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ABSTRACT

We propose UNIFIED-I0O, a model that performs a large variety of Al tasks span-
ning classical computer vision tasks, including pose estimation, object detection,
depth estimation and image generation, vision-and-language tasks such as region
captioning and referring expression, to natural language processing tasks such as
question answering and paraphrasing. Developing a single unified model for such
a large variety of tasks poses unique challenges due to the heterogeneous inputs
and outputs pertaining to each task, including RGB images, per-pixel maps, binary
masks, bounding boxes, and language. We achieve this unification by homoge-
nizing every supported input and output into a sequence of discrete vocabulary
tokens. This common representation across all tasks allows us to train a single
transformer-based architecture, jointly on over 90 diverse datasets in the vision
and language fields. UNIFIED-IO is the first model capable of performing all 7
tasks on the GRIT benchmark and produces strong results across 16 diverse bench-
marks like NYUv2-Depth, ImageNet, VQA2.0, OK-VQA, Swig, VizWizGround,
BoolQ, and SciTail, with no task-specific fine-tuning. Code and pre-trained mod-
els will be made publicly available.

1 INTRODUCTION

We present UNIFIED-IO, the first neural model to jointly perform a large and diverse set of Al tasks
spanning classical computer vision (such as object detection, segmentation, and depth estimation),
image synthesis (such as image generation and image in-painting), vision-and-language (like visual
question answering, image captioning, and referring expression) and NLP (such as question an-
swering and paraphrasing). Unified general-purpose models avoid the need for task-specific design,
learn and perform a wide range of tasks with a single architecture, can utilize large, diverse data
corpora, can effectively transfer concept knowledge across tasks, and even perform tasks unknown
and unobserved at design and training time.

Building unified models for computer vision has proven to be quite challenging since vision tasks
have incredibly diverse input and output representations. For instance, object detection produces
bounding boxes around objects in an image, segmentation produces binary masks outlining regions
in an image, visual question answering produces an answer as text, and depth estimation produces
a map detailing the distance of each pixel from the camera. This heterogeneity makes it very chal-
lenging to architect a single model for all these tasks. In contrast, while the landscape of natural
language processing (NLP) tasks, datasets, and benchmarks is large and diverse, their inputs and
desired outputs can often be uniformly represented as sequences of tokens. Sequence to sequence
(Seq2Seq) architectures (Raffel et al., 2020; Brown et al., 2020), specifically designed to accept
and produce such sequences of tokens, are thus widely applicable to many tasks. Unified models
employing such architectures have been central to much recent progress in NLP.

Unified models for computer vision typically use a shared visual backbone to produce visual em-
beddings but then employ individual branches for each of the desired tasks. These include models
like Mask R-CNN (He et al., 2017) for classical visual tasks that use an ImageNet pre-trained en-
coder followed by branches for detection and segmentation, trained in a fully supervised manner. In
the vision and language (V&L) domain, CNN backbones feed visual features to transformer archi-
tectures that also combine language, followed by task-specific heads for visual question answering,
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Figure 1: UNIFIED-IO is a single sequence-to-sequence model that performs a variety of tasks in
computer vision and NLP using a unified architecture without a need for either task or modality-
specific branches. This broad unification is achieved by homogenizing every task’s input and output
into a sequence of discrete vocabulary tokens. UNIFIED-IO supports modalities as diverse as im-
ages, masks, keypoints, boxes, and text, and tasks as varied as depth estimation, inpainting, semantic
segmentation, captioning, and reading comprehension.

referring expression, visual commonsense reasoning, etc. (Lu et al., 2019; Li et al., 2019; Tan &
Bansal, 2019). A more recent trend has seen the emergence of unified architectures that do away
with task-specific heads and instead introduce modality-specific heads (Hu & Singh, 2021; Cho
et al., 2021; Gupta et al., 2022a; Wang et al., 2022b) — for instance, a single language decoder that
serves multiple tasks requiring language output like captioning and classification. However, most
progress in unified models continues to be centered around V&L tasks, owing to the simplicity of
building shared language decoders, and is often limited to supporting just a handful of tasks.

UNIFIED-IO is a Seq2Seq model capable of performing a variety of tasks using a unified architecture
without a need for either task or even modality-specific branches. This broad unification is achieved
by homogenizing every task’s output into a sequence of discrete tokens. Dense structured outputs
such as images, segmentation masks and depth maps are converted to sequences using a vector
quantization variational auto-encoder (VQ-VAE) (Esser et al., 2021), sparse structured outputs such
as bounding boxes, and human joint locations are transcribed into sequences of coordinate tokens,
and language outputs are converted to sequences using byte-pair encoding. This unification enables
Unified-IO to jointly train on over 90 datasets spanning computer vision, V&L, and NLP tasks with
a single streamlined transformer encoder-decoder architecture (Raffel et al., 2020).

Our jointly trained UNIFIED-IO is the first model to support all 7 tasks in the General Robust Im-
age Task (GRIT) Benchmark (Gupta et al., 2022b) and obtains the top overall score of 64.3 when
averaging across all tasks, handily beating the second best model by 32.0. We further evaluate
UNIFIED-IO on 16 diverse benchmarks across computer vision and NLP, without any fine-tuning
towards any individual benchmark, and find that it performs remarkably well compared to special-
ized (or fine-tuned) state-of-the-art models.

2 VISION, LANGUAGE AND MULTI-MODAL TASKS

UNIFIED-IO is designed to handle a wide range of language, vision and language, and classic vision
tasks in a unified way. To fully test this capability, we gather 95 vision, language, and multi-modal
datasets from 62 publicly available data sources as targets for our model to learn during multi-task
training. These datasets cover a wide range of tasks, skills, and modalities.
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Example Size Input Modalities Output Modalities
Source Datasets Size Percent Rate Text Image Sparse Dense Text Image Sparse Dense
Image Synthesis 14 S6m 43.0 18.7; v v vioi- v - -
Image Synthesis from Text  RedCaps 9 55m 419 167 v - - - v -
Image Inpainting VG 3 I2m 09 15 Vv v v - - v - -
Image Synthesis from Seg.  LVIS 2 2206 02 06! V - - v - v - -
Sparse Labelling 10 82m 63 125 v v v - | - - F -
Object Detection Open Images 3 19m 15 36 - v - - - - v -
Object Localization VG 3 6m 46 71 v v - - - - v
Keypoint Estimation coco 1 140k 01 07 - v v - - - v -
Referring Expression RefCoco 3 130k 0.1 1.1 : v v - - : - - v -
Dense Labelling 6 24m 18 62 V v - - - - - v
Depth Estimation NYU Depth 1 48k 0.1 04 - v - - - - - v
Surface Normal Estimation ~ Framenet 2 200k 02 LI} - v - - - v
Object Segmentation LVIS 3 20m 1.6 471 v v - - - - v
Image Classification 9 22m 16.8 125 : v v = v - - -
Image Classification ImageNet 6 lem 122 81 Vv v - -V - - -
Object Categorization coco 3 6m 46 44 - v v - - - -
Image Captioning 7 3m 237 125 - v = b . . .
Webly Supervised Captioning CCI12M 3 26m 197 88! - v - - v - - -
Supervised Captioning VizWiz 3 l4m L1 17| v - -l - - -
Region Captioning VG 1 38m 29 20! - v v - - - -
Vision & Language 16 4m 30 125) v v v -0V - - v
Visual Question Answering ~ VQA 2.0 13 33m 25 104 V v v -V - - -
Relationship Detection VG 2 640k 05 19! - v v - - - -
Grounded VQA VizWiz 16k 01 o0l v v - - lv oo Ly
NLP 31 7dm 54 125 - -V - - -
Text Classification MNLI 17 16m 12 48| v - - v - -
Question Answering SQuAD 13 17m 13 52 Vv - - - - - -
Text Summarization Gigaword 1 38m 29 2.5 § v - - - § v - - -
Language Modelling 2 - - 125, v - - -V - - -
Masked Language Modelling C4 2 - - 1250 v - - - Y - - -
All Tasks 95 1B0m 100 100, v v Vv Vv i v v v

Table 1: Tasks UNIFIED-IO learns to complete. From left to right, columns show an example of one of the
sources used for the task, the number of datasets, total number and percent of examples relative to the entire
training corpus, and sample rate during multi-task training. Subsequent columns show what modalities are
required for the tasks, and highlighted rows show aggregated statistics for groups of similar tasks.

We categorize the input and output modalities of each task into 4 different types: Text — natural
language tokens; Image — RGB images; Sparse — a small number of location coordinates within
the image; Dense — per-pixel labels such as depth maps, surface normal maps, etc. We group
related datasets into 8 groups and 22 tasks to facilitate our training and analysis:

Image Synthesis. Given a text description, partially occluded image and inpainting target, or seg-
mentation map containing a semantic class for some pixels, generate a matching image. Data sources
with image and text pairs (Desai et al., 2021), bounding boxes (Krishna et al., 2017) or semantic seg-
mentation (Gupta et al., 2019) can be used to build these tasks.

Sparse Labelling. Given an image and a natural language query, identify the target regions or key-
point locations that are being referred to. Tasks include object detection (Kuznetsova et al., 2020),
object localization (Rhodes et al., 2017), human pose estimation (Lin et al., 2014) and referring
expression (Kazemzadeh et al., 2014).

Dense Labelling. Given an image, produce per-pixel labels for that image. Labels include the
distance of that pixel to the camera (Nathan Silberman & Fergus, 2012), surface orientation (Bae
etal., 2021) or semantic class (Lin et al., 2014).

Image Classification. Given an image and optionally a target bounding box, generate a class name
or tag of that image or target region. This group includes image classification (Deng et al., 2009)
and object categorization (Pinz et al., 2006) datasets.

Image Captioning. Given an image and optionally a bounding box, generate a natural language
description of that image or target region. We include both crowd-sourced (Chen et al., 2015) and
webly supervised (Changpinyo et al., 2021) captions.
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Figure 2: Unified-10. A schematic of the model with four demonstrative tasks: object segmentation,
visual question answering, depth estimation and object localization.

Vision & Language. A broad category for other tasks that require jointly reason over image con-
tent and a natural language query. There are many popular vision and language datasets, and we
categories these datasets into 3 tasks — visual question answering (Antol et al., 2015); relationship
detection (Lu et al., 2016) and grounded VQA (Chen et al., 2022a).

NLP. Tasks with text as the only input and output modalities, including text classification (Williams
etal., 2018), question answering (Rajpurkar et al., 2016) and text summarization (Graff et al., 2003).

Language Modeling. The masking language modeling pre-training task (See Section 3.3) using text
from C4 (Raffel et al., 2020) and Wikipedia (Foundation), which we include to ensure the knowledge
gained from language pre-training is not lost during multi-task training. Other pre-training tasks
are not included because the relevant datasets are already used in other supervised tasks (e.g., for
captioning or classification).

Table | shows the details of tasks and groups. We list an example dataset source, number of datasets,
number of examples, percent of the total number of examples, and sampling rate during training
(Section 3.3) for each group and task. Subsequent columns show what modalities are required
for the inputs and outputs. We defer additional task details, inference details, the complete list of
datasets and visualizations to the Appendix A.1.

3 UNIFIED-IO

Our goal is to build a single unified model that can support a diverse set of tasks across computer
vision and language with little to no need for task-specific customizations and parameters. Such
unified architectures can be applied to new tasks with little to no knowledge of the underlying ma-
chinery, enable general pre-training to benefit many diverse downstream applications, be jointly
trained on a large number of tasks, and better allows knowledge to be shared between tasks.

3.1 UNIFIED TASK REPRESENTATIONS

Supporting a variety of modalities such as images, language, boxes, binary masks, segmentation
masks, efc. without task-specific heads requires representing these modalities in a shared and unified
space. To do this, we discretize the text, images, and other structured outputs in our tasks and
represent them with tokens drawn from a unified and finite vocabulary.
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Text representation. Following Raffel et al. (2020), text inputs and outputs are tokenized using
SentencePiece (Kudo & Richardson, 2018). Following past works such as McCann et al. (2018);
Raffel et al. (2020); Gupta et al. (2022a); Wang et al. (2022b) we also specify each task with a
natural language prompt (excluding some tasks like VQA, which are fully specified by their text
inputs) in order to indicate what task should be performed. For example, “What is the depth map of
the image?” for depth estimation or “What region does “cat” describe?” for object localization.

Images and dense structures representation. A variety of tasks in computer vision requires the
model to produce high-dimensional outputs such as images (e.g., image in-painting) or per-pixel
labels (e.g., depth estimation). To handle these modalities, we first convert per-pixel labels into
RGB images. For depth, we construct a grayscale image by normalizing the depth map. For surface
normal estimation, we convert the z/y /2 orientations into /g /b values. For segmentation, we map
each instance present in the image to a unique color. We randomly select colors for each instance
and specify the color-to-class mapping in the text instead of using universal color-to-class mapping.
This avoids requiring a fixed list of classes and avoids having colors that may only be marginally
different due to the presence of a large number of classes.

Then we encode these images as discrete tokens using a VQ-GAN. In particular, we use the
imagenet-pretrained VQ-GAN from Esser et al. (2021) with 256 x 256 resolution, compression
ratio of 16, and 16384 codebook size. The VQ-GAN codebook is added to the vocabulary as addi-
tional tokens that can be generated by the decoder. During training, the tokens for the target image
are used as targets. During inference, the VQ-GAN decoder is used to convert the generated image
tokens into an output image.

Sparse structures representation. We encode sparse structures such as bounding boxes or hu-
man joints by adding 1000 special tokens to the vocabulary to represent discretized image coordi-
nates (Chen et al., 2022b). Points are then encoded with a sequence of two such tokens, one for the
z and one for the y coordinates, and boxes are encoded using a sequence of four tokens, two for the
upper right corner and two for the lower left corner. Labeled boxes are encoded as a box followed by
a text class label, and joints are encoded as a sequence of points followed by a text visibility label.
This allows us to handle a wide variety of tasks that use these elements in their inputs or output (see
Appendix A.l for examples).

3.2 UNIFIED ARCHITECTURE

Universally representing a wide variety of tasks as input and output sequences of discrete tokens en-
ables us to employ architectures that have been proven successful in natural language processing. In
UNIFIED-IO, we propose a pure transformer model largely following the design of TS5 (Raffel et al.,
2020). In particular, UNIFIED-IO is an encoder-decoder architecture where both the encoder and
decoder are composed of stacked transformer layers, which in turn are composed of self-attention
transformers, cross-attention transformers (in the decoder), and feed-forward neural networks. The
layers are applied residually, and layer norms are applied before each transformer and feed-forward
network. See Raffel et al. (2020) for details.

We make a few architectural changes to adapt the TS architecture to our setting. First, to handle input
images, we reshape the image into a sequence of patches that are embedded with linear projection
similar to Dosovitskiy et al. (2021). Second, we expand the vocabulary to include the location
tokens and the image tokens used in the VQ-GAN. Third, we extend the 1-d relative embedding
(Dosovitskiy et al., 2021) to 2-d with a fixed number of learned embeddings. We also add abso-
lute position embedding to the token embedding following Devlin et al. (2019), since the absolute
position information is essential to image tasks.

We use a maximum of 256 and 128 text tokens for inputs and outputs respectively, and a maximum
length of 576 (i.e. 24 x 24 patch encoding from a 384 x 384 image) for image inputs and 256 (i.e.
16 x 16 latent codes from a 256 x 256 image) for image outputs. In this work, we present four
versions of UNIFIED-IO ranging from 71 million to 2.9 billion parameters, as detailed in Table 2.

3.3 TRAINING

UNIFIED-IO is trained in two stages — A pre-training stage that uses unsupervised losses from text,
image, and paired image-text data, and a massive multi-task stage where the model is jointly trained



Under review as a conference paper at ICLR 2023

Model Encoder Layers Decoder Layers Model Dims MLP Dims Heads Total Params
UNIFIED-1Oguar1, 8 8 512 1024 6 M
UNIFIED-1Ogz5k 12 12 768 2048 12 241M
UNIFIED-1O argr 24 24 1024 2816 16 776M
UNIFIED-1Oyy, 24 24 2048 5120 32 2925M

Table 2: Size variant of UNIFIED-IO. Both encoder and decoder are based on T5 implementation (Raffel
et al., 2020). Parameters of VQ-GAN (Esser et al., 2021) are not included in the total parameter count.

on a large variety of tasks. Since our goal is to examine whether a single unified model can solve a
variety of tasks simultaneously, we do not perform task-specific fine-tuning although prior work
(Lu et al., 2020; Wang et al., 2022b) shows it can further improve task performance.

Pre-training. To learn good representations from large-scale webly supervised image and text data,
we consider two pre-training tasks: text span denoising and masked image denoising. The text span
denoising task follows Raffel et al. (2020) — randomly corrupt 15% of the tokens and replace the
consecutive corrupted tokens with a unique mask token. The masked image denoising task follows
Bao et al. (2022) and He et al. (2022) — randomly masked 75% of the image patches, and the goal is
to recover the whole image. When another modality is present, i.e. image or text, the model can use
information from that modality to complete the tasks.

We construct the pre-training dataset by incorporating publicly available language data (i.e., plain
texts from Common Crawl), vision data (i.e., raw images from different datasets), and V&L data
(i.e., image caption and image label pairs). For V&L data, we add a simple prompt “An image of”
at the beginning of caption or categories to indicate it is multi-modal data (Wang et al., 2022d).

We pre-train UNIFIED-IO on this combination of datasets with an in-batch mixing strategy. We
equally sample data with the text and image denoising objective. For text denoising, half of the
samples are from pure text data, i.e. C4 and Wikipedia. The other half is constructed from image and
class data, such as Imagenet21k (Ridnik et al., 2021) or image and caption data, such as YFCC15M
(Radford et al., 2021). For image denoising, we also use the same caption and class data and some
image-only data from datasets for our vision tasks. We sample from datasets in proportion to dataset
size. See Appendix A.2 for details.

Multi-tasking. To build a single unified model for diverse vision, language, and V&L tasks, we
construct a massive multi-tasking dataset by ensembling 95 datasets from 62 publicly available data
sources. See Section 2 for task details and Appendix A.l for dataset visualizations.

We jointly train UNTFIED-IO on this large set of datasets by mixing examples from these datasets
within each batch. We equally sample each group (1/8) except for image synthesis (3/16) and
dense labeling (1/16) since dense labeling has significantly fewer data and image synthesis has
significantly more data than other groups. Within each group, we sample datasets proportional to
the square root of their size to better expose the model to underrepresented tasks. Due to the large
variance in dataset size, some tasks are still rarely sampled (e.g. depth estimation only has a 0.43%
chance of being sampled). See Appendix A.3 for details and visualizations.

Implementation Details. Due to space limitation, see Appendix A.4 for implementation details.

4 EXPERIMENTS

We now present results for UNIFIED-IO on the GRIT benchmark (Sec 4.1), ablate training data
via the GRIT ablation benchmark (Sec 4.2) and evaluate UNIFIED-IO on 16 other benchmarks in
computer vision and NLP (Sec 4.3). Appendix A.5 shows evaluation on same concept and new
concept on GRIT and A.6 shows the prompt generalization. Qualitative examples are in A.7.

4.1 RESULTS ON GRIT

The General Robust Image Task (GRIT) Benchmark (Gupta et al., 2022b) is an evaluation-only
benchmark designed to measure the performance of models across multiple tasks, concepts, and
data sources. GRIT aims to encourage the building of unified and general purpose vision models
and is thus well suited to evaluate UNIFIED-IO. GRIT has seven tasks that cover a range of visual
skills with varying input and output modalities and formats: categorization, localization, VQA, refer
expression, segmentation, keypoint, and surface normal estimation.
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Categorization Localization VQA Refexp Segmentation  Keypoint Normal All

ablation test ablation test ablation test ablation test ablation test ablation test ablation test ablation test

0 NLL-AngMF [4] - - - - - - - - - 49.6 50.5 7.2 7.1
1 Mask R-CNN [41] - - 447 45.1 - - - - 262 262 1708 70.6 - - 202 203
2 GPV-1 [38] 332 332 428 427 50.6 498 258 26.8 - - - - - - 21.8 218
3 CLIP [86] 48.1 - - - - - - - - - - - - - 6.9 -
4 OFApagee [107] 22.6 - - - 72.4 - 61.7 - - - - - - - 22.4 -
5 GPV-2[52] 547 551 536 536 635 632 515 521 - - - - - - 319 320
6 UNIFIED-IOguar;, 42.6 - 50.4 - 529 - 51.1 - 40.7 - 46.5 - 335 - 454

7 UNIFIED-1O0gasg  53.1 - 59.7 - 63.0 - 68.3 - 49.3 - 60.2 - 37.5 - 55.9

8 UNIFIED-1O1pzcz  57.0 - 64.2 - 67.4 - 74.1 - 54.0 - 67.6 - 40.2 - 60.7 -
9 UNIFIED-10x;, 617 608 67.0 671 745 745 78.6 789 563 565 68.1 677 450 443 645 643

Table 3: Comparison of our UNIFIED-IO models to recent SOTA on GRIT benchmark. UNIFIED-IO is the
first model to support all seven tasks in GRIT. Results of CLIP, OFA obtained from GRIT challenge.

UNIFIED-IO is the first model to support all seven tasks in GRIT. As seen in Table 3, UNIFIED-1Oy;,
outperforms all prior submissions to GRIT obtaining average accuracy of 64.3 on test. The next best
submission is GPV-2 (Kamath et al., 2022) which obtains 32.0 and can only support 4 out of 7 tasks.
UNIFIED-1Oy;, also outperforms the multi-task checkpoint of OFA;zce (Wang et al., 2022b) on
VQA, refer expression and categorization.

Mask R-CNN (He et al., 2017) is a strong baseline for core vision tasks. UNIFIED-1Oy;, outper-
forms Mask R-CNN on localization and segmentation. The reason is UNIFIED-1Oy;, shows little
degradation in performance between same concept and new concept as discussed in Appendix A.5.
On keypoint, our model is worse compared to Mask R-CNN (68.1 vs. 70.8). The reason is we have
2-stage inference for keypoint — first locate the person using the object localization prompt, then find
keypoints for each detected region.

NLL-AngMF (Bae et al., 2021) is a SOTA model for surface normal estimation. Our model gets
strong results compared to NLL-AngMF (44.3 vs. 49.6). Since our image tokenizer is only pre-
trained on ImageNet without any surface normal data, the upper bound of our method through
reconstruction is 59.8 on FrameNet (Kazemzadeh et al., 2014). This suggests our score could be
considerably improved by training a stronger image tokenizer.

4.2 ABLATIONS

To better understand how multi-tasking affects learning, we perform ablations by leaving out
individual task groups from multi-task training. Due to computational constraints, we ablate
UNIFIED-1O¢ ke and train for 250k steps. If ablating a task group, we reduce the number of
training steps so that all models are trained on approximately the same number of examples for each
of the remaining task groups. Results are shown in Table 4 on GRIT and MNLI (Williams et al.,
2018).

In spite of supporting a large number of heterogeneous tasks, Unified-10 is able to perform well
across all tasks. Reducing this heterogeneity by removing task groups does not impact the perfor-
mance of individual tasks significantly. This is notable since removing a task group significantly
reduces the scope of what a model needs to learn while keeping the model capacity fixed. This
empirically demonstrates the effectiveness of the proposed unified architecture for massive hetero-
geneous task support.

An exception is that removing the NLP group significantly boosts categorization, which might indi-
cate that the sentence classification task interferes with image classification. Removing captioning
also boosts performances on VQA and a few other tasks, which might be caused by captioning re-
quiring a relatively large amount of model capacity to learn free-form text generation, in contrast
to VQA that requires short answer phrases from a limited vocabulary. Removing image synthesis
causes a major regression in keypoint. Manual inspection shows that the model predicts standing-
human shaped keypoints even for people in very different postures, suggesting the model learned
to rely on priors instead of the image content. We also see minor regressions in localization and
referring expression, suggesting that image synthesis tasks, possibly image in-painting in particular,
had a surprising positive transfer to understanding sparse structured outputs. It is possible that an
ablation analysis on the XL model may yield different outcomes, but we are unable to perform an
XL-based analysis due to limited compute.
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Model Step Categorization Localization VQA Refexp Segmentation Keypoint Normal MNLI
UNIFIED-1O01 arce 250k 50.3 63.4 65.7 734 51.8 69.2 40.7 85.1
w/o Image Synthesis 200k 52.7 62.9 64.2 72.0 53.6 183 42.2 84.3
w/o Sparse 220k 52.6 - 64.1 - 51.3 - 38.5 83.8
w/o Dense 235k 49.5 62.4 65.6 72.9 - 66.7 - 84.8
w/o Classification 220k - 63.1 64.0 73.7 52.1 66.8 39.1 84.6
w/o Captioning 220k 49.7 65.0 68.0 74.7 54.2 67.4 39.2 85.3
w/o V&L 220k 50.9 - - 72.5 51.9 70.0 38.2 84.4
w/o NLP 220k 56.1 64.3 65.9 74.6 52.0 69.3 39.9 -
w/o Language Modelling 220k 52.9 64.7 66.7 74.7 52.7 70.2 39.9 835

Table 4: Ablation study on holding out tasks groups and evaluating on GRIT and MNLI (Williams et al., 2018)

= < < =
3 D) o o [¢] N 13}
o =z o < = 5 N - 15 £ =4
s f2 7 s £ 5 £ £ 236 F 8 S £ g £
& & T & & S =
g £ £ £ 5 I = g g5 £ £ 8§ 8§ 5 & 3
Split val val  val test-dev test test  test-dev test-std  test val val val val test val val test
Metric RMSE Acc. Acc.  Acc. Acc. Acc. Acc. 10U Acc. Acc. CIDEr CIDEr CIDEr CIDEr Fl1 Acc Acc
Unified SOTA UViM - - - Flamingo - Flamingo - - - - - - - TS PaLM
0.467 - - - 578 - 49.8 - - - - - - - 92.20 922
UNIFIED-1O0guz1,1, 0.649 428 382 577 31.0 24.3 424 355 17.3 76.5 - 45.1  80.1 - 84.9 65.9 874
UNIFIED-10z55 0.469 633 432 618 378 28.5 45.8 50.0 297 856 - 66.9 1040 - 879 70.8 90.8
UNIFIED-10: 2rce 0.402 71.8 505 678 427 334 47.7 54.7 404 86.1 - 872 1175 - 87.5 73.1 93.1
UNIFIED-1Oy;, 0.385 79.1 532 719 54.0 452 574 65.0 498 91.1 212 1000 126.8 1223 89.2 79.7 95.7
Single or fine- BinsFormer CoCa MAE CoCa KAT  GPV2 Flamingo MAC-Caps JSL OFA SVT CoCa - OFA  Turing NLR ST-MOE DeBERTa
tuned SOTA 0.330 91.00 60.3 823 544 38.1 65.7 27.3 39.6 91.0 183 1224 - 1453 93.8 924 977

Table 5: Comparing the jointly trained UNIFIED-IO to specialized and benchmark fine-tuned state of the art
models across Vision, V&L and Language tasks. Benchmarks used for evaluation are: NYUv2 (Nathan Sil-
berman & Fergus, 2012), ImageNet (Deng et al., 2009), Places365 (Zhou et al., 2017), VQA 2.0 (Goyal et al.,
2017), A-OKVQA (Schwenk et al., 2022), VizWizVQA (Gurari et al., 2018), VizWizG (Chen et al., 2022a),
Swig (Pratt et al., 2020), SNLI-VE (Xie et al., 2019), VisComet (Park et al., 2020), Nocaps (Agrawal et al.,
2019), COCO Captions (Chen et al., 2015), MRPC (Dolan & Brockett, 2005), BoolQ (Clark et al., 2019), and
SciTail (Khot et al., 2018).

4.3 RESULTS ON ADDITIONAL TASKS

We report results on 16 additional tasks used in our training setup. For these tasks, we do not expect
to get state-of-the-art results since specialized models are usually designed and hyper-parameter
tuned for a single task, while we are evaluating a single jointly trained model. We also avoid ex-
tensive task-specific tricks like color jittering, horizontal flipping, CIDEr optimization, and label
smoothing, which are often responsible for considerable gains in individual task performance. We
leave such task-specific tuning for future work. See Table 5 for the results. When possible, we
additionally report the best prior result on these tasks from a unified model, meaning a model that
is trained in a multi-task setting and a unified architecture (no task-specific head or customizations)
with at least three other tasks.

UNIFIED-IO provides strong performance on all these tasks despite being massively multi-tasked.
We review more fine-grained results below.

Depth Estimation. On depth estimation, UNIFIED-IO achieves 0.385 rmse, which is behind
SOTA (Li et al., 2022e) but ahead of the recently proposed unified model, UViM (Kolesnikov et al.,
2022), despite being trained to do far more tasks.

Image Classification. UNIFIED-IO achieves 79.1 on ImageNet and 53.2 on Places365, showing
the model was able to retain the knowledge of many fine-grained classes despite being massively
multi-tasked. Notably, we achieve this without the extensive data augmentations methods typically
used by SOTA models (Yu et al., 2022a; He et al., 2022).

Visual Question Answering. UNIFIED-1O is competitive with fine-tuned models on VQA (Alayrac
et al., 2022; Kamath et al., 2022; Gui et al., 2021), and achieves SOTA results on A-OKVQA.
Relative to Flamingo, UNIFIED-IO performs better on VizWiz-QA but worse on OK-VQA.

Image Captioning. Despite the lack of CIDEr optimization, UNIFIED-IO is a strong captioning
model and generalizes well to nocaps. Since UNIFIED-IO is trained on many captioning datasets, it
is likely the use of style tags following Cornia et al. (2021) would offer additional improvement by
signaling UNIFIED-IO to specifically generate COCO-style captions during inference.
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NLP tasks.: UNIFIED-IO achieves respectable results on three NLP tasks but lags behind SOTA
models (Smith et al., 2022; Zoph et al., 2022; He et al., 2021). This can partly be attributed to scale.
Modern NLP models contain 100 billion+ parameters and with more extensive NLP pre-training.

4.4 LIMITATIONS

For object detection, while UNTFIED-IO generally produces accurate outputs (see Appendix A.7),
we find the recall is often poor in cluttered images. Prior work (Chen et al., 2022b) has shown this
can be overcome with extensive data augmentation techniques, but these methods are not currently
integrated into UNTFIED-1O. Our use of a pre-trained VQ-GAN greatly simplifies our training and
is surprisingly effective for dense prediction tasks. However, it does mean UNIFIED-IO has limited
image generation capabilities (recent works (Yu et al., 2022b) have shown this method can be greatly
improved but was not available at the time of development). We also found in a small-scale study
that our model does not always understand prompts not in the training data (see Appendix A.6).

5 RELATED WORK

Constructing models that can learn to solve many different tasks has been of long-standing interest
to researchers. A traditional approach to this problem is to build models with task-specialized heads
on top of shared backbones (He et al., 2017; Liu et al., 2019; Lu et al., 2020). However, this requires
manually designing a specialized head for each task and potentially limits transfer across tasks. An
alternative is to build unified models — models that can complete many different tasks without task-
specialized components. In NLP, this approach has achieved a great deal of success through the use
of pre-trained generative models (Raffel et al., 2020; Brown et al., 2020; Chowdhery et al., 2022).

Inspired by this success, there has been a recent trend to build unified models that can be additionally
applied to tasks with visual or structured inputs and outputs. Many models have been proposed for
tasks with text and/or image input and text output (Cho et al., 2021; Wang et al., 2022d; Li et al.,
2022b; Wang et al., 2021; Kaiser et al., 2017; Sun et al., 2022; Chen et al., 2022d; Wang et al.,
2022c). However, these models can not produce any structured or visual output.

More recent unified models can additionally support image locations, which allows tasks like object
detection or region captioning. This can be done by using bounding boxes proposed by an object
detector (Cho et al., 2021; Kamath et al., 2022) or including a bounding box output head (Gupta
et al., 2022a; Dou et al., 2022; Chen et al., 2022c; Kamath et al., 2021; Li et al., 2022d). Alterna-
tively, image locations can be encoded as special tokens in the input/output text (Yang et al., 2021;
Yao et al., 2022; Zhu et al., 2022) following Chen et al. (2022b). UNTFIED-1O follows this design,
but applies it to a wider set of tasks than previous works, including key-point estimation, image
in-painting, and region captioning.

Concurrent to our work, OFA (Wang et al., 2022b) proposes a similar approach that also supports im-
age locations and text-to-image synthesis. However, OFA does not support dense labeling tasks such
as depth estimation, segmentation, and surface normal estimation. Other closely related models in-
clude UViM (Kolesnikov et al., 2022) which generates a discrete guiding code for a D-VAE to build
an autoregressive model for panoptic segmentation, depth prediction, and colorization, and Pix2Seq
v2 (Chen et al., 2022¢c) which extends Pix2Seq to segmentation, keypoint estimation, and image
captioning. UNIFIED-IO covers all these tasks and more, and focuses on multi-tasking rather then
task-specific fine-tuning. Due to space limits, additional discussions are presented in Appendix A.S.

6 CONCLUSION

We have presented UNIFIED-IO, a unified architecture that supports a large variety of computer
vision and NLP tasks with diverse inputs and outputs, including images, continuous maps, binary
masks, segmentation masks, text, bounding boxes, and keypoints. This unification is made possible
by homogenizing each of these modalities into a sequence of discrete tokens. The 2.9B parameter
UNIFIED-IO XL model is jointly trained on 90+ datasets, is the first model to perform all 7 tasks on
the GRIT benchmark and obtains impressive results across 16 other vision and NLP benchmarks,
with no benchmark fine-tuning or task-specific modifications.
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