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Abstract

Consider the sequential optimization of a continuous, possibly non-convex, and1

expensive to evaluate objective function f . The problem can be cast as a Gaussian2

Process (GP) bandit where f lives in a reproducing kernel Hilbert space (RKHS).3

The state of the art analysis of several learning algorithms shows a significant gap4

between the lower and upper bounds on the simple regret performance. When N is5

the number of exploration trials and γN is the maximal information gain, we prove6

an Õ(
√
γN/N) bound on the simple regret performance of a pure exploration7

algorithm that is significantly tighter than the existing bounds. We show that this8

bound is order optimal up to logarithmic factors for the cases where a lower bound9

on regret is known. To establish these results, we prove novel and sharp confidence10

intervals for GP models applicable to RKHS elements which may be of broader11

interest.12

1 Introduction13

Sequential optimization has evolved into one of the fastest developing areas of machine learning [1].14

We consider sequential optimization of an unknown objective function from noisy and expensive to15

evaluate zeroth-order1 observations. That is a ubiquitous problem in academic research and industrial16

production. Examples of applications include exploration in reinforcement learning, recommendation17

systems, medical analysis tools and speech recognizers [4]. A notable application in the field of18

machine learning is automatic hyper-parameter tuning. Prevalent methods such as grid search can19

be prohibitively expensive [5, 6]. Sequential optimization methods, on the other hand, are shown to20

efficiently find good hyper-parameters by an adaptive exploration of the hyper-parameter space [7].21

Our sequential optimization setting is as follows. Consider an objective function f defined over22

a domain X ⊂ Rd, where d ∈ N is the dimension of the input. A learning algorithm is allowed23

to perform an adaptive exploration to sequentially observe the potentially corrupted values of the24

objective function {f(xn) + εn}Nn=1, where εn are random noises. At the end of N exploration trials,25

the learning algorithm returns a candidate maximizer x̂∗N ∈ X of f . Let x∗ ∈ argmaxx∈X f(x) be a26

true optimal solution. We may measure the performance of the learning algorithm in terms of simple27

regret; that is, the difference between the performance under the true optimal, f(x∗), and that under28

the learnt value, f(x̂∗N ).29

Our formulation falls under the general framework of continuum armed bandits that signifies receiving30

feedback only for the selected observation point xn at each time n [8, 9, 10, 11]. Bandit problems have31

been extensively studied under numerous settings and various performance measures including simple32

regret [see, e.g., 10, 12, 13], cumulative regret [see, e.g., 14, 15, 16], and best arm identification [see,33

1Zeroth-order feedback signifies observations from f in contrast to first-order feedback which refers to
observations from gradient of f as e.g. in stochastic gradient descent [see, e.g., 2, 3].
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e.g., 17, 18]. The choice of performance measure strongly depends on the application. Simple regret34

is suitable for situations with a preliminary exploration phase (for instance hyper-parameter tuning)35

in which costs are not measured in terms of rewards but rather in terms of resources expended [10].36

Due to infinite cardinality of the domain, approaching f(x∗) is feasible only when appropriate37

regularity assumptions on f and noise are satisfied. Following a growing literature [19, 20, 21, 22],38

we focus on a variation of the problem where f is assumed to belong to a reproducing kernel Hilbert39

space (RKHS) that is a very general assumption. Almost all continuous functions can be approximated40

with the RKHS elements of practically relevant kernels such as Matérn family of kernels [19]. We41

consider two classes of noise: sub-Gaussian and light-tailed.42

Our regularity assumption on f allows us to utilize Gaussian processes (GPs) which provide powerful43

Bayesian (surrogate) models for f [23]. Sequential optimization based on GP models is often referred44

to as Bayesian optimization in the literature [4, 24, 25]. We build on prediction and uncertainty45

estimates provided by GP models to study an efficient adaptive exploration algorithm referred to as46

Maximum Variance Reduction (MVR). Under simple regret measure, MVR embodies the simple47

principle of exploring the points with the highest variance first. Intuitively, the variance in the GP48

model is considered as a measure of uncertainty about the unknown objective function and the49

exploration steps are designed to maximally reduce the uncertainty. At the end of exploration trials,50

MVR returns a candidate maximizer based on the prediction provided by the learnt GP model. With51

its simple structure, MVR is amenable to a tight analysis that significantly improves the best known52

bounds on simple regret. To this end, we derive novel and sharp confidence intervals for GP models53

applicable to RKHS elements. In addition, we provide numerical experiments on the simple regret54

performance of MVR comparing it to GP-UCB [19, 20], GP-PI [26] and GP-EI [26].55

1.1 Main Results56

Our main contributions are as follows.57

We first derive novel confidence intervals for GP models applicable to RKHS elements (Theorems 158

and 2). As part of our analysis, we formulate the posterior variance of a GP model as the sum59

of two terms: the maximum prediction error from noise-free observations, and the effect of noise60

(Proposition 1). This interpretation elicits new connections between GP regression and kernel ridge61

regression [27]. These results are of interest on their own.62

We then build on the confidence intervals for GP models to provide a tight analysis of the simple63

regret of the MVR algorithm (Theorem 3). In particular, we prove a high probability Õ(
√

γN
N )264

simple regret, where γN is the maximal information gain (see § 2.4). In comparison to the existing65

Õ( γN√
N

) bounds on simple regret [see, e.g., 19, 20, 28], we show an O(
√
γN ) improvement. It is66

noteworthy that our bound guarantees convergence to the optimum value of f , while previous Õ( γN√
N

)67

bounds do not, since although γN grows sublinearly with N , it can grow faster than
√
N .68

We then specialize our results for the particular cases of practically relevant Matérn and Squared69

Exponential (SE) kernels. We show that our regret bounds match the lower bounds and close the gap70

reported in [28, 29], who showed that an average simple regret of ε requires N = Ω
(

1
ε2 (log( 1

ε ))
d
2

)
71

exploration trials in the case of SE kernel. For the Matérn-ν kernel (where ν is the smoothness72

parameter, see § 2.1) they gave the analogous bound of N = Ω
(

( 1
ε )2+

d
ν

)
. They also reported a73

significant gap between these lower bounds and the upper bounds achieved by GP-UCB algorithm.74

In Corollary 1, we show that our analysis of MVR closes this gap in the performance and establishes75

upper bounds matching the lower bounds up to logarithmic factors.76

In contrast to the existing results which mainly focus on Gaussian and sub-Gaussian distributions for77

noise, we extend our analysis to the more general class of light-tailed distributions, thus broadening78

the applicability of the results. This extension increases both the confidence interval width and the79

simple regret by only a multiplicative logarithmic factor. These results apply to e.g. the privacy80

preserving setting where often a light-tailed noise is employed [30, 31, 32].81

2The notations O and Õ are used to denote the mathematical order and the mathematical order up to
logarithmic factors, respectively.
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1.2 Literature Review82

The celebrated work of Srinivas et al. [19] pioneered the analysis of GP bandits by proving an83

Õ(γN
√
N) upper bound on the cumulative regret of GP-UCB, an optimistic optimization algorithm84

which sequentially selects xn that maximize an upper confidence bound score over the search space.85

That implies an Õ( γN√
N

) simple regret [28]. Their analysis relied on deriving confidence intervals for86

GP models applicable to RKHS elements. They also considered a fully Bayesian setting where f is87

assumed to be a sample from a GP and noise is assumed to be Gaussian. [20] built on feature space88

representation of GP models and self-normalized martingale inequalities, first developed in [33] for89

linear bandits, to improve the confidence intervals of [19] by a multiplicative log(N) factor. That led90

to an improvement in the regret bounds by the same multiplicative log(N) factor. A discussion on91

the comparison between these results and the confidence intervals derived in this paper is provided92

in § 3.3. A technical comparison with some recent advances in regret bounds requires introducing93

new notations and is deferred to Appendix A.94

The performance of Bayesian optimization algorithms has been extensively studied under numer-95

ous settings including contextual information [34], high dimensional spaces [35, 36], safety con-96

straints [37, 38], parallelization [39], meta-learning [40], multi-fidelity evaluations [41], ordinal97

models [42], corruption tolerance [43, 29], and neural tangent kernels [44, 45]. [46] introduced an98

adaptive discretization of the search space improving the computational complexity of a GP-UCB99

based algorithm. Sparse approximation of GP posteriors are shown to preserve the regret orders while100

improving the computational complexity of Bayesian optimization algorithms [36, 47, 48]. Under101

the RKHS setting with noisy observations, GP-TS [20] and GP-EI [49, 50] are also shown to achieve102

the same regret guarantees as GP-UCB (up to logarithmic factors). All these works report Õ( γN√
N

)103

regret bounds.104

The regret bounds are also reported under other often simpler settings such as noise-free ob-105

servations [51, 52, εn = 0,∀n] or a Bayesian regret that is averaged over a known prior on106

f [39, 53, 54, 55, 56, 57, 58, 59], rather than for a fixed and unknown f as in our setting.107

Other lines of work on continuum armed bandits exist relying on other regularity assumptions such108

as Lipschitz continuity [9, 11, 12, 60], convexity [61] and unimodality [62], to name a few. A109

notable example is [11] who showed that hierarchical algorithms based on tree search yieldO(N
d+1
d+2 )110

cumulative regret. We do not compare with these results due to the inherent difference in the regularity111

assumptions.112

1.3 Organization113

In § 2, the problem formulation, the regularity assumptions, and the preliminaries on RKHS and114

GP models are presented. The novel confidence intervals for GP models are proven in § 3. MVR115

algorithm and its analysis are given in § 4. The experiments are presented in § 5. We conclude with a116

discussion in § 6.117

2 Problem Formulation and Preliminaries118

Consider an objective function f : X → R, where X ⊆ Rd is a convex and compact domain.119

Consider an optimal point x∗ ∈ argmaxx∈X f(x). A learning algorithm A sequentially selects120

observation points {xn ∈ X}n∈N and observes the corresponding noise disturbed objective values121

{yn = f(xn) + εn}n∈N, where εn is the observation noise. We use the notationsHn = {Xn, Yn},122

Xn = [x1, x2, ..., xn]>, Yn = [y1, y2, ..., yn]>, xn ∈ X , yn ∈ R, for all n ≥ 1. In a simple regret123

setting, the learning algorithm determines a sequence of mappings {Sn}n≥1 where each mapping124

Sn : Hn → X predicts a candidate maximizer x̂∗n. For algorithm A, the simple regret under a budget125

of N tries is defined as126

rAN = f(x∗)− f(x̂∗N ). (1)

The budget N may be unknown a priori. Notationwise, we use Fn = [f(x1), f(x2), . . . , f(xn)]>127

and En = [ε1, ε2, . . . , εn]> to denote the noise free part of the observations and the noise history,128

respectively, similar to Xn and Yn.129
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2.1 Gaussian Processes130

The Bayesian optimization algorithms build on GP (surrogate) models. A GP is a random process131

{f̂(x)}x∈X , where each of its finite subsets follow a multivariate Gaussian distribution. The distribu-132

tion of a GP is fully specified by its mean function µ(x) = E[f̂(x)] and a positive definite kernel (or133

covariance function) k(x, x′) = E
[
(f̂(x)− µ(x))(f̂(x′)− µ(x′))

]
. Without loss of generality, it is134

typically assumed that ∀x ∈ X , µ(x) = 0 for prior GP distributions.135

Conditioning GPs on available observations provides us with powerful non-parametric Bayesian136

(surrogate) models over the space of functions. In particular, using the conjugate property, conditioned137

on Hn, the posterior of f̂ is a GP with mean function µn(x) = E[f̂(x)|Hn] and kernel function138

kn(x, x′) = E[(f̂(x)− µn(x))(f̂(x′)− µn(x′))|Hn] specified as follows:139

µn(x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
Yn,

kn(x, x) = k(x, x)− k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
k(x,Xn), σ2

n(x) = kn(x, x), (2)

where with some abuse of notation k(x,Xn) = [k(x, x1), k(x, x2), . . . , k(x, xn)]>, k(Xn, Xn) is140

the covariance matrix, k(Xn, Xn) = [k(xi, xj)]
n
i,j=1, In is the identity matrix of dimension n and141

λ > 0 is a real number.142

In practice, Matérn and squared exponential (SE) are the most commonly used kernels for Bayesian143

optimization [see, e.g., 4, 24],144

kMatérn(x, x′) =
1

Γ(ν)2ν−1

(√
2νρ

l

)ν
Bν

(√
2νρ

l

)
, kSE(x, x′) = exp

(
− ρ

2

2l2

)
,

where l > 0 is referred to as lengthscale, ρ = ||x− x′||l2 is the Euclidean distance between x and x′,145

ν > 0 is referred to as the smoothness parameter, Γ and Bν are, respectively, the Gamma function146

and the modified Bessel function of the second kind. Variation over parameter ν creates a rich family147

of kernels. The SE kernel can also be interpreted as a special case of Matérn family when ν →∞.148

2.2 RKHSs and Regularity Assumptions on f149

Consider a positive definite kernel k : X × X → R with respect to a finite Borel measure (e.g., the150

Lebesgue measure) supported on X . A Hilbert space Hk of functions on X equipped with an inner151

product 〈·, ·〉Hk is called an RKHS with reproducing kernel k if the following is satisfied. For all152

x ∈ X , k(·, x) ∈ Hk, and for all x ∈ X and f ∈ Hk, 〈f, k(·, x)〉Hk = f(x) (reproducing property).153

A constructive definition of RKHS requires the use of Mercer theorem which provides an alternative154

representation for kernels as an inner product of infinite dimensional feature maps [e.g., 27, Theorem155

4.1], and is deferred to Appendix B. We have the following regularity assumption on the objective156

function f .157

Assumption 1 The objective function f is assumed to live in the RKHS corresponding to a positive158

definite kernel k. In particular, ||f ||Hk ≤ B, for some B > 0, where ‖f‖2Hk = 〈f, f〉Hk .159

For common kernels, such as Matérn family of kernels, members of Hk can uniformly approximate160

any continuous function on any compact subset of the domain X [19]. This is a very general class of161

functions; more general than e.g. convex or Lipschitz. It has thus gained increasing interest in recent162

years.163

2.3 Regularity Assumptions on Noise164

We consider two different cases regarding the regularity assumption on noise. Let us first revisit the165

definition of sub-Gaussian distributions.166

Definition 1 A random variableX is called sub-Gaussian if its moment generating functionM(h) ,167

E[exp(hX)] is upper bounded by that of a Gaussian random variable.168

The sub-Gaussian assumption implies that E[X] = 0. It also allows us to use Chernoff-Hoeffding169

concentration inequality [63] in our analysis.170
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We next recall the definition of light-tailed distributions.171

Definition 2 A random variable X is called light-tailed if its moment-generating function exists, i.e.,172

there exists h0 > 0 such that for all |h| ≤ h0, M(h) <∞.173

For a zero mean light-tailed random variable X , we have [64]174

M(h) ≤ exp(ξ0h
2/2), ∀|h| ≤ h0, ξ0 = sup{M (2)(h), |h| ≤ h0}, (3)

whereM (2)(.) denotes the second derivative ofM(.) and h0 is the parameter specified in Definition 2.175

We observe that the upper bound in (3) is the moment generating function of a zero mean Gaussian176

random variable with variance ξ0. Thus, light-tailed distributions are also called locally sub-Gaussian177

distributions [65].178

We provide confidence intervals for GP models and regret bounds for MVR under each of the179

following assumptions on the noise terms.180

Assumption 2 (Sub-Gaussian Noise) The noise terms εn are i.i.d. over n. In addition, ∀h ∈181

R,∀n ∈ N,E[ehεn ] ≤ exp(h
2R2

2 ), for some R > 0.182

Assumption 3 (Light-Tailed Noise) The noise terms εn are i.i.d. zero mean random variables over183

n. In addition, ∀h ≤ h0,∀n ∈ N,E[ehεn ] ≤ exp(h
2ξ0
2 ), for some ξ0 > 0.184

Bayesian optimization uses GP priors for the objective function f and assumes a Gaussian distribution185

for noise (for its conjugate property). It is noteworthy that the use of GP models is merely for the186

purpose of algorithm design and does not affect our regularity assumptions on f and noise. We use187

the notation f̂ to distinguish the GP model from the fixed f .188

2.4 Maximal Information Gain189

The regret bounds derived in this work are given in terms of the maximal information gain, defined190

as γN = supXN⊆X I(YN ; f̂), where I(YN ; f̂) denotes the mutual information between Yn and191

f̂ [see, e.g., 66, Chapter 2]. In the case of a GP model, the mutual information can be given as192

I(Yn; f̂) = 1
2 log det

(
In + 1

λ2 k(Xn, Xn)
)
, where det denotes the determinant of a square matrix.193

Note that the maximal information gain is kernel-specific and XN -independent. Upper bounds on γN194

are derived in [19, 21, 22] which are commonly used to provide explicit regret bounds. In the case of195

Matérn and SE , γN = O
(
N

d
2ν+d (log(N))

2ν
2ν+d

)
and γN = O

(
(log(N))d+1

)
, respectively [22].196

3 Confidence Intervals for Gaussian Process Models197

The analysis of bandit problems classically builds on confidence intervals applicable to the values of198

the objective function [see, e.g., 67, 68]. The GP modelling allows us to create confidence intervals199

for complex functions over continuous domains. In particular, we utilize the prediction (µn) and200

the uncertainty estimate (σn) provided by GP models in building the confidence intervals which201

become an important building block of our analysis in the next section. To this end, we first prove202

the following proposition which formulates the posterior variance of a GP model as the sum of two203

terms: the maximum prediction error for an RKHS element from noise free observations and the204

effect of noise.205

Proposition 1 Let σ2
n be the posterior variance of the surrogate GP model as defined in (2). Let206

Z>n (x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
. We have207

σ2
n(x) = sup

f :||f ||Hk≤1
(f(x)− Z>n (x)Fn)2 + λ2‖Zn(x)‖2l2 .

Notice that the first term f(x)− Z>n (x)Fn captures the maximum prediction error from noise free208

observations Fn. The second term captures the effect of noise in the surrogate GP model (and is209

independent of Fn). A detailed proof for Proposition 1 is provided in Appendix C.210
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Proposition 1 elicits new connections between GP models and kernel ridge regression. While the211

equivalence of the posterior mean in GP models and the regressor in kernel ridge regression is well212

known, the interpretation of posterior variance of GP models as the maximum prediction error for213

an RKHS element is less studied [see 27, Section 3, for a detailed discussion on the connections214

between GP models and kernel ridge regression].215

3.1 Confidence Intervals under Sub-Gaussian Noise216

The following theorem provides a confidence interval for GP models applicable to RKHS elements217

under the assumption that the noise terms are sub-Gaussian.218

Theorem 1 Assume Assumptions 1 and 2 hold. Provided n noisy observations Hn = {Xn, Yn}219

from f , let µn and σn be as defined in (2). Assume Xn are independent of En. For a fixed x ∈ X ,220

define the upper and lower confidence bounds, respectively,221

Uδn(x) , µn(x) + (B + β(δ))σn(x), and Lδn(x) , µn(x)− (B + β(δ))σn(x), (4)

with β(δ) = R
λ

√
2 log(1

δ ), where δ ∈ (0, 1), and B and R are the parameters specified in Assump-222

tions 1 and 2. We have223

f(x) ≤ Uδn(x) w.p. at least 1− δ, and f(x) ≥ Lδn(x) w.p. at least 1− δ.

We can write the difference in the objective function and the posterior mean as follows.224

f(x)− µn(x) = f(x)− Z>n (x)Yn = f(x)− Z>n (x)Fn︸ ︷︷ ︸
Prediction error from noise free observations

− Z>n (x)En︸ ︷︷ ︸
The effect of noise

.

The first term can be bounded directly following Proposition 1. The second term is bounded as a225

result of Proposition 1 and Chernoff-Hoeffding inequality. A detailed proof of Theorem 1 is provided226

in Appendix D.227

3.2 Confidence Intervals under Light-Tailed Noise228

We now extend the confidence intervals to the case of light-tailed noise. The main difference with229

sub-Gaussian noise is that Chernoff-Hoeffding inequality is no more applicable. We derive new230

bounds accounting for light-tailed noise in the analysis of Theorem 2.231

Theorem 2 Assume Assumptions 1 and 3 hold. For a fixed x ∈ X , define the upper and lower confi-232

dence bounds U δn(x) and Lδn(x) similar to Theorem 1 with β(δ) = 1
λ

√
2
(
ξ0 ∨

2 log( 1
δ )

h2
0

)
log( 1

δ ) 3,233

where δ ∈ (0, 1), andB, h0 and ξ0 are specified in Assumptions 1 and 3. AssumeXn are independent234

of En. We have235

f(x) ≤ U δn(x) w.p. at least 1− δ, and f(x) ≥ Lδn(x) w.p. at least 1− δ.

In comparison to Theorem 1, under the light-tailed assumption, the confidence interval width increases236

with a multiplicative O(
√

log( 1
δ )) factor. A detailed proof of Theorem 2 is provided in Appendix D.237

Remark 1 Theorems 1 and 2 rely on the assumption that Xn are independent of En. As we shall see238

in § 4, this assumption is satisfied when the confidence intervals are applied to the analysis of MVR.239

3.3 Comparison with the Existing Confidence Intervals240

The most relevant work to our Theorems 1 and 2 is [20, Theorem 2] which itself was an improvement241

over [19, Theorem 6]. [20] built on feature space representation of GP kernels and self-normalized242

martingale inequalities [33, 69] to establish a 1 − δ confidence interval in the same form as in243

Theorem 1, under Assumptions 1 and 2, with confidence interval widthB+R
√

2(γn + 1 + log(1
δ )) 4244

3The notation ∨ is used to denote the maximum of two real numbers, ∀a, b ∈ R, (a ∨ b) , max(a, b).
4The effect of λ is absorbed in γn.
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(instead of B + β(δ)). There is a stark contrast between this confidence interval and the one given in245

Theorem 1 in its dependence on γn which has a relatively large and possibly polynomial in n value.246

That contributes an extra O(
√
γN ) multiplicative factor to regret.247

Neither of these two results (our Theorem 1 and [20, Theorem 2]) imply the other. Although our248

confidence interval is much tighter, there are two important differences in the settings of these249

theorems. One difference is in the probabilistic dependencies between the observation points xn and250

the noise terms {εj}j<n. While Theorem 1 assumes thatXn are independents ofEn, [20, Theorem 2]251

allows for the dependence of xn on the previous noise terms {εj}j<n. This is a reflection of the252

difference in the analytical requirements of MVR and GP-UCB. The other difference is that [20,253

Theorem 2] holds for all x ∈ X . While, Theorem 1 holds for a single x ∈ X . As we will see254

in § 4.2, a probability union bound can be used to obtain confidence intervals applicable to all x in255

(a discretization of) X , which contributes only logarithmic terms to regret in contrast to O(
√
γn).256

Roughly speaking, we are trading off the extra O(
√
γn) term for restricting the confidence interval to257

hold for a single x. It remains an open problem whether the same can be done when xn are allowed258

to depend on {εj}j<n.259

4 Maximum Variance Reduction and Simple Regret260

In this section, we first formally present an exploration policy based on GP models referred to as261

Maximum Variance Reduction (MVR). We then utilize the confidence intervals for GP models derived262

in § 3 to prove bounds on the simple regret of MVR.263

4.1 Maximum Variance Reduction Algorithm264

MVR relies on the principle of reducing the maximum uncertainty where the uncertainty is measured265

by the posterior variance of the GP model. After N exploration trials, MVR returns a candidate266

maximizer according to the prediction provided by the learnt GP model. A pseudo-code is given in267

Algorithm 1.268

Algorithm 1 Maximum Variance Reduction (MVR)

1: Initialization: k, X , f , σ2
0(x) = k(x, x).

2: for n = 1, 2, . . . , N do
3: xn = argmaxx∈Xσ

2
n−1(x), where a tie is broken arbitrarily.

4: Update σ2
n(.) according to (2).

5: end for
6: Update µN (.) according to (2)
7: return x̂∗N = argmaxx∈XµN (x), where a tie is broken arbitrarily.

4.2 Regret Analysis269

For the analysis of MVR, we assume there exists a fine discretization of the domain for RKHS270

elements, which is a standard assumption in the literature [see, e.g., 19, 20, 48].271

Assumption 4 For each given n ∈ N and f ∈ Hk with ‖f‖Hk ≤ B, there exists a discretization Dn272

of X such that f(x)− f([x]n) ≤ 1√
n

, where [x]n = argminx′∈Dn ||x
′ − x||l2 is the closest point in273

Dn to x, and |Dn| ≤ CBdnd/2, where C is a constant independent of n and B.274

Assumption 4 is a mild assumption that holds for typical kernels such as SE and Matérn [19, 20]. The275

following theorem provides a high probability bound on the regret performance of MVR when the276

noise terms satisfy either Assumption 2 or 3.277

Theorem 3 Consider the Gaussian process bandit problem. Under Assumptions 1, 4, and (2 or 3),278

for δ ∈ (0, 1), with probability at least 1− δ, MVR satisfies279

rMVR
N ≤

√
2γN

log(1 + 1
λ2 )N

2B + β(
δ

3
) + β

(
δ

3C
(
B +

√
Nβ(2δ/3N)

)d
Nd/2

)+
2√
N
,
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where under Assumption 2, β(δ) = R
λ

√
2 log(1

δ ), and under Assumption 3, β(δ) =280

1
λ

√
2
(
ξ0 ∨

2 log( 1
δ )

h2
0

)
log( 1

δ ), and B, R, h0, ξ0, and C are the constants specified in Assump-281

tions 1, 2, 3 and 4.282

A detailed proof of the theorem is provided in Appendix E.283

Remark 2 Under Assumptions 2 and 3, respectively, the regret bounds can be simplified as284

rMVR
N = O(

√
γN log(Nd/δ)

N
), and rMVR

N = O
(√

γN
N

log(Nd/δ)

)
.

For instance, in the case of Matérn-ν kernel, under Assumption 2 and 3, respectively,285

rMVR
N = O

(
N

−ν
2ν+d (log(N))

ν
2ν+d

√
log(Nd/δ)

)
, and rMVR

N = O
(
N

−ν
2ν+d (log(N))

ν
2ν+d log(Nd/δ)

)
,

which always converge to zero as N grows (unlike the existing regret bounds).286

Remark 3 In the analysis of Theorem 3, we apply Assumption 4 to µN as well as f . For this287

purpose, we derive a high probability B +
√
Nβ(2δ/3N) upper bound on ‖µN‖Hk (see Lemma 4288

in Appendix E), which appears in the regret bound expression.289

4.3 Optimal Order Simple Regret with SE and Matérn Kernels290

To enable a direct comparison with the lower bounds on simple regret proven in [28, 29], in the291

following corollary, we state a dual form of Theorem 3 for the Matérn and SE kernels. Specifically292

we formalize the number of exploration trials required to achieve an average ε regret.293

Corollary 1 Consider the GP bandit problem with an SE or a Matérn kernel. For ε ∈ (0, 1), define294

Nε = min{N ∈ N : E[rMVR
n ] ≤ ε,∀n ≥ N}. Under Assumptions 1, 4, and (2 or 3), upper bounds295

on Nε are reported in Table 1.296

Table 1: The upper bounds on Nε defined in Corollary 1 with SE or Matérn kernel.
Kernel Under Assumption 2 Under Assumption 3

SE Nε = O
(
( 1
ε )2 log( 1

ε )d+2
)

Nε = O
(
( 1
ε )2 log( 1

ε )d+3
)

Matérn-ν Nε = O
(

( 1
ε )2+

d
ν (log( 1

ε )
4ν+d
2ν )

)
Nε = O

(
( 1
ε )2+

d
ν (log( 1

ε )
6ν+2d

2ν )
)

A proof is provided in Appendix F. [28, 29] showed that for the SE kernel, an average simple regret297

of ε requires Nε = Ω
(

1
ε2 (log( 1

ε ))
d
2

)
. For the Matérn-ν kernel they gave the analogous bound of298

Nε = Ω
(

( 1
ε )2+

d
ν

)
. They also reported significant gaps between these lower bounds and the existing299

results [see, e.g., 28, Table I]. Comparing with Corollary 1, our bounds are tight in all cases up to300

log(1/ε) factors.301

5 Experiments302

In this section, we provide numerical experiments on the simple regret performance of MVR,303

Improved GP-UCB (IGP-UCB) as presented in [20], and GP-PI and GP-EI as presented in [26].304

We follow the experiment set up in [20] to generate test functions from the RKHS. First, 100 points305

are uniformly sampled from interval [0, 1]. A GP sample with kernel k is drawn over these points.306

Given this sample, the mean of posterior distribution is used as the test function f . Parameter λ2 is307

set to 1% of the function range. For IGP-UCB we set the parameters exactly as described in [20].308

The GP model is equipped with SE or Matérn-2.5 kernel with l = 0.2. We use 2 different models for309

the noise: a zero mean Gaussian with variance equal to λ2 (a sub-Gaussian distribution) and a zero310
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mean Laplace with scale parameter equal to λ (a light-tailed distribution). We run each experiment311

over 25 independent trials and plot the average simple regret in Figure 1. More experiments on two312

commonly used benchmark functions for Bayesian optimization (Rosenbrock and Hartman3) are313

reported in Appendix G. Further details on the experiments and the source code are provided in the314

supplementary material.315

(a) SE, Gaussian Noise (b) Matérn, Gaussian Noise

(c) SE, Laplace Noise (d) Matérn, Laplace Noise

Figure 1: Comparison of the simple regret performance of Bayesian optimization algorithms on
samples from RKHS.

6 Discussion316

In this paper, we proved novel and sharp confidence intervals for GP models applicable to RKHS317

elements. We then built on these results to prove Õ(
√
γN/N) bounds for the simple regret of an318

adaptive exploration algorithm under the framework of GP bandits. In addition, for the practically319

relevant SE and Matérn kernels, where a lower bound on regret is known [28, 29], we showed the320

order optimality of our results up to logarithmic factors. That closes a significant gap in the literature321

of analysis of Bayesian optimization algorithms under the performance measure of simple regret.322

The limitation of our work adhering to simple regret is that neither our theoretical nor experimental323

result proves that MVR is a better algorithm in practice. Overall, exploration-exploitation oriented324

algorithms such as GP-UCB may perform worse than MVR in terms of simple regret due to two325

reasons. One is over-exploitation of local maxima when f is multi-modal, and the other is dependence326

on an exploration-exploitation balancing hyper-parameter that is often set too conservatively, to327

guarantee low regret bounds. Furthermore, their existing analytical regret bounds are suboptimal and328

possibly vacuous (non-diminishing; when γN grows faster than
√
N , as discussed). On the other329

hand, when compared in terms of cumulative regret (
∑N
n=1 f(x∗)− f(xn)), MVR suffers from a330

linear regret.331

The main value of our work is in proving tight bounds on the simple regret of a GP based exploration332

algorithm, when other Bayesian optimization algorithms such as GP-UCB lack a proof for an always333

diminishing and non-vacuous regret under the same setting as ours. It remains an open question334

whether the possibly vacuous regret bounds of GP-UCB (as well as GP-TS and GP-EI whose analysis335

is inspired by that of GP-UCB) is a fundamental limitation or an artifact of its proof.336

It is worth reiterating that simple regret is favorable in situations with a preliminary exploration phase337

(for instance hyper-parameter tuning) [10]. It has been explicitly studied under numerous settings,338

e.g., [10, 12, 13, Lipschitz continuous f ], [51, f in RKHS, noise-free observations], [57, 58, 59, a339

known prior distribution on f , noise-free observations], [70, a known prior distribution on f , noisy340

observations], [28, 29, 71, 72, f in RKHS, noisy observations]. See also § 1.2 and Appendix A for341

comparison with existing results including [71, 72].342
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