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ABSTRACT

Important research efforts have focused on the design and training of neu-
ral networks with a controlled Lipschitz constant. The goal is to increase
and sometimes guarantee the robustness against adversarial attacks. Recent
promising techniques draw inspirations from different backgrounds to design
1-Lipschitz neural networks, just to name a few: convex potential layers derive
from the discretization of continuous dynamical systems, Almost-Orthogonal-
Layer proposes a tailored method for matrix rescaling. However, it is today im-
portant to consider the recent and promising contributions in the field under a
common theoretical lens to better design new and improved layers. This paper
introduces a novel algebraic perspective unifying various types of 1-Lipschitz
neural networks, including the ones previously mentioned, along with meth-
ods based on orthogonality and spectral methods. Interestingly, we show that
many existing techniques can be derived and generalized via finding analytical
solutions of a common semidefinite programming (SDP) condition. We also
prove that AOL biases the scaled weight to the ones which are close to the set
of orthogonal matrices in a certain mathematical manner. Moreover, our al-
gebraic condition, combined with the Gershgorin circle theorem, readily leads
to new and diverse parameterizations for 1-Lipschitz network layers. Our ap-
proach, called SDP-based Lipschitz Layers (SLL), allows us to design non-trivial
yet efficient generalization of convex potential layers. Finally, the comprehen-
sive set of experiments on image classification shows that SLLs outperforms
previous approaches on natural and certified accuracy.

1 INTRODUCTION

Robustness of deep neural networks is nowadays a great challenge to establish confidence in
their decisions for real-life applications. Addressing this challenge requires guarantees on the
stability of the prediction, with respect to adversarial attacks. In this context, the Lipschitz con-
stant of neural networks is a key property at the core of many recent advances. Along with the
margin of the classifier, this property allows us to certify the robustness against worst-case adver-
sarial perturbations. This certification is based on a sphere of stability within which the decision
remains the same for any perturbation inside the sphere. (Tsuzuku et al., 2018).

The design of 1-Lipschitz layers provides a successful approach to enforce this property for
the whole neural network. For this purpose, many different techniques have been devised
such as spectral normalization (Miyato et al., 2018; Farnia et al., 2019), orthogonal parame-
terization (Trockman et al., 2021; Li et al., 2019; Singla & Feizi, 2021), Convex Potential Layers
(CPL) (Meunier et al., 2022), and Almost-Orthogonal-Layers (AOL) (Prach et al., 2022). While all
these techniques share the same goal, their motivations and derivations can greatly differ, de-
livering different solutions. Nevertheless, their raw experimental comparison fails to really gain
insight on their peculiar performance, soundness and at the end their possible complementarity.
Therefore a question acts as a barrier for an in-depth analysis and future development:

Are there common principles underlying the developments of 1-Lipschitz Layers?

In this paper, we propose a novel perspective to answer this question based on a unified Semidef-
inite Programming (SDP) approach. We introduce a common algebraic condition underlying var-

1



Under review as a conference paper at ICLR 2023

ious types of methods like spectral normalization, orthogonality-based methods, AOL, and CPL.
Our key insight is that this condition can be formulated as a unifying and simple SDP problem,
and that the development of 1-Lipschitz architectures systematically arises by finding “analytical
solutions" of this SDP. Our main contributions are summarized as follows.

• We provide a unifying algebraic perspective for 1-Lipschitz network layers by showing that
existing techniques such as spectral normalization, orthogonal parameterization, AOL, and
CPL can all be recast as a solution of a same simple SDP condition (Theorem 1 and related
discussions). Consequently, any new analytical solutions of our proposed SDP condition will
immediately lead to new 1-Lipschitz network structures.

• Built upon the above algebraic viewpoint, we give a rigorous mathematical interpretation for
AOL explaining how this method promotes “almost orthogonality" in training (Theorem 2).

• Based on our SDPs, a new family of 1-Lipschitz network structures termed as SDP-based Lip-
schitz layers (SLL) has been developed. Specifically, we apply the Gershgorin circle theorem
to obtain some new SDP solutions, leading to non-trivial extensions of CPL (Theorem 3). We
derive new SDP conditions to characterize SLL in a very general form (Theorem 4).

• Finally, we show, by a comprehensive set of experiments, that our new SDP-based Lipschitz
layers outperform previous approaches on natural and certified accuracy.

Our work is inspired by Fazlyab et al. (2019) that develops SDP conditions for numerical esti-
mation of Lipschitz constants of given neural networks. A main difference is that we focus on
“analytical SDP solutions" which can be used to characterize 1-Lipschitz network structures.

2 RELATED WORK

In recent years, certified methods have been central to the development of trustworthy machine
learning and especially for deep leaning. Randomized Smoothing (Cohen et al., 2019; Salman
et al., 2019) is one of the first defense to offer provable robustness guarantees. The method sim-
ply extends a given classifier by the smart introduction of random noise to enhance the robust-
ness of the classifier. Although this method offers an interesting level of certified robustness, it
suffers from important downsides such as the high computational cost of inference and some
impossibility results from information-theory perspective (Yang et al., 2020; Kumar et al., 2020).

Another approach to certify the robustness of a classifier is to control its Lipschitz constant. The
main idea is to derive a certified radius in the feature space by computing the margin of the
classifier (e.g., the difference between the highest logits and second highest). See Proposition 1
of Tsuzuku et al. (2018) for more details. This radius, along with Lipschitz constant of the network
can certify the robustness. One of the first approaches in this direction consists of normalizing
each layer with its spectral norm (Miyato et al., 2018; Farnia et al., 2019). Each layer is, by con-
struction, 1-Lipschitz. Later, a body of research replaces the normalized weight matrix by an
orthogonal matrix. It improves upon the spectral normalization method by adding the gradient
preservation (Li et al., 2019; Trockman et al., 2021; Singla & Feizi, 2021). These methods constrain
the parameters by orthogonality during training. More specifically, the Cayley transform can be
used to constrain the weights (Trockman et al., 2021) and, in a similar fashion, SOC (Singla &
Feizi, 2021) parameterizes their layers with the exponential of a skew symmetric matrix making
it orthogonal. To reduce computational cost, Trockman et al. (2021) and Yu et al. (2022) orthogo-
nalize their convolutional kernel in the Fourier domain.

More recently, a work by Meunier et al. (2022) has studied Lipschitz networks from a dynamical
system perspective. Starting from the continuous view of a residual network, they showed that
the parameterization with the Cayley transform (Trockman et al., 2021) and exponential matrix
(SOC) (Singla & Feizi, 2021) correspond respectively to two specific discretization schemes of the
continuous flow. Furthermore, a new layer is introduced that derives from convex potential flows
to ensure the 1-Lipschitz property1:

z = x − 2

∥W ∥2
2

Wσ(W ⊤x +b), (1)

1We reverse the transposition from the original layer to have a consistent notation in the rest of the article.
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where ∥W ∥2 is the spectral norm of the weight matrix W and σ is the ReLU activation function.
Although orthogonal layers enjoy great stability due to their gradient preservation, they make
training computationally expensive and difficult. Indeed, orthogonalization via the Cayley trans-
form involves a matrix inversion, and the implementation of the matrix exponential requires ei-
ther an SVD or an iterative Taylor expansion. While more efficient, the CPL approach still requires
computation of the largest singular value.

A recent work, Almost-Orthogonal-layer (AOL) (Prach et al., 2022) came up with a middle ground:
a new normalization which makes the layer 1-Lipschitz by favoring orthogonality. More precisely,
the fully-connected AOL layer is defined as follows:

z =W Dx +b (2)

where D is a diagonal matrix defined as: D = diag
(∑

j |W ⊤W |i j
)− 1

2 . They demonstrated that this
layer is guaranteed to be 1-Lipschitz and they empirically show that, after training, the Jacobian
of the layer (with respect to x) is almost orthogonal, hence facilitating the training.

Another source of inspiration is the application of SDPs for robustness certification of neural
networks. The first work on this topic (Wong & Kolter, 2018) consists of a robust optimization
procedure that minimizes the worst-case loss over a convex outer adversarial polytope via a lin-
ear program. Then the work of Fazlyab et al. (2020) combined quadratic constraints and SDPs to
analyze local robustness of neural networks. Finally, Fazlyab et al. (2019) proposed various SDP
conditions which can be numerically solved to give efficient estimates of the global Lipschitz
constant of neural networks. It is also possible to solve similar SDPs numerically for training rel-
atively small Lipschitz networks on MNIST (Pauli et al., 2021). However, due to the restrictions
of existing SDP solvers, scalability has been one issue when deploying such approaches to deep
learning problems with large data sets. Our focus is on the design of Lipschitz network structures,
and hence the scalability issue can be avoided via constructing analytical SDP solutions.

3 BACKGROUND

Notation. The n ×n identity matrix and the n ×n zero matrix are denoted as In and 0n , respec-
tively. The subscripts will be omitted when the dimension is clear from the context. When a
matrix P is negative semidefinite (definite), we will use the notation P ⪯ (≺)0. When a matrix P is
positive semidefinite (definite), we will use the notation P ⪰ (≻)0. Let ei denote the vector whose
i -entry is 1 and all other entries are 0. Given a collection of scalars {ai }n

i=1, we use the notation
diag(ai ) to denote the n×n diagonal matrix whose (i , i )-th entry is ai . For a matrix A, the follow-
ing notations AT, ∥A∥2, tr(A), σmin(A), ∥A∥F , and ρ(A) stand for its transpose, largest singular
value, trace, smallest singular value, Frobenius norm, and spectral radius, respectively.

Lipschitz functions. A function f : Rn → Rm is L-Lipschitz with respect to the ℓ2 norm iff it
satisfies ∥ f (x)− f (y)∥ ≤ L∥x − y∥ for all x, y ∈ Rn , where ∥·∥ stands for the ℓ2 norm. The smallest
possible value of L gives the so-called Lipschitz constant. An important fact is that the robustness
of a neural network can be certified based on its Lipschitz constant (Tsuzuku et al., 2018). In this
paper, we are particularly interested in the case where L = 1. Specifically, we consider the training
of 1-Lipschitz neural networks. If each layer of a neural network is 1-Lipschitz, then the entire
neural network is also 1-Lipschitz2. The Lipschitz constant also satisfies the triangle inequality,
and hence convex combination will preserve the 1-Lipschitz property.

Matrix cones: Positive semidefiniteness and diagonal dominance. Let Sn denote the set of all
n ×n real symmetric matrices. Let Sn+ ⊂ Sn be the set of all n ×n symmetric positive semidefinite
matrices. It is well known that Sn+ is a closed pointed convex cone in Sn . With the trace inner
product, Sn+ is also self-dual. Consider two symmetric matrices A and B such that A ⪰ B ∈ Sn ,
then we have A−B ∈ Sn+, and tr(A−B) provides a distance measure between A and B . In addition,
we have ∥A−B∥F ≤ tr(A −B). Finally, the set of all n ×n real symmetric diagonally dominant
matrices with non-negative diagonal entries is represented by Dn . It is known that Dn forms
a closed, pointed, full cone (Barker & Carlson, 1975). Based on the Gershgorin circle theorem
(Horn & Johnson, 2012), we know Dn ⊂ Sn+. It is also known that Dn is smaller than Sn+ (Barker &

2Here we assume the activation function is 1-Lipschitz. This is true for ReLU, tanh, and sigmoid.
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Carlson, 1975). For any A ∈ Dn , we have Ai i ≥∑
j : j ̸=i |Ai j |. It is important to require Ai i ≥ 0, and

the set of real symmetric diagonally dominant matrices is not a cone by itself.

4 AN ALGEBRAIC UNIFICATION OF 1-LIPSCHITZ LAYERS

In this section, we present a unified algebraic perspective for various 1-Lipschitz layers (Spec-
tral Normalization, Orthogonalization, AOL, and CPL) via developing a common SDP condition
characterizing the Lipschitz property. Built upon our algebraic viewpoint, we also present a new
mathematical interpretation explaining how AOL promotes orthogonality in training.

4.1 THE UNIFYING ALGEBRAIC CONDITION

First, we present an algebraic condition which can be used to unify the developments of existing
techniques such as SN, AOL, and CPL. Our main theorem is formalized below.

Theorem 1. For any weight matrix W ∈ Rm×n , if there exists a nonsingular diagonal matrix T
such that W TW −T ⪯ 0, then the two following statements hold true.

1. The mapping g (x) =W T − 1
2 x +b is 1-Lipschitz.

2. The mapping h(x) = x −2W T −1σ(W Tx +b) is 1-Lipschitz if σ is ReLU, tanh or sigmoid.

Proof. To prove the first statement, notice that we have

∥g (x)− g (y)∥2 = ∥W T − 1
2 (x − y)∥2 = (x − y)TT − 1

2 W TW T − 1
2 (x − y).

Based on our algebraic condition W TW ⪯ T , we immediately have

∥g (x)− g (y)∥2 ≤ (x − y)TT − 1
2 T T − 1

2 (x − y) = ∥x − y∥2.

Therefore, Statement 1 is true.

To prove Statement 2, we need to use the property of the nonlinear activation function σ. Notice
that the condition W TW ⪯ T ensures that all the diagonal entries of the nonsingular matrix T
are positive. Therefore, T −1 is also a diagonal matrix whose diagonal entries are all positive. For
all the three activation functions listed in the above theorem, σ is slope-restricted on [0,1], and
the following inequality holds for any {x ′, y ′} (Fazlyab et al., 2019, Lemma 1):[

x ′− y ′
σ(x ′)−σ(y ′)

]T [
0 −T −1

−T −1 2T −1

][
x ′− y ′

σ(x ′)−σ(y ′)

]
≤ 0.

We can set x ′ =W Tx +b and y ′ =W Ty +b, and the above inequality becomes[
W T(x − y)

σ(W Tx +b)−σ(W Ty +b)

]T [
0 −T −1

−T −1 2T −1

][
W T(x − y)

σ(W Tx +b)−σ(W Ty +b)

]
≤ 0.

We can rewrite the above inequality as[
x − y

σ(W Tx +b)−σ(W Ty +b)

]T [
0 −W T −1

−T −1W T 2T −1

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
≤ 0. (3)

Now we can apply the following argument:

∥h(x)−h(y)∥2

=∥x − y −2
(
W T −1σ(W Tx +b)−W T −1σ(W Ty +b)

)
∥2

=
[

x − y

2W T −1
(
σ(W Tx +b)−σ(W Ty +b)

)][
I −I
−I I

][
x − y

2W T −1
(
σ(W Tx +b)−σ(W Ty +b)

)]

=
[

x − y
σ(W Tx +b)−σ(W Ty +b)

]T [
I −2W T −1

−2T −1W T 4T −1W TW T −1

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
≤

[
x − y

σ(W Tx +b)−σ(W Ty +b)

]T [
I −2W T −1

−2T −1W T 4T −1

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
,
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where the last step follows from the fact that our condition W TW ⪯ T implies T −1W TW T −1 ⪯
T −1. Finally, we can combine the above inequality with (3) to show

∥h(x)−h(y)∥2 ≤
[

x − y
σ(W Tx +b)−σ(W Ty +b)

]T [
I 0
0 0

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
= ∥x − y∥2,

which is the desired conclusion.

This theorem allows us to design different 1-Lipschitz layers just with various choices of T , in
two important cases: for a linear transformation with Statement 1, as well as for a residual and
non-linear block with Statement 2. Moreover, for any weight matrix W , the condition W TW ⪯ T
is linear in T , and hence can be viewed as an SDP condition with decision variable T . To empha-
size the significance of this theorem, we propose to derive existing methods used for designing
1-Lipschitz layers by choosing specific T for the SDP condition W TW ⪯ T . The 1-Lipschitz prop-
erty is then automatically obtained.

• Spectral Normalization (SN) corresponds to an almost trivial choice, if we notice that
W TW ⪯ ∥W TW ∥2I ⪯ ∥W ∥2

2I . Hence with T = ∥W ∥2
2I , we build the SN layer g (x) =

W T − 1
2 x +b = 1

∥W ∥2
W x +b

• The Orthogonality-based parameterization is obtained by setting T = I and enforcing
the equality W TW = T = I . Then obviously g (x) =W x +b is 1-Lipschitz.

• AOL formula can be derived by letting T = diag(
∑n

j=1 |W TW |i j ). With this choice, we

have T −W TW ∈ Dn ⊂ Sn+, hence W TW ⪯ T . Then Statement 1 in Theorem 1 implies

that the AOL function of equation (2)), written as g (x) =W T − 1
2 x +b, is 1-Lipschitz.

• CPL follows the same choice SN, T = ∥W ∥2
2I , but with Statement 2 of Theorem 1, we

derive a different function h(x) = x − 2
∥W ∥2

2
Wσ(W Tx +b) which is therefore 1-Lipschitz.

The above discussion illustrates the benefit of expressing all these methods within the same
theoretical framework, offering us a new tool to characterize the similarity between different
methods. For instance, SN and CPL share the same choice of T = ∥W ∥2

2I . The difference be-
tween them is which statement is used . Therefore, CPL can be viewed as the ”residual ver-
sion“ of SN. Clearly, the residual network structure allows CPL to address the gradient vanish-
ing issue more efficiently than SN. With the same approach, we can readily infer from our uni-
fied algebraic condition what are the "residual" counterparts for orthogonality-based parame-
terization and AOL. For orthogonality-based parameterization, if we enforce W TW = T = I via
methods such as SOC and ECO, then the function h(x) = x − 2Wσ(W Tx +b) is 1-Lipschitz (by

Statement 2 in Theorem 1). Finally, if we choose T = diag
(∑n

j=1 |W TW |i j

)
, then the function

h(x) = x −2W diag
(∑n

j=1 |W TW |i j

)−1
σ(W Tx +b) is also 1-Lipschitz. Therefore it is straightfor-

ward to create new classes of 1-Lipschitz network structures from existing ones.

Another important consequence of Theorem 1 is about new layer development. Any new diago-
nal solution T for the SDP condition W TW −T ⪯ 0 immediately leads to new 1-Lipschitz network

structures in the form of g (x) =W T − 1
2 x+b or h(x) = x−2W T −1σ(W Tx+b). Therefore, the devel-

opments of 1-Lipschitz network structures can be reformulated as finding analytical solutions of
the matrix inequality W TW ⪯ T with nonsingular diagonal T . As a matter of fact, the Gershgorin
circle theorem can help to improve the existing choices of T in a systematic way. In Section 5,
we will discuss such new choices of T and related applications to improve CPL. At this point, it
is worth noticing that to develop deep Lipschitz networks, it is important to have analytical for-

mulas of T . The goal is to get a fast computation of W T − 1
2 or W T −1. Therefore, analytical SDP

solutions are particularly relevant for the purpose of our paper.

Theorem 1 is powerful in building a connection between 1-Lipschitz network layers and the al-
gebraic condition W TW ⪯ T . Next, we will look closer at this algebraic condition and provide a
new mathematical interpretation explaining how AOL generates “almost orthogonal" weights.

5



Under review as a conference paper at ICLR 2023

4.2 A NEW MATHEMATICAL INTERPRETATION FOR AOL

In Prach et al. (2022), it is observed that AOL can learn "almost orthogonal" weights and hence
overcome the gradient vanishing issue. As a matter of fact, the choice of T used in AOL is optimal
in a specific mathematical sense as formalized with the next theorem.

Theorem 2. Given any W , define the set T =
{

T : T is nonsingular diagonal, and T −W TW ∈ Dn
}

.

Then the choice of T for the AOL method actually satisfies

T = diag(
n∑

j=1
|W TW |i j ) = argmin

T∈T
tr(I −T − 1

2 W TW T − 1
2 ) = argmin

T∈T
∥T − 1

2 W TW T − 1
2 − I∥F . (4)

Before presenting the proof, we first provide some interpretations for the above result. Obvi-

ously, the quantity ∥T − 1
2 W TW T − 1

2 − I∥F provides a measure for the distance between the scaled

weight matrix W T − 1
2 and the set of n ×n orthogonal matrices. If ∥T − 1

2 W TW T − 1
2 − I∥F = 0, then

the scaled weight W T − 1
2 is orthogonal. If ∥T − 1

2 W TW T − 1
2 − I∥F is small, it means that W T − 1

2 is
“almost orthogonal" and close to the set of orthogonal matrices. Since we require W TW −T ⪯ 0,

we know that I −T − 1
2 W TW T − 1

2 is a positive semidefinite matrix, and that its trace provides an

alternative metric quantifying the distance between W T − 1
2 and the set of orthogonal matrices.

Importantly, we have the following inequality:

∥T − 1
2 W TW T − 1

2 − I∥F ≤ tr(I −T − 1
2 W TW T − 1

2 ).

If tr(I −T − 1
2 W TW T − 1

2 ) is small, then ∥T − 1
2 W TW T − 1

2 − I∥F is also small, and W T − 1
2 is close to

the set of orthogonal matrices. Therefore, one interpretation for Theorem 2 is that among all the
nonsingular diagonal scaling matrices T satisfying T −W TW ∈ Dn , the choice of T used in AOL

makes the scaled weight matrix W T − 1
2 the closest to the set of orthogonal matrices. This provides

a new mathematical explanation of how AOL can generate “almost orthogonal" weights. Now
we briefly discuss the proof idea for Theorem 2 to further illustrate the interesting underlying
algebraic structure of AOL.

Proof of Theorem 2. Since T is nonsingular diagonal and T −W TW ∈ Dn , then we must have
Ti i ≥∑

j |W TW |i j . Given the following key relation:

tr(I −T − 1
2 W TW T − 1

2 ) =∑
i

(
1− |W TW |i i

Ti i

)
,

it becomes clear that we need to choose the smallest value of Ti i for all i to minimize tr(I −
T − 1

2 W TW T − 1
2 ). Therefore the choice of T for AOL minimizes tr(I −T − 1

2 W TW T − 1
2 ) over T ∈

T. The proof for the last of equation 4 is similar. Let us enote X = I −T − 1
2 W TW T − 1

2 . For any
(i , j ), the quantity X 2

i j is always monotone non-decreasing in Ti i and T j j . To minimize ∥X ∥F , we

just need to choose the smallest value for all Ti i under the constraint Ti i ≥ ∑
j |W TW |i j . This

completes the proof.

One potential issue for AOL is that Dn is typically much smaller than Sn+, and the condition
T −W TW ∈ Dn may be too conservative compared to the original condition T −W TW ∈ Sn+
in Theorem 1. If we denote the set T̂ =

{
T : T is nonsingular diagonal, and T −W TW ∈ Sn+

}
,

then we have argminT∈T̂ tr(I − T − 1
2 W TW T − 1

2 ) ≤ argminT∈T tr(I − T − 1
2 W TW T − 1

2 ), and

argminT∈T̂∥T − 1
2 W TW T − 1

2 − I∥F ≤ argminT∈T∥T − 1
2 W TW T − 1

2 − I∥F . This leads to interesting al-
ternative choices of T which can further promote orthogonality:

T = argmin
T∈T̂

∥T − 1
2 W TW T − 1

2 − I∥F or T = argmin
T∈T̂

tr(I −T − 1
2 W TW T − 1

2 ) (5)

Although (5) may be solved as convex programs or seven SDPs on small toy examples, currently
it is not implementable to use such choice of T for practical large-scale problems. It is our hope
that our theoretic discussion above will inspire more future research on developing new practical
choices of T for promoting orthogonality.
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5 EXTENSIONS OF CPL: THE POWER OF GERSHGORIN CIRCLE THEOREM

In this section, we extend the original CPL layer (6) to a new family of 1-Lipschitz network
structures via solving SDPs. We term this general family of layers as SDP-based Lipschitz lay-
ers (SLL), since the condition W TW ⪯ T can be viewed as an SDP for the decision variable T .
First of all, we extend the existing CPL (Eq. (1)) via applying more general choices of T with
Theorem 1. From the discussion after Theorem 1, we already know that we can use the choice
of T = diag(

∑n
j=1 |W TW |i j ) to replace the original choice T = ∥W ∥2

2I . In this section, we will
strengthen CPL via an even more general choice of T , which is based on a special version of Ger-
shgorin circle theorem. Specifically, we will apply (Horn & Johnson, 2012, Corollary 6.1.6) to show
the following result.

Theorem 3. Let W be the weight matrix. Suppose T is a nonsingular diagonal matrix. If there
exists some diagonal matrix Q with all positive diagonal entries such that (T −QW TW Q−1) is a
real diagonally dominant matrix with diagonal entries being all positive, then T ⪰W TW , and the
function h(x) = x −2W T −1σ(W Tx +b) is 1-Lipschitz for σ being ReLU, tanh or sigmoid.

Proof. Given nonsingular matrix Q, clearly the eigenvalues of Q(T −W TW )Q−1 and (T −W TW )
are the same. If Q(T −W TW )Q−1 is diagonally dominant and only has positive diagonal entries,
then we can apply Gershgorin circle theorem (Horn & Johnson, 2012, Corollary 6.1.6) to show
that all the eigenvalues of Q(T −W TW )Q−1 (which is the same as T −QW TW Q−1) are non-
negative. Therefore, we know that all the eigenvalues of (T −W TW ) are non-negative. Since
(T −W TW ) is symmetric, we have T ⪰W TW . Then we can apply Theorem 1 to reach our desired
conclusion.

If we choose Q = I , the above theorem just recovers the choice of T used in AOL, i.e. T =
diag(

∑n
j=1 |W TW |i j ). However, it is expected that the use of more general Q will allow us to

train a less conservative 1-Lipschiz neural network due to the increasing expressivity brought
by these extra variables. We will present numerical results to demonstrate this. We also empha-
size that (T −QW TW Q−1) is typically not a symmetric matrix and hence is not in Dn even when
it only has non-negative eigenvalues. However, this does not affect our proof on the positive-
semidefiniteness of (T −W TW ).

Application of Theorem 3. We can parameterize Q−1 = diag(qi ) with qi > 0. Then the (i , j )-th
entry of QW TW Q−1 is equal to (W TW )i j q j /qi . Therefore, we can simply choose the diagonal
entry of T as

Ti i =
n∑

j=1
|(W TW )i j q j /qi | =

n∑
j=1

|W TW |i j
q j

qi
.

This leads to our new choice of T = diag(
∑n

j=1 |W TW |i j q j /qi ). Notice that the layer function

h(x) = x − 2W T −1σ(W Tx +b) has a residual network structure. Hence it is expected that van-
ishing gradient will not be an issue. Therefore, we can simultaneously optimize the training loss
over W and {qi }. We will present numerical study to demonstrate that such a training approach
will allow us to generate competitive results on training robust CIFAR10/CIFAR100 classifiers.

SDP conditions for more general network structures. It is also worth mentioning that the SDP
condition in Theorem 1 can be generalized to address more complex network structures. Specif-
ically, we can allow SLL to adopt the following general structure:

h(x) = H x +Gσ(W Tx +b), (6)

where H and G will be determined by the weight W in some manner, and the matrix dimensions
are assumed to be compatible. If we choose H = I and G = −2W T −1, then (6) reduces to the
residual network structure considered in Theorem 1. There are many other choices of (H ,G)
which can also ensure the Lipschitz constant of (6) to be smaller than or equal to 1. Our last
theoretical result is a general SDP condition which generalizes Theorem 1 and provides a more
comprehensive characterization of such choices of (H ,G).

7
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Table 1: This table presents the natural and provable accuracy of several concurrent work and our architec-
ture based on SLL on CIFAR10 and CIFAR100 datasets. All results for SLL-based networks are the result of
the average of 3 trainings.

Datasets Models
Natural

Accuracy

Provable Accuracy (ε)

36
255

72
255

108
255 1

CIFAR10

Cayley Large (Trockman et al., 2021) 74.6 61.4 46.4 32.1 -
SOC 20 (Singla & Feizi, 2021) 78.0 62.7 46.0 30.3 -
SOC+ 20 (Singla et al., 2022) 76.3 62.6 48.7 36.0 -
CPL XL (Meunier et al., 2022) 78.5 64.4 48.0 33.0 -
AOL Large (Prach et al., 2022) 71.6 64.0 56.4 49.0 23.7

SLL Small 73.3 63.7 53.8 44.5 15.3
SLL Medium 74.0 64.7 54.9 45.3 16.0
SLL Large 74.6 65.3 55.2 45.8 16.2
SLL X-Large 75.3 65.7 55.8 46.1 16.3

CIFAR100

Cayley Large (Trockman et al., 2021) 43.3 29.2 18.8 11.0 -
SOC 20 (Singla & Feizi, 2021) 48.3 34.4 22.7 14.2 -
SOC+ 20 (Singla et al., 2022) 47.8 34.8 23.7 15.8 -
CPL XL (Meunier et al., 2022) 47.8 33.4 20.9 12.6 -
AOL Large (Prach et al., 2022) 43.7 33.7 26.3 20.7 7.8

SLL Small 46.7 35.2 26.4 20.1 5.9
SLL Medium 47.2 36.1 27.1 20.7 6.5
SLL Large 47.9 36.7 27.9 21.3 6.7
SLL X-Large 48.3 37.2 28.3 21.8 6.9

Theorem 4. Let n be the neuron number. For any non-negative scalars {λi j }, define

Λ= diag(λ11,λ22, . . . ,λnn)+ ∑
1≤i≤ j≤n

λi j (ei −e j )(ei −e j )T. (7)

Suppose the activation function σ is ReLU or tanh or sigmoid. If there exist non-negative scalars
{λi j } such that the following matrix inequality holds[

I −HTH −HTG −WΛ

−GTH −ΛW T 2Λ−GTG

]
⪰ 0 (8)

then the network (6) is 1-Lipschitz, i.e. ∥h(x)−h(y)∥ ≤ ∥x − y∥ for all (x, y).

The above theorem can be proved via modifying the argument used in (Fazlyab et al., 2019, The-
orem 1), and we defer the detailed proof to the appendix. On one hand, if we choose H = 0, then
our condition (8) reduces to (Fazlyab et al., 2019, Theorem 1)3. On the other hand, for residual
network structure with H = I , we can choose T = 0.5Λ−1 and G = −WΛ = −2W T −1 to reduce
(8) to our original algebraic condition T ⪰ W TW . Therefore, Theorem 4 provides a connection
between the SDP condition in Fazlyab et al. (2019) and our proposed simple algebraic condition
in Theorem 1. It is possible to obtain new 1-Lipschitz network layers via providing new analyt-
ical solutions to (8). It is our hope that our proposed SDP condition (8) can lead to many more
1-Lipschitz network structures in the future.

6 EXPERIMENTS

In this section we present a comprehensive set of experiments with 1-Lipschitz neural networks
based on our proposed SDP-based Lipschitz Layer. More specifically, we build 1-Lipschitz neural
networks based on the following layer:

h(x) = x −2W diag

(
n∑

j=1
|W TW |i j q j /qi

)−1

σ(W Tx +b) (9)

3To see this connection, set the parameters in (Fazlyab et al., 2019, Theorem 1) as (α,β,W 0,W 1) =
(0,1,W T,G).
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Table 2: The table describes the empirical robustness of our SLL-based classifiers on CIFAR10 ans CIFAR100
datasets. The empirical robustness is measured with AutoAttacks. All results are the average of 3 models.

Models
CIFAR10 – AutoAttack (ε) CIFAR100 – AutoAttack (ε)

36
255

72
255

108
255 1 36

255
72

255
108
255 1

SLL Small 68.1 62.5 56.8 35.0 40.7 35.2 30.4 17.0
SLL Medium 69.1 63.8 58.4 37.0 41.5 36.4 31.5 17.9
SLL Large 69.8 64.5 59.1 37.9 42.1 37.1 32.6 18.7
SLL X-Large 70.3 65.4 60.2 39.4 42.7 37.8 33.2 19.5

where W is a parameter matrix being either dense or a convolution, {qi } forms a diagonal scal-
ing matrix as described by Theorem 3, and σ(·) is the ReLU nonlinearity function. We use the
same architectures proposed by Meunier et al. (2022) with small, medium, large and xlarge sizes.
The architecture consists of several Conv-SLL and Linear-SLL. We provide details of the architec-
tures in Table 3 in the Appendix. For CIFAR-100, we use the Last Layer Normalization proposed
by Singla et al. (2022) which improves the certified accuracy when the number of classes becomes
large. Note that the layer presented in Equation 9 can be easily implemented with convolutions
following the same scaling as in Prach et al. (2022).

Hyper-parameters. We trained our networks with a batch size of 256 over 1000 epochs with the
data augmentation used by Prach et al. (2022) (i.e., random cropping, flipping and color transfor-
mation). We use an Adam optimizer Kingma et al. (2014) with 0.01 learning rate and parameters
β1 and β2 equal to 0.5 and 0.9 respectfully and no weight decay. We use a piecewise triangular
learning rate scheduler to decay the learning rate during training. We use the CrossEntropy loss
as in Prach et al. (2022) with an offset and temperature parameters of

p
2 and 0.25 respectively.

Results in terms of Natural and Certified Accuracy. We evaluate our networks on CIFAR10
and CIAFR100 datasets (Krizhevsky et al., 2009) and compare the results against very recent ap-
proaches: Cayley (Trockman et al., 2021), SOC (Singla & Feizi, 2021), SOC+ (Singla et al., 2022),
CPL (Meunier et al., 2022) and AOL (Prach et al., 2022). Table 1 presents the natural and cer-
tified accuracy with different radius of certification (i.e., 36/255, 72/255, 108/255 and 1). Our
approach outperforms the AOL-based networks on natural accuracy and on certified accuracy
for ε= 36/255, also, our approach outperforms the CPL-based networks on certified accuracy for
all values of ε. As a result, SLL-based 1-Lipschitz neural networks offer a good trade-off among
previous approaches with respect to natural and certified accuracy.

Results on Empirical Robustness. We provide results of our approach on empirical robustness
against an ensemble of diverse parameter-free attacks (i.e., AutoAttacks) developed by Croce et al.
(2020). Table 2 reports the empirical robustness accuracy for different levels of perturbations.
Although AutoAttacks is a strong empirical attack consisting of an ensemble of several known
attacks: APGDCE, APGDDLR, FAB (Croce & Hein, 2020) and Square (Andriushchenko et al., 2020).
We can observe that the measure robustness is high and well above the certified radius. Indeed,
on CIFAR10, we observe a robustness “gain” of up to 4.5%, 9.6%, 14.1% and 21.7% for respectively,
36, 72, 108 and 255 ε-perturbations.

7 CONCLUSION

In this paper, we present a unifying framework for designing Lipschitz layers. Based on a novel al-
gebraic perspective, we identify a common SDP condition underlying the developments of spec-
tral normalization, orthogonality-based methods, AOL, and CPL. Furthermore, we have shown
that AOL and CPL can be re-derived and generalized using our theoretical framework. From this
analysis, we introduce a family of SDP-based Lipschitz layers (SLL) that outperforms previous
work. Although this work is a first step towards a universal theory on Lipschitz networks, much
work remains to achieve the accuracy necessary for deploying these models into real-world appli-
cations. For example, investigating more expressive structures of T and extending our contribu-
tions to address multi-layer neural networks, allowing the intermediate layer-by-layer Lipschitz
constant to be larger than 1, may lead to even greater performance.
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A PROOF OF THEOREM 4

A detailed proof for Theorem 4 is presented here. Our proof is based on modifying the arguments
used in (Fazlyab et al., 2019, Theorem 1), and mainly relies on the quadratic constraint technique
developed in the controls community.

First, notice that (8) is equivalent to the following condition:[
HTH HTG
GTH GTG

]
⪯

[
I −WΛ

−ΛW T 2Λ

]
. (10)

Suppose (10) holds. Next we will show that h(x) = H x +Gσ(W Tx +b) is 1-Lipschitz.

For all the three activation functions listed in the above theorem, σ is slope-restricted on [0,1],
and the following inequality holds for any {x ′, y ′} (Fazlyab et al., 2019, Lemma 1):[

x ′− y ′
σ(x ′)−σ(y ′)

]T [
0 −Λ
−Λ 2Λ

][
x ′− y ′

σ(x ′)−σ(y ′)

]
≤ 0.

We can set x ′ =W Tx +b and y ′ =W Ty +b, and the above inequality becomes[
W T(x − y)

σ(W Tx +b)−σ(W Ty +b)

]T [
0 −Λ
−Λ 2Λ

][
W T(x − y)

σ(W Tx +b)−σ(W Ty +b)

]
≤ 0.

We can rewrite the above inequality as[
x − y

σ(W Tx +b)−σ(W Ty +b)

]T [
0 −WΛ

−ΛW T 2Λ

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
≤ 0. (11)

Now we can apply the following argument:

∥h(x)−h(y)∥2

=∥H(x − y)+
(
Gσ(W Tx +b)−Gσ(W Ty +b)

)
∥2

=
[

H(x − y)

G
(
σ(W Tx +b)−σ(W Ty +b)

)][
I I
I I

][
H(x − y)

G
(
σ(W Tx +b)−σ(W Ty +b)

)]

=
[

x − y
σ(W Tx +b)−σ(W Ty +b)

]T [
HTH HTG
GTH GTG

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]

≤
[

x − y
σ(W Tx +b)−σ(W Ty +b)

]T [
I −WΛ

−ΛW T 2Λ

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
,

where the last step follows from the condition (10). Finally, we can combine the above inequality
with (11) to show

∥h(x)−h(y)∥2 ≤
[

x − y
σ(W Tx +b)−σ(W Ty +b)

]T [
I 0
0 0

][
x − y

σ(W Tx +b)−σ(W Ty +b)

]
= ∥x − y∥2,

which is the desired conclusion.

B ADDITIONAL RESULTS AND DISCUSSIONS ON THE EXPERIMENTS

Additional details on the architectures. If W ∈Rm×n then we denote m as the inner dimension.
Similarly, when W is a convolution layer the inner dimension is the output channels number.

Table 3 describes various architectures for our SDP-based Lipschitz layers neural network for dif-
ferent size of hyperparameters. Channels refer to the number of channel in convolutional layers,
linear features to the inner dimension of W in linear SLL layer, Conv-SLL layers and Linear-SLL
Layers refer to the number of layers of those types in the network. They are reported as SLL Small,
SLL Medium, SLL Large and SLL X-Large in this paper.
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Table 3: The architecture use for the experiments relies on
the architecture proposed by Meunier et al. (2022). For
completeness we add this table which describes the small,
medium, large and xlarge architectures.

S M L XL

Conv-SLL 20 30 90 120
Channels 45 60 60 70
Linear-SLL 7 10 15 15
Linear Features 2048 2048 4096 4096

Table 4: This table describes the time by
epochs for training each architecture. We
can observe that training SLL-based neu-
ral networks is efficient.

Model Time per epoch (s)

SLL Small 20
SLL Medium 35
SLL Large 55
SLL X-Large 105

Efficiency of SLL-based neural networks. Training computation were done on 4 GPU V100 for
all models . We can notice that the training time of SLL network scales well with model size. It is
expected as SLL layers are just using regular straight forward convolution and cheap rescaling.

In comparison the Cayley approach builds a convolutional kernel in the Fourier domain which
has the size of the input and performs the Cayley transform on it. In regards to SOC, it requires to
computes several convolution at training and inference (from 6 to 12) to compute the exponential
of a convolution up to a desired precision. These operations can be costly for large inputs and
constraint scaling of deep and large architecture. Concerning CPL layer, it uses power method
iteration to compute the spectral norm. It is cheap at training but quite expensive at inference
to guarantee lipschitzness. Our approach is more simple to implement as it requires no power
method algorithm inside the forward pass of our SLL layer.
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