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Abstract

Vision transformers have recently achieved competitive results across various1

vision tasks but still suffer from heavy computation costs when processing a large2

number of tokens. Many advanced approaches have been developed to reduce3

the total number of tokens in the large-scale vision transformers, especially for4

image classification tasks. Typically, they select a small group of essential tokens5

according to their relevance with the [class] token, then fine-tune the weights of6

the vision transformer. Such fine-tuning is less practical for dense prediction due7

to the much heavier computation and GPU memory cost than image classification.8

In this paper, we focus on a more challenging problem, i.e., accelerating large-scale9

vision transformers for dense prediction without any additional re-training or fine-10

tuning. In response to the fact that high-resolution representations are necessary11

for dense prediction, we present two non-parametric operators, a token clustering12

layer to decrease the number of tokens and a token reconstruction layer to increase13

the number of tokens. The following steps are performed to achieve this: (i) we14

use the token clustering layer to cluster the neighboring tokens together, resulting15

in low-resolution representations that maintain the spatial structures; (ii) we apply16

the following transformer layers only to these low-resolution representations or17

clustered tokens; and (iii) we use the token reconstruction layer to re-create the18

high-resolution representations from the refined low-resolution representations.19

The results obtained by our method are promising on five dense prediction tasks20

including object detection, semantic segmentation, panoptic segmentation, instance21

segmentation, and depth estimation. Accordingly, our method accelerates 40% ↑22

FPS and saves 30% ↓ GFLOPs of “Segmenter+ViT-L/16” while maintaining 99.5%23

of the performance on ADE20K without fine-tuning the official weights.24

1 Introduction25

Transformer [64] has made significant progress across various challenging vision tasks since pi-26

oneering efforts such as DETR [5], Vision Transformer (ViT) [16], and Swin Transformer [44].27

By removing the local inductive bias [17] from convolutional neural networks [25, 61, 57], vi-28

sion transformers armed with global self-attention show superiority in scalability for large-scale29

models and billion-scale dataset [16, 78, 58], self-supervised learning [24, 72, 1], connecting vi-30

sion and language [50, 31], etc. We can find from recent developments of SOTA approaches that31

vision transformers have dominated various leader-boards, including but not limited to image clas-32

sification [70, 14, 15, 78], object detection [80, 43, 35], semantic segmentation [29, 12, 3], pose33

estimation [73], image generation [79], and depth estimation [39].34

Although vision transformers have achieved more accurate predictions in many vision tasks, large-35

scale vision transformers are still burdened with heavy computational overhead, particularly when36
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Figure 1: Illustrating the improvements of our approach: we report the results of applying our
approach to Segmenter [60] for semantic segmentation and DPT [51] for depth estimation on the 1-st
and 2-ed row respectively. Without any fine-tuning, our proposed method reduces the GFLOPs and
accelerates the FPS significantly with a slight performance drop on both dense prediction tasks. ↑
and ↓ represent higher is better and lower is better respectively. Refer to Section 4 for more details.

processing high-resolution inputs [18, 43], thus limiting their broader application on more resource-37

constrained applications and attracting efforts on re-designing light-weight vision transformer ar-38

chitectures [11, 48, 81]. In addition to this, several recent efforts have investigated how to decrease39

the model complexity and accelerate vision transformers, especially for image classification, and40

introduced various advanced approaches to accelerate vision transformers. Dynamic ViT [52] and41

EViT [41], for example, propose two different dynamic token sparsification frameworks to reduce42

the redundant tokens progressively and select the most informative tokens according to the scores43

predicted with an extra trained prediction module or their relevance with the [class] token. To-44

kenLearner [55] learns to spatially attend over a subset of tokens and generates a set of clustered45

tokens adaptive to the input for video understanding tasks. Most of these token reduction approaches46

are carefully designed for image classification tasks and require fine-tuning or retraining. These47

approaches might not be suitable to tackle more challenging dense prediction tasks that need to48

process high-resolution input images, e.g., 1024 × 1024, thus, resulting heavy computation and49

GPU memory cost brought. We also demonstrate in the supplemental material the superiority of our50

method over several representative methods on dense prediction tasks.51

Rather than proposing a new lightweight architecture for dense prediction or token reduction scheme52

for only image classification, we focus on how to expedite well-trained large-scale vision transformers53

and use them for various dense prediction tasks without fine-tuning or re-training. Motivated by54

these two key observations including (i) the intermediate token representations of a well-trained55

vision transformer carry a heavy amount of local spatial redundancy and (ii) dense prediction tasks56

require high-resolution representations, we propose a simple yet effective scheme to convert the57

“high-resolution” path of the vision transformer to a “high-to-low-to-high resolution” path via two58

non-parametric layers including a token clustering layer and a token reconstruction layer. Our method59

can produce a wide range of more efficient models without requiring further fine-tuning or re-training.60

We apply our approach to expedite two main-stream vision transformer architectures, e.g., ViTs and61

Swin Transformers, for five challenging dense prediction tasks, including object detection, semantic62

segmentation, panoptic segmentation, instance segmentation, and depth estimation. We have achieved63

encouraging results across several evaluated benchmarks and Figure 1 illustrates some representative64

results on both semantic segmentation and depth estimation tasks.65

2 Related work66

Pruning Convolutional Neural Networks. Convolutional neural network pruning [2, 27, 67] is67

a task that involves removing the redundant parameters to reduce the model complexity without68

a significant performance drop. Pruning methods typically entail three steps: (i) training a large,69

over-parameterized model to convergence, (ii) pruning the trained large model according to a certain70
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criterion, and (iii) fine-tuning the pruned model to regain the lost performance [46]. The key idea is71

to design an importance score function that is capable of pruning the less informative parameters.72

We follow [8] to categorize the existing methods into two main paths: (i) unstructured pruning73

(also named weight pruning) and (ii) structured pruning. Unstructured pruning methods explore the74

absolute value of each weight or the product of each weight and its gradient to estimate the importance75

scores. Structured pruning methods, such as layer-level pruning [68], filter-level pruning[45, 75], and76

image-level pruning [23, 62], removes the model sub-structures. Recent studies [6, 7, 28] further77

extend these pruning methods to vision transformer. Unlike the previous pruning methods, we explore78

how to expedite vision transformers for dense prediction tasks by carefully reducing & increasing the79

number of tokens without removing or modifying the parameters.80

Efficient Vision Transformer. The success of vision transformers has incentivised many recent81

efforts [55, 59, 47, 26, 69, 52, 34, 22, 65, 10, 32, 41, 54] to exploit the spatial redundancies of82

intermediate token representations. For example, TokenLearner [55] learns to attend over a subset83

of tokens and generates a set of clustered tokens adaptive to the input. They empirically show that84

very few clustered tokens are sufficient for video understanding tasks. Token Pooling [47] exploits85

a nonuniform data-aware down-sampling operator based on K-Means or K-medoids to cluster86

the similar tokens together to reduce the number of tokens while minimizing the reconstruction87

error. Dynamic ViT [52] observes that the accurate image recognition with vision transformers88

mainly depends on a subset of the most informative tokens, and hence it develops a dynamic token89

sparsification framework for pruning the redundant tokens dynamically based on the input. EViT90

(expediting vision transformers) [41] proposes to calculate the attentiveness of the [class] token with91

respect to each token and identify the top-k attentive tokens according to the attentiveness score. Patch92

Merger [53] uses a learnable attention matrix to merge and combine together the redundant tokens,93

therefore creating a much more practical and cheaper model with only a slight performance drop.94

Refer to [63] for more details on efficient transformer architecture designs, such as Performer [13]95

and Reformer [33]. In contrast to these methods that require either retraining or fine-tuning the96

modified transformer architectures from scratch or the pre-trained weights, our approach can reuse97

the once trained weights for free and produce light-weight models with a modest performance drop.98

Vision Transformer for Dense Prediction. In the wake of early success of the representative99

pyramid vision transformers [44, 66] for object detection and semantic segmentation, more and more100

efforts have explored many different advanced vision transformer architecture designs [36, 9, 37, 38,101

19, 77, 74, 82, 21, 40, 71, 76] suitable for various dense prediction tasks. For example, MViT [37]102

focuses more on multi-scale representation learning, while HRFormer [77] examines the benefits of103

combining multi-scale representation learning and high-resolution representation learning. Instead of104

designing a novel vision transformer architecture for dense prediction, we focus on how to accelerate105

a well-trained vision transformer while maintaining the prediction performance as much as possible.106

3 Our Approach107

Preliminary. The conventional Vision Transformer [16] first reshapes the input image X ∈ RH×W×3108

into a sequence of flatten patches Xp ∈ RN×(P23), where (P,P) represents the resolution of each109

patch, (H,W) represents the resolution of the input image, N = (H×W)/P2 represents the number110

of resulting patches or tokens, i.e., the input sequence length. The Vision Transformer consists of al-111

ternating layers of multi-head self-attention (MHSA) and feed-forward network (FFN) accompanied112

with layer norm (LN) and residual connections:113

Z
′

l = MHSA (LN (Zl−1)) + Zl−1,

Zl = FFN
(
LN

(
Z

′

l

))
+ Z

′

l,
(1)

where l ∈ {1, . . . , L} represents the layer index, Zl ∈ RN×C, and Z0 is based on Xp. The computa-114

tion cost O(LNC(N+ C)) mainly depends on the number of layers L, the number of tokens N, and115

the channel dimension C.116

Despite the great success of transformer, its computation cost increases significantly when handling117

high-resolution representations, which are critical for dense prediction tasks. This paper attempts to118

resolve this issue by reducing the computation complexity during the inference stage, and presents a119
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Figure 2: (a) Plain high-resolution vision transformer with L layers. (b) U-shape High-to-low-
to-high-resolution vision transformer with α, β, and γ layers respectively (L = α + β + γ). (c)
Illustrating the details of using our approach to plain ViTs: we insert a token clustering layer and a
token reconstruction layer into a trained vision transformer in order to decrease and then increase the
spatial resolution, respectively. The weights of modules marked with are trained once based on the
configuration of (a). The token clustering layer and token reconstruction layer are marked with are
non-parametric, thus do not require any fine-tuning and can be included directly during evaluation.

very simple solution for generating a large number of efficient vision transformer models directly120

from a single trained vision transformer, requiring no further training or fine-tuning.121

We demonstrate how our approach could be applied to the existing standard Vision Transformer in122

Figure 2. The original Vision Transformer is modified using two non-parametric operations, namely123

a token clustering layer and a token reconstruction layer. The proposed token clustering layer is124

utilized to convert the high-resolution representations to low-resolution representations by clustering125

the locally semantically similar tokens. Then, we apply the following transformer layers on the126

low-resolution representations, which greatly accelerates the inference speed and saves computation127

resources. Last, a token reconstruction layer is proposed to reconstruct the feature representations128

back to high-resolution.129

Token Clustering Layer. We construct the token clustering layer following the improved SLIC130

scheme [30], which performs local k-means clustering as follows:131

-Initial superpixel center: We apply adaptive average pooling (AAP) over the high-resolution132

representations from the α-th layer to compute the h× w initial cluster center representations:133

Sα = AAP(Zα, (h× w)), (2)

where Sα ∈ Rhw×C, Zα ∈ RN×C, and hw ≪ N.134

-Iterative local clustering: (i) Expectation step: compute the normalized similarity between each pixel135

p and the surrounding superpixel i (we only consider the neighboring λ positions), (ii) Maximization136

step: compute the new superpixel centers:137

Qp,i =
exp

(
||Zα,p − Sα,i||2/τ

)
∑λ

j=1 exp
(
||Zα,p − Sα,j ||2/τ

) , Sα,i =

N∑
p=1

Qp,iZα,p, (3)

where we iterate the above Expectation step and Maximization step for κ times, τ is a temperature138

hyper-parameter, and i ∈ {1, 2, · · · , λ}. We apply the following β transformer layers on Sα instead139

of Zα, thus results in Sα+β and decreases the computation cost significantly.140

Token Reconstruction Layer. We implement the token reconstruction layer by exploiting the141

relations between the high-resolution representations and the low-resolution clustered representations:142
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Figure 3: Illustrating the details of using our approach for Swin Transformer [43, 44]: we apply
four groups of token clustering layer and token reconstruction layer within the four non-overlapped
windows marked with , , , and respectively, in the example referred to as window token
clustering layer and window token reconstruction layer. We apply the intermediate swin transformer
layers equipped with window size k× k) on the clustered window tokens. Window sizes before and
after token clustering layer are K× K and k× k, and vice versa, for the token reconstruction layer.

143

Zα+β,p =
∑

Sα,i∈k-NN(Zα,p)

exp
(
||Zα,p − Sα,i||2/τ

)∑
Sα,j∈k-NN(Zα,p)

exp
(
||Zα,p − Sα,j ||2/τ

)Sα+β,i, (4)

where τ is the same temperature hyper-parameter as in Equation 3. k-NN(Zα,p) represents a set144

of the k nearest, a.k.a, most similar, superpixel representations for Zα,i. We empirically find that145

choosing the same neighboring positions as in Equation 3 achieves close performance as the k-NN146

scheme while being more easy to implementation.147

In summary, we estimate their semantic relations based on the representations before refinement with148

the following β transformer layers and then reconstruct the high-resolution representations from the149

refined low-resolution clustered representations accordingly.150

Finally, we apply the remained γ transformer layers to the reconstructed high-resolution features151

and the task-specific head on the refined high-resolution features to predict the target results such as152

semantic segmentation maps or monocular depth maps.153

Extension to Swin Transformer. We further introduce the window token clustering layer and window154

token reconstruction layer, which are suitable for Swin Transformer [43, 44]. Figure 3 illustrates155

an example usage of the proposed window token clustering layer and window token reconstruction156

layer. We first cluster the K×K window tokens into k× k window tokens and then reconstruct K×K157

window tokens according to the refined k× k window tokens.We apply the swin transformer layer158

equipped with smaller window size k× k on the clustered representations, where we need to bi-linear159

interpolate the pre-trained weights of relative position embedding table from (2K− 1)×(2K− 1) to160

(2k− 1)×(2k− 1) when processing the clustered representations. In summary, we can improve the161

efficiency of Swin Transformer by injecting the window token clustering layer and the window token162

reconstruction layer into the backbones seamlessly without fine-tuning the model weights.163

4 Experiment164

We verify the effectiveness of our method across five challenging dense prediction tasks, including165

object detection, semantic segmentation, instance segmentation, panoptic segmentation, and monoc-166

ular depth estimation. We carefully choose the advanced SOTA methods that build the framework167

based on either the plain ViTs [16] or the Swin Transformers [43, 44]. We can integrate the proposed168

token clustering layer and token reconstruction layer seamlessly with the provided official trained169

checkpoints with no further fine-tuning required. More experimental details are illustrated as follows.170

4.1 Datasets171

COCO [42]. This dataset consists of 123K images with 896K annotated bounding boxes belonging172

to 80 thing classes and 53 stuff classes, where the train set contains 118K images and the val set173

contains 5K images. We report the object detection performance of SwinV2 + HTC++ [43] and the174

instance/panoptic segmentation performance of Mask2Former [12] on the val set.175

ADE20K [83]. This dataset contains challenging scenes with fine-grained labels and is one of the176

most challenging semantic segmentation datasets. The train set contains 20, 210 images with 150177
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semantic classes. The val set contains 2, 000 images. We report the segmentation results with178

Segmenter [60] on the val set.179

PASCAL-Context [49]. This dataset consists of 59 semantic classes plus a background class, where180

the train set contains 4, 996 images with and the val set contains 5, 104 images. We report the181

segmentation results with Segmenter [60] on the val set.182

Cityscapes [4]. This dataset is an urban scene understanding dataset with 30 classes while only 19183

classes are used for parsing evaluation. The train set and val set contains 2, 975 and 500 images184

respectively. We report the segmentation results with Segmenter [60] on the val set.185

KITTI [20]. This dataset provides stereo, optical flow, visual odometry (SLAM), and 3D object186

detection of outdoor scenes captured by equipment mounted on a moving vehicle. We choose187

DPT [51] as our baseline to conduct experiments on the monocular depth prediction tasks, which188

consists of around 26K images for train set and 698 images for val set, where only 653 images189

have the ground-truth depth maps and the image resolution is of 1, 241× 376.190

NYUv2 [56]. This dataset consists of 1, 449 RGBD images with resolution of 640 × 480, which191

captures 464 diverse indoor scenes and contains rich detailed dense annotations such as surface192

normals, segmentation maps, depth, 3D planes, and so on. We report the depth prediction results of193

DPT [51] evaluated on 655 val images.194

4.2 Evaluation Metrics195

We report the numbers of AP (average precision), mask AP (mask average precision), PQ (panoptic196

quality), mIoU (mean intersection-over-union), and RMSE (root mean squared error) across object197

detection, instance segmentation, panoptic segmentation, semantic segmentation, and depth estimation198

tasks respectively. Since the dense prediction tasks care less about the throughput used in image199

classification tasks [41], we report FPS to measure the latency and the number of GFLOPs to measure200

the model complexity during evaluation. FPS is tested on a single V100 GPU with Pytorch 1.10 and201

CUDA 10.2 by default. More details are provided in the supplementary material.202

4.3 Ablation Study Experiments203

We conduct the following ablation experiments on ADE20K semantic segmentation benchmark with204

the official checkpoints of Segmenter+ViT-L/16 [60]1 by default if not specified.205

Hyper-parameters of token clustering/reconstruction layer. We first study the influence of the206

hyper-parameters associated with the token clustering layer, i.e., the number of neighboring pixels λ207

used in Equation 3, the number of EM iterations κ, and the choice of the temperature τ in Table 1.208

According to the results, we can see that our method is relatively less sensitive to the choice of209

both λ and κ compared to τ . In summary, we choose λ as 5 × 5, κ as 5, and τ as 50 considering210

both performance and efficiency. Next, we also study the influence of the hyper-parameters within211

the token clustering layer, i.e., the number of nearest neighbors k within k-NN. We do not observe212

obvious differences and thus set k as 20. More details are provided in the supplementary material.213

Influence of cluster size choices. We study the influence of different cluster size h × w choices214

based on input feature map of size H
P × W

P = 40 × 40 (N = 1, 600)2 in Table 2. According to the215

results, we can see that choosing too small cluster sizes significantly harms the dense prediction216

performance, and setting h× w as 28× 28 achieves the better trade-off between performance drop217

and model complexity. Therefore, we choose 28× 28 on Segmenter+ViT-L/16 by default. We also218

empirically find that selecting the cluster size h× w around N/4 ∼ N/2 performs better on most of219

the other experiments. We conduct the following ablation experiments under two typical settings,220

including 20× 20 (∼ N/4) and 28× 28 (∼ N/2).221

Comparison with adaptive average pooling and bi-linear upsample. We report the comparison222

results between our proposed token clustering/reconstruction scheme and adaptive average pooling/bi-223

linear upsample scheme in Table 3 and Table 4 under two cluster size settings respectively. We choose224

to compare with adaptive average pooling and bi-linear upsample instead of strided convolution225

or deconvolution as the previous ones are non-parametric and the later ones require re-training or226

1https://github.com/rstrudel/segmenter#ade20k, MIT License
2We choose H×W = 640× 640 and P = 16, thus, H

P
× W

P
= 40× 40 or N = 1, 600, on ADE20K.
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Table 1: Influence of the hyper-parameters of token clustering/reconstruction layer.

Parameter λ κ τ k
3× 3 5× 5 7× 7 5 10 15 20 10 25 50 75 10 20 50

GFLOPs 438.6 438.9 439.6 438.9 439.6 440.2 440.8 438.9 438.9 438.9 439.0
mIoU 51.46 51.56 51.55 51.56 51.59 51.62 51.62 51.18 51.35 51.56 51.07 51.34 51.56 51.56

Table 2: Influence of the cluster size h× w.
Cluster size 8× 8 12× 12 16× 16 20× 20 24× 24 28× 28 32× 32 (baseline)
GFLOPs 274.0 290.9 315.1 347.2 388.2 438.9 659.0
mIoU 32.13 44.01 48.21 50.17 51.32 51.56 51.82

Table 3: Comparison with adap-
tive average pooling(AAP).
Cluster size 20× 20 28× 28
AAP 46.45 46.54
Ours 50.17 51.56

Table 4: Comparison with bi-
linear upsample.
Cluster size 20× 20 28× 28
Bi-linear 44.68 44.74
Ours 50.17 51.56

Table 5: Combination with lighter vision
transformer backbone.
Cluster size mIoU GFLOPs
Segmenter+ViT-B/16 48.48 124.7
Segmenter+ViT-B/16+Ours 48.40 91.9
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Figure 4: Influence of the inserted position α of token
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Figure 5: Influence of the inserted position α + β of
token reconstruction layer.

fine-tuning, which are not the focus of this work. Specifically, we keep the inserted position choices227

the same and only replace the token cluster or token reconstruction layer with adaptive average228

pooling or bi-linear upsampling under the same cluster size choices. According to the results, we229

can see that our proposed token clustering and token reconstruction consistently outperform adaptive230

average pooling and bi-linear upsampling under different cluster size choices.231

Influence of inserted position of token clustering/reconstruction layer. We investigate the232

influence of the inserted position of both token clustering layer and token reconstruction layer and233

summarize the detailed results in Figure 4 and Figure 5 under two different cluster size choices.234

According to the results shown in Figure 4, our method achieves better performance when choosing235

α larger than 10, therefore, we choose α = 10 as it achieves a better trade-off between model236

complexity and segmentation accuracy. Then we study the influence of the inserted positions of237

the token reconstruction layer by fixing α = 10. According to Figure 5, we can see that our238

method achieves the best performance when setting α+ β = 24, in other words, we insert the token239

reconstruction layer after the last transformer layer of ViT-L/16. We choose α = 10, α + β = 24,240

and γ = 0 for all ablation experiments on ADE20K by default if not specified.241

Combination with lighter vision transformer architecture. We report the results of applying242

our method to lighter vision transformer backbones such as ViT-B/16, in Table 5. Our approach243

consistently improves the efficiency of Segmenter+ViT-B/16 at the cost of a slight performance drop244

without fine-tuning. Specifically speaking, our approach saves more than 26% ↓ GFLOPs of a trained245

“Segmenter+ViT-B/16” with only a slight performance drop from 48.48% to 48.40%, which verifies246

our method also generalizes to lighter vision transformer architectures.247

Comparison with uniform downsampling. We compare our method with the simple uniform248

downsampling scheme, which directly downsamples the input image into a lower resolution. Figure 6249

summarizes the detailed comparison results. For example, on ADE20K, we downsample the input250

resolution from 640 × 640 to smaller resolutions (e.g., 592 × 592, 576 × 576, 560 × 560, and251

544× 544) and report their performance and GFLOPs in Figure 6. We also plot the results with our252

method and we can see that our method consistently outperforms uniform sampling on both ADE20K253

and PASCAL-Context under multiple different GFLOPs budgets.254
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detection task with SwinV2-L+ HTC++. ↑ and ↓ represent higher
is better and lower is better respectively.
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Figure 9: Illustrating the improvements of our approach and the comparisons with EViT [41] on ImageNet
classification tasks with SWAG+ViT-H/14 and SWAG+ViT-L/16.

4.4 Object Detection255

We use the recent SOTA object detection framework SwinV2-L + HTC++ [43] as our baseline. We256

summarize the results of combining our method with SwinV2-L + HTC++ on COCO object detection257

and instance segmentation tasks in Figure 7.258

Implementation details. The original SwinV2-L consists of {2,2,18,2} shifted window transformer259

blocks across the four stages. We only apply our method to the 3-rd stage with 18 blocks considering260

it dominates the computation overhead, which we also follow in the “Mask2Former + Swin-L”261

experiments. We insert the window token clustering/reconstruction layer after the 8-th/18-th block262

within the 3-rd stage, which are based on the official checkpoints 3 of SwinV2-L + HTC++. In other263

words, we set α = 12 and α+β = 22 for SwinV2-L. The default window size is K×K=32× 32 and264

we set the clustered window size as k× k=23× 23. We choose the values of other hyperparameters265

following the ablation experiments. According to the results summarized in Figure 7, compared to266

SwinV2-L + HTC++, our method improves the FPS by 21% ↑ and saves the GFLOPs by nearly267

20% ↓ while maintaining around 98% of object detection & instance segmentation performance.268

4.5 Semantic/Instance/Panoptic Segmentation269

We first apply our method to a plain ViT-based segmentation framework Segmenter [60] and illustrate270

the semantic segmentation results across three benchmarks including ADE20K, PASCAL-Context,271

and Cityscapes on the first row of Figure 1. Then, we apply our method to a very recent framework272

Mask2Former [12] that is based on Swin Transformer and summarize the instance and panoptic273

segmentation results on COCO in Figure 8.274

Implementation details. The original ViT-L first splits an image into a sequence of image patches of275

size 16× 16 and applies a patch embedding layer to increase the channel dimensions to 1024, then276

3https://github.com/microsoft/Swin-Transformer, MIT License
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Table 6: Depth estimation results based on DPT [51] with ResNet-50+ViT-B/16.
Dataset Method GFLOPs FPS δ>1.25 δ>1.252 δ>1.253 AbsRel SqRel RMSE RMSElog SILog log10

KITTI DPT 810 11.38 0.959 0.995 0.999 0.062 0.222 2.573 0.092 8.282 0.027
DPT+Ours 627 14.75 0.958 0.995 0.999 0.062 0.226 2.597 0.093 8.341 0.027

NYUv2 DPT 560 17.58 0.904 0.988 0.998 0.110 0.054 0.357 0.129 9.522 0.045
DPT+Ours 404 24.03 0.900 0.987 0.998 0.113 0.056 0.363 0.132 9.532 0.046

applies 24 consecutive transformer encoder layers for representation learning. To apply our method277

to the ViT-L backbone of Segmenter, we use the official checkpoints 4 of “Segmenter + ViT-L/16”278

and insert the token clustering layers and token reconstruction layer into the ViT-L/16 backbone279

without fine-tuning.280

For the Mask2Former built on Swin-L with window size as 12× 12, we use the official checkpoints 5281

of “Mask2Former + Swin-L” and insert the window token clustering layer and the window token282

reconstruction layer into the empirically chosen positions, which first cluster 12 × 12 tokens into283

8 × 8 tokens and then reconstruct 12 × 12 tokens within each window. Figure 8 summarizes the284

detailed comparison results. Accordingly, we can see that our method significantly improves the FPS285

by more than 35% ↑ with a slight performance drop on COCO panoptic segmentation task.286

4.6 Monocular Depth Estimation287

To verify the generalization of our approach, we apply our method to depth estimation tasks that288

measure the distance of each pixel relative to the camera. We choose the DPT (Dense Prediction289

Transformer) [51] that builds on the hybrid vision transformer, i.e., R50+ViT-B/16, following [16].290

Implementation details. The original R50+ViT-B/16 6 consists of a ResNet50 followed by a ViT-291

B/16, where the ViT-B/16 consists of 12 transformer encoder layers that process 16× downsampled292

representations. We insert the token clustering layer & token reconstruction layer into ViT-B/16 and293

summarize the results on both KITTI and NYUv2 on the second row of Figure 1. We also report their294

detailed depth estimation results in Table 6, where we can see that our method accelerates DPT by295

nearly 30%/37% ↑ on KITTI/NYUv2, respectively.296

4.7 ImageNet-1K Classification297

Finally, we apply our method to the ImageNet-1K classification task and compare our method with a298

very recent SOTA method EViT [41]. The key idea of EViT is to identify and only keep the top-k299

tokens according to their attention scores relative to the [class] token. We empirically find that300

applying EViT for dense prediction tasks directly suffers from significant performance drops. More301

details are illustrated in the supplementary material.302

Implementation details. We choose the recent SWAG [58] as our baseline, which exploits 3.6 billion303

weakly labeled images associated with around 27K categories (or hashtags) to pre-train the large-scale304

vision transformer models, i.e., ViT-L/16 and ViT-H/14. According to their official implementations 7,305

SWAG + ViT-H/14 and SWAG + ViT-L/16 achieve 88.55% and 88.07% top-1 accuracy on ImaegNet-306

1K respectively. We apply our approach and EViT to both baselines and summarize the comparison307

results in Figure 9. According to the results, our method achieves comparable results as EViT while308

being more efficient, which further verifies that our method also generalizes to the image classification309

tasks without fine-tuning.310

5 Conclusion311

In this paper, we present a simple and effective mechanism to improve the efficiency of large-scale312

vision transformer models for dense prediction tasks. In light of the relatively high costs associated313

with re-training or fine-tuning large vision transformer models on various dense prediction tasks, our314

study provides a very lightweight method for expediting the inference process while requiring no315

additional fine-tuning. We hope our work could inspire further research efforts into exploring how to316

accelerate large-scale vision transformers for dense prediction tasks without fine-tuning.317

4https://github.com/rstrudel/segmenter#model-zoo, MIT License
5https://github.com/facebookresearch/Mask2Former/blob/main/MODEL_ZOO.md, CC-BY-NC

4.0
6https://github.com/isl-org/DPT, MIT License
7https://github.com/facebookresearch/SWAG, CC-BY-NC 4.0
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