed as an encoding54

distribution qα(z|x) = N(µz(x, φα), σ
2
z(x, φα) · Ip), (2) an encoding network of y referred to as55

φβ : y→ z, that embeds the functional response y into the same latent space Z via another encoding56

distribution qβ(z|y) = N(µz(y, φβ), σ
2
z(y, φβ) · Ip), (3) a decoding network φγ : z → x, that57

generates an image x̂ ∈ X from z ∈ Z via a decoding distribution qγ(x|z) over the design space58

X , and (4) a classifier φψ : y → pτ which shares the network of φβ except its last layer and utilize59

a linear layer parameterized by ψ and softmax function to generate the classification probability of60

topology types, pτ . Let Θ = (α,β,γ,ψ) denote all parameters involved in the model.61

Among the four involved networks, the encoding network φα, and the decoding network φγ , are62

exactly same as in the classic CVAE [14]. However, unlike the traditional CVAE using discrete63

classification label as condition input [14], the proposed FR-CVAE introduces an extra encoder64

network φβ, to take care of the complex responses, which are continuous curves, and an additional65

classifier, i.e., φψ , to format multi-task learning to guide the encoding process of φβ. In principle, we66

can specify φβ with any DNN that can convert a high-dimensional response curve y into the latent67

space Z . Here, we choose the Swin-Transformer [21] as the encoding network φβ, considering its68

effectiveness to capture complicated patterns from sequence data due to its attention mechanism.69

The loss function of FR-CVAE is composed of three components. The first component is the70

reconstruction loss Lx(α,γ), which plays exactly the same role as in the classic VAE or CVAE. For71
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the i-th data point (τi,xi,yi), the Lx loss has the the following form:72

Lx(α,γ;xi) = −
∫ [

log qγ(xi|z)
]
dqα(z|xi), (1)

where the integration is about the latent vector z over the whole latent spaceZ . The second component73

Ly(β,ψ) is classification loss for y, the cross-entropy loss LCE [22] enhanced by an additional74

triplet loss LTriplet [23], i.e.,75

Ly(β,ψ; τi,yi) = LCE(β,ψ; τi,yi) + LTriplet(β; τi,yi). (2)
The third component Lx∼y(α,β) is applied to stabilize and align the stochastic encoding of x and y76

via77

Lx∼y(α,β;xi,yi) = w1 ·KL
(
qα(·|xi)||π0(·)

)
+ w2 ·KL

(
qα(·|xi)||qβ(·|yi)

)
, (3)

where the first KL divergence plays the role of stabilization as in the ordinary VAE, since it forces the78

stochastic encoding function qα(·|xi) of every xi to be close to a pre-given distribution π0 (which79

is typically the stand normal distribution on Z), while the second one connects the encoding of xi80

and yi via distribution alignment. Assembling all these components together, we come up with the81

following joint loss function:82

L (Θ | {(τi,xi,yi)}ni=1) =

n∑
i=1

{Lx(α,γ;xi) + Ly(β,ψ; τi,yi) + Lx∼y(α,β;xi,yi)}. (4)

In practice, w1 and w2 in Eq. (3) need to be properly specified to adjust the relative weight of the83

Lx∼y loss. We simply set w1 = w2 = 1 in this study. We also note that the proposed FR-CVAE84

would degenerate to VAE of x if we remove the alignment loss by setting w2 = 0. The proposed85

FR-CVAE can be trained in a similar way as CVAE. The complete training procedure is detailed in86

Algorithm 1.87

Algorithm 1 Conditional Variational Auto-Encoding for Functional Responses Optimization

Input: training data set {τi,xi,yi}ni=1, batch size M , and loss weights (w1, w2)
Initialization: random initialized Θ0 = (α0,β0,ψ0,γ0).
Output: parameters (α∗,β∗,ψ∗,γ∗).

1: repeat
2: Sample (τ ,X,Y)← Random minibatch drawn from full dataset;
3: Encoder of X: µz(X),Σz(X)← φα;
4: Encoder of Y (Swin-Transformer): µz(Y),Σz(Y)← φβ;
5: Classifier: τ̂ ← φψ;
6: Sample zx ← µz(X) + ε� (Σz(X))

1
2 , ε ∼ N (0, I);

7: Sample zy ← µz(Y) + ε� (Σz(Y)))
1
2 , ε ∼ N (0, I);

8: Decoder: X̂← φγ ;
9: Compute the loss L(Θ | τ ,X,Y) according to Eq. (4)

10: Back-propagate the gradients.
11: until maximum iteration reached

3 Experiments88

3.1 Experimental Setup89

Dataset Simulated response curves of 61,992 microstructure patterns belonging to 30 topology90

types (e.g., I-shape, cross shaped, split ring, circular, etc.) were collected to support this study. On91

average, about 2,000 simulated response curves were collected for each topology type at different92

scales. The image of every involved microstructure pattern was encoded into a 200 × 200 binary93

matrix, and the corresponding response curves are the real and imaginary part of scatter parameters,94

S11 and S21, over the frequency region of 0.1-30GHz, formatting as a 4× 1001-dimensional vector.95

Implementation Details We randomly selected 80% of the collected data (i.e., 49,594 microstruc-96

tures with their corresponding response curves) to train the proposed FR-CVAE, and used the rest97

20% for testing. The training is performed via Adam optimizer [24] through minibatch gradient98

descent for 1,000 epochs with the batch size set to be 256, which takes about fifteen hours by using 299

Nvidia Telsa P100 16GB GPU cards.100
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Figure 2: Numerical evaluation of the proposed model with φβ being Swin-Transformer. 1-30
represent the topology types, each of which contains samples from the test data set.

Figure 3: On-demand inverse design. The two insets are the ground-truth design patterns (up) whose
response curves are solid blue and retrieved design patterns (down) whose response curves are dashed
yellow.

3.2 Experimental Results101

Classification and Similarity The bar-plots in Figure 2 summarize the quality of inverse design102

based on the proposed FR-CVAE with Swin-Transformer (results of MLP based functional response103

encoder shown as Figure A2) for each of the 30 topology types: the light blue bars show the104

classification accuracy that the generated structures belong to the ground true topology type, the dark105

blue bars report the average cosine similarity between the two embedding vectors of the generated106

and ground true microstructure. The proposed FR-CVAE achieves high-quality results in both107

perspectives for most topology types, suggesting that designs very close to the ideal ones can be108

successfully captured.109

On-demand Inverse Design To further check whether the generated microstructures can indeed110

produce response curves that are close to the target response curves, we visualize the response curves111

of a few generated microstructures versus their target response curves in Figure 3, with the images of112

the generated and ground true microstructure showed side by side as well. From the figure we can113

see clearly that most of the generated microstructures have a clear and feasible configuration and the114

generated designs reproduce the corresponding input response curves with high fidelity, which means115

the trained FR-CVAE model can effectively link the microstructure design and response curve through116

the probabilistic representation by latent variables and even preserve some fine features. However, it117

can also be noted that some generated microstructures have blurred regions on the boundary, which is118

a common phenomenon for generative models with a log-likelihood loss function [25].119
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A Appendix205

Figure A1: Architecture of the proposed deep generative model.

Figure A2: Numerical evaluation of the proposed model with φβ being MLP.
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