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Abstract

Deep learning has achieved many breakthroughs in modern classification tasks.1

Numerous architectures have been proposed for different data structures but when2

it comes to the loss function, the cross-entropy loss is the predominant choice.3

Recently, several alternative losses have seen revived interests for deep classifiers.4

In particular, empirical evidence seems to promote square loss but a theoretical5

justification is still lacking. In this work, we contribute to the theoretical under-6

standing of square loss in classification by systematically investigating how it7

performs for overparametrized neural networks in the neural tangent kernel (NTK)8

regime. Interesting properties regarding the generalization error, robustness, and9

calibration error are revealed. We consider two cases, according to whether classes10

are separable or not. In the general non-separable case, fast convergence rate is11

established for both misclassification rate and calibration error. When classes are12

separable, the misclassification rate improves to be exponentially fast. Further,13

the resulting margin is proven to be lower bounded away from zero, providing14

theoretical guarantees for robustness. We expect our findings to hold beyond the15

NTK regime and translate to practical settings. To this end, we conduct extensive16

empirical studies on practical neural networks, demonstrating the effectiveness of17

square loss in both synthetic low-dimensional data and real image data. Comparing18

to cross-entropy, square loss has comparable generalization error but noticeable19

advantages in robustness and model calibration.20

1 Introduction21

The pursuit of better classifiers has fueled the progress of machine learning and deep learning research.22

The abundance of benchmark image datasets, e.g., MNIST, CIFAR, ImageNet, etc., provide test fields23

for all kinds of new classification models, especially those based on deep neural networks (DNN).24

With the introduction of CNN, ResNets, and transformers, DNN classifiers are constantly improving25

and catching up to the human-level performance. In contrast to the active innovations in model26

architecture, the training objective remains largely stagnant, with cross-entropy loss being the default27

choice. Despite its popularity, cross-entropy has been shown to be problematic in some applications.28

Among others, [1] argued that features learned from cross-entropy lack interpretability and proposed a29

new loss aiming for maximum coding rate reduction. [2] linked the use of cross-entropy to adversarial30

vulnerability and proposed a new classification loss based on latent space matching. [3] discovered31

that the confidence of most DNN classifiers trained with cross-entropy is not well-calibrated.32

Recently, several alternative losses have seen revived interests for deep classifiers. In particular, many33

existing works have presented empirical evidence promoting the use of square loss over cross-entropy.34

[4] conducted large-scale experiments comparing the two and found that square loss tends to perform35

better in natural language processing related tasks while cross-entropy usually yields slightly better36
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accuracy in image classification. Similar comparisons are also made in [5]. [6] compared a variety37

of loss functions and output layer regularization strategies on the accuracy and out-of-distribution38

robustness, and found that square loss has greater class separation and better performance.39

In comparison to the empirical investigation, theoretical understanding of square loss in training deep40

learning classifiers is still lacking. Through our lens, square loss has its uniqueness among classic41

classification losses, and we argue that it has great potentials for modern classification tasks. Below42

we list our motivations and reasons why.43

Explicit feature modeling Deep learning’s success can be largely attributed to its superior ability44

as feature extractors. For classification, the ideal features should be separated between classes and45

concentrated within classes. However, when optimizing cross-entropy loss, it’s not obvious what46

the learned features should look like [1]. In the terminal stage of training, [7] proved that when47

cross-entropy is sufficiently minimized, the penultimate layers features will collapse to the scaled48

simplex structure. Such phenomenon is referred to as “neural collapse". Knowing this, would it be49

better to directly enforce the terminal solution by using square loss with the simplex coding [8], as50

Euclidean distance is probably most natural to measure the distance between samples’ features and51

class-means? Unlike cross-entropy, square loss uses the label codings (one-hot, simplex etc.) as52

features, which can explicitly control class separations.53

Model calibration An ideal classifier should not only give the correct class prediction, but also54

with the correct confidence. Calibration error measures the closeness of the predicted confidence55

to the underlying conditional probability ⌘. Using square loss in classification can be essentially56

viewed as regression where it treats discrete labels as continuous code vectors. It can be shown that57

the optimal classifier under square loss is 2⌘ � 1, linear with the ground truth. This distinguishing58

property allows it to easily recover ⌘. In comparison, the optimal classifiers under the hinge loss and59

cross-entropy are sign(2⌘ � 1) and log( ⌘
1�⌘ ), respectively. Therefore, hinge loss doesn’t provide60

reliable information on the prediction confidence, and cross-entropy can be problematic when ⌘ is61

close to 0 or 1 [9]. Hence, in terms of model calibration, square loss is a natural choice.62

Connections to popular approaches Mixup [10] is a data augmentation technique where aug-63

mented data are constructed via convex combinations of inputs and their labels. Like in square loss,64

mixup treats labels as continuous and is shown to improve the generalization of DNN classifiers. In65

knowledge distillation [11], where a student classifier is trying to learn from a trained teacher, [12]66

proved that the “best" teacher with the ground truth conditional probabilities provides the lowest67

variance in student learning. Since classifiers trained using square loss is a consistent estimator of ⌘,68

one can argue that it is a better teacher. In supervised contrastive learning [13], the optimal features69

are the same as those from square loss with simplex label coding [14] (details in Section 3.4).70

Despite its lack of popularity in practice, square loss has many advantages that can be easily71

overlooked. In this work, we systematically investigate from a statistical estimation perspective, the72

properties of deep learning classifiers trained using square loss. Comparing to cross entropy, the73

square loss is much more theoretically tractable, which allows us to develop sharper results on the74

training process and generalization performance. The neural networks in our analysis are required75

to be sufficiently overparametrized in the neural tangent kernel (NTK) regime. Even though this76

restricts the implication of our results, it is a necessary first step towards a deeper understanding. In77

summary, our main contributions are:78

• Generalization error bound: We consider two cases, according to whether classes are separable79

or not. In the general non-separable case, we adopt the classical binary classification setting with80

smooth conditional probability. Fast convergence rate is established for overparametrized neural81

network classifiers with Tsybakov’s noise condition. If two classes are separable with positive margin,82

we show that overparametrized neural network classifiers can provably reach zero misclassification83

error with probability exponentially tending to one. To the best of our knowledge, this is the first such84

result for separable but not linear separable classes. Furthermore, we bridge these two cases and offer85

a unified view by considering auxiliary random noise injection.86

• Robustness (margin property): When two classes are separable, the decision boundary is not87

unique and large-margin classifiers are preferred. In the separable case, we show that the decision88

boundary of overparametrized neural network classifiers trained by square loss cannot be too close to89

the data support and the resulting margin is lower bounded away from zero, providing theoretical90

guarantees for robustness.91
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• Calibration error: We show that classifiers trained using square loss are inherently well-calibrated,92

i.e., the trained classifier provides consistent estimation of the ground-truth conditional probability in93

L1 norm. Such property doesn’t hold for cross-entropy.94

• Empirical evaluation: We corroborate our theoretical findings with empirical experiments in both95

synthetic low-dimensional data and real image data. Comparing to cross-entropy, square loss has96

comparable generalization error but noticeable advantages in robustness and model calibration.97

This work contributes to the theoretical understanding of deep classifiers from a nonparametric98

estimation point of view, which has been a classic topic in statistics literature. Among others, [15]99

established the optimal convergence rate for 0-1 loss excess risk when the decision boundary is100

smooth. [9, 16] extended the analysis to various surrogate losses. [17, 18] studied the convergence101

rates for plug-in classifiers from local averaging estimators. [19] investigated the convergence rate102

for support vector machine using Gaussian kernels. We build on and extend classic results to neural103

networks in the NTK regime. There exist nonparametric results on deep classifiers, e.g., [20] derived104

fast convergence rates of DNN classifiers that minimize the empirical hinge loss, [21] considered105

a family of CNN-inspired classifiers and developed similar results for the empirical cross-entropy106

minimizer, etc. Unlike aforementioned works that only concern the existence of a good classifier107

(with theoretical worst-case guarantee), in ignorance of the tremendous difficulty of neural network108

optimization, our results further incorporate the training algorithm and apply to trained classifiers,109

which relates better to practice. To the best of the authors’ knowledge, similar attainable fast rates110

(faster than n� 1
2 ) have never been established for neural network classifiers.111

We require the neural network to be overparametrized, which has been extensively studied recently112

via NTK. Most such results are in the regression setting with a handful of exceptions. [22] showed113

that only polylogarithmic width is sufficient for gradient descent to overfit the training data using114

logistic loss. [23] proved generalization error bound for regularized NTK in classification. [24, 25]115

provided optimization and generalization guarantees for overparametrized network trained with116

cross-entropy. In comparison, our results are sharper in the sense that we take the ground truth data117

assumptions into consideration. This allows a faster convergence rate, especially when the classes are118

separable, where the exponential convergence rate is attainable. The NTK framework greatly reduces119

the technical difficulty for our theoretical analysis. However, our results are mainly due to properties120

of the square loss itself and we expect them to hold for a wide range of classifiers.121

There are other works investigating the use of square loss for training (deep) classifiers. [26]122

uncovered that the “neural collapse" phenomenon also occurs under the square loss. [27] compared123

classification and regression tasks in the overparameterized linear model with Gaussian features,124

illustrating different roles and properties of loss functions used at the training and testing phases.125

[28] made interesting observations on effects of popular regularization techniques such as batch126

normalization and weight decay on the gradient flow dynamics under square loss. These findings127

support our theoretical results’ implication, which further strengthens our beliefs that the essence128

comes from the square loss and our analysis can go beyond NTK regime.129

The rest of this paper is arranged as follows. Section 2 presents some preliminaries. Main theoretical130

results are in Section 3. The simplex label coding is discussed in Section 3.4 followed by numerical131

studies in Section 4 and conclusions in Section 5. Technical proofs and details of the numerical132

studies can be found in the Appendix.133

2 Preliminaries134

Notation For a function f : ⌦ ! R, let kfk1 = supx2⌦ |f(x)| and kfkp = (
R
⌦ |f(x)|pdx)1/p.135

For a vector x, kxkp denotes its p-norm, for 1  p  1. Lp and lp are used to distinguish function136

norms and vector norms. For two positive sequences {an}n2N and {bn}n2N, we write an . bn if137

there exists a constant C > 0 such that an  Cbn for all sufficiently large n. We write an ⇣ bn if138

an . bn and bn . an. Let [N ] = {1, . . . , N} for N 2 N, I be the indicator function, and Id be the139

d⇥ d identity matrix. N(µ,⌃) represents Gaussian distribution with mean µ and covariance ⌃.140

Classification problem settings Let P be an underlying probability measure on ⌦ ⇥ Y , where141

⌦ ⇢ Rd is compact and Y = {1,�1}. Let (X,Y ) be a random variable with respect to P . Suppose142

we have observations {(xi, yi)}ni=1 ⇢ (⌦⇥ Y )n i.i.d. sampled according to P . The classification143
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task is to predict the unobserved label y given a new input x 2 ⌦. Let ⌘ defined on ⌦ denote the144

conditional probability, i.e., ⌘(x) = P(y = 1|x). Let PX be the marginal distribution of P on X .145

According to whether labels are deterministic, there are two scenarios of interest. If ⌘ only takes values146

from {0, 1}, i.e., labels are deterministic, we call this case the separable case
1. Let ⌦1 = {x|⌘(x) =147

1}, ⌦2 = {x|⌘(x) = 0} and ⌦ = ⌦1 [ ⌦2. If the probability measure of {x|⌘(x) 2 (0, 1)}148

is non-zero, i.e., the labels contain randomness, we call this case the non-separable case. In the149

separable case, we further assume that there exists a positive margin, i.e., dist(⌦1,⌦2) � 2� > 0,150

where � is a constant, and dist(⌦1,⌦2) = infx2⌦1,x02⌦2 kx� x
0k2. In the non-separable case, to151

quantify the difficulty of classification, we adopt the well-established Tsybakov’s noise condition152

[17], which measures how large the “difficult region” is where ⌘(x) ⇡ 1/2.153

Definition 2.1 (Tsybakov’s noise condition). Let  2 [0,1]. We say P has Tsybakov noise exponent154

 if there exists a constant C, T > 0 such that for all 0 < t < T , PX(|2⌘(X)� 1| < t)  C · t.155

A large value of  implies the difficult region to be small. It is expected that a larger  leads to a faster156

convergence rate of a neural network classifier. This intuition is verified for the overparametrized157

neural network classifier trained by square loss and `2 regularization. See Section 3 for details.158

The key quantity of interest is the misclassification error, i.e., 0-1 loss. In the population level, the 0-1159

loss can be written as160

L(f) =E(X,Y )⇠P I{sign(f(X)) 6= Y }
=EX⇠PX [(1� ⌘(X))I{f(X) � 0}+ ⌘(X)I{f(X) < 0}]. (2.1)

Clearly, one minimizer of L(f) is 2⌘ � 1.161

Neural network setup We mainly focus on the one-hidden-layer ReLU neural network family F162

with m nodes in the hidden layer, denoted by fW ,a(x) = m�1/2
Pm

r=1 ar�(W
>
r x), where x 2 ⌦,163

W = (W1, · · · ,Wm) 2 Rd⇥m is the weight matrix in the hidden layer, a = (a1, · · · , am)> 2 Rm164

is the weight vector in the output layer, �(z) = max{0, z} is the rectified linear unit (ReLU).165

The initial values of the weights are independently generated from Wr(0) ⇠ N(0, ⇠2Im), ar ⇠166

unif{�1, 1}, 8r 2 [m]. Based on the observations {(xi, yi)}ni=1, the goal of training a neural network167

is to find a solution to168

min
W

nX

i=1

l(fW ,a(xi), yi) + µR(W ,a), (2.2)

where l is the loss function, R is the regularization, and µ � 0 is the regularization parameter. Note in169

Equation 2.2 that we only consider training the weights W . This is because a·�(z) = sign(a)·�(|a|z),170

which allows us to reparametrize the network to have all ai’s to be either 1 or �1. In this work, we171

consider square loss associated with `2 regularization, i.e., l(fW ,a(xi), yi) = (fW ,a(xi)� yi)2 and172

R(W ,a) = kW k22.173

A popular way to train the neural network is via gradient based methods. It has been shown that174

the training process of DNNs can be characterized by the neural tangent kernel (NTK) [29]. As175

is usually assumed in the NTK literature [30, 23, 31, 32], we consider data on the unit sphere176

Sd�1, i.e., kxik2 = 1, 8i 2 [n], and the neural network is highly overparametrized (m � n) and177

trained by gradient descent (GD). For details about NTK and GD in one-hidden-layer ReLU neural178

networks, we refer to Appendix A. In the rest of this work, fW (k),a denotes the GD-trained neural179

network classifier under square loss associated with `2 regularization, where k is the iteration number180

satisfying Assumption D.1 and W (k) is the weight matrix after k-th iteration.181

3 Theoretical results182

In this section, we present our main theoretical results, which consist of three parts: generalization183

error, robustness, and calibration error. Throughout the analysis, we make the following assumptions184

on the data and the estimation model. Due to the page limit, we move the technical specification of185

the assumptions to Appendix D, with detailed discussions.186

1In the separable case we consider, the classes are not limited to linearly separable but can be arbitrarily
complicated.
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Data assumptions We assume the ground-truth ⌘(x) to be well-behaved (Assumption D.2). Op-187

tionally, the marginal density X is assumed to be upper bounded (Assumptions D.4) or both upper188

and lower bounded (Assumptions D.5). Assumptions D.4 and D.5 are standard in classical analysis189

of classification in statistics literature [17, 18], which covers a large class of density functions.190

Model assumptions We require the ReLU neural network to be sufficiently overparametrized191

(with a finite width), and imposes conditions on the learning rate and iteration number (Assumption192

D.1); similar settings have been adopted by [30, 32]. We also assume that the solution to (2.2) is193

well-behaved, i.e., the complexity of the neural network estimator generated by the GD training is194

controlled (Assumption D.3).195

3.1 Generalization error bound196

In classification, the generalization error is typically referred to as the misclassification error, which197

can be quantified by L(f) defined in Equation 2.1. In the non-separable case, the excess risk, defined198

by L(f) � L⇤, is used to evaluate the quality of a classifier f , where L⇤ = L(2⌘ � 1), which199

minimizes the 0-1 loss. Theorem 3.1 states that the overparametrized neural network with GD and `2200

regularization can achieve a small excess risk in the non-separable case.201

Theorem 3.1 (Excess risk in the non-separable case). Suppose Assumptions D.1, D.2, and D.4 hold.202

Assume the conditional probability ⌘(x) satisfies Tsybakov’s noise condition with component . Let203

µ ⇣ n
d�1
2d�1 . Then204

L(fW (k),a) = L⇤ +OP(n
� d(+1)

(2d�1)(+2) ). (3.1)

From Theorem 3.1, we can see that as  becomes larger, the convergence rate becomes faster, which205

is intuitively true. Generalization error bounds in this setting is scarce. To the best of the authors’206

knowledge, [23] is the closest work (the labels are randomly flipped), where the bound is in the order207

of OP(1/
p
n). Our bound is faster, especially with larger . It is known that the optimal convergence208

rate under Assumptions D.2 and D.4 is OP(n
� d(+1)

d+4d�2 ) [17]. The differences between (3.1) and the209

optimal convergence rate is the extra (d� 1) in the denominator of the convergence rate in (3.1)210

(since n� d(+1)
(2d�1)(+2) = n� d(+1)

(d�1)+d+4d�2 ). If the conditional probability ⌘ has a bounded Lipschitz211

constant, [18] showed that the convergence rate based on the plug-in kernel estimate is OP(n
� +1

+3+d ),212

which is slower than the rate in Equation 3.1 if d is large.213

Now we turn to the separable case. Since ⌘ only takes value from {0, 1} in the separable case, ⌘ is214

bounded away from 1/2. Therefore, one can trivially take  ! 1 in Equation 3.1 and obtain the215

convergence rate OP(n�d/(2d�1)). However, this rate can be significantly improved in the separable216

case, as stated in the following theorem.217

Theorem 3.2 (Generalization error in the separable case). Suppose Assumptions D.1, D.3, and D.5218

hold. Let µ = o(1). There exist positive constants C1, C2 such that the misclassification rate is 0%219

with probability at least 1 � � � C1 exp(�C2n), and � can be arbitrarily small2 by enlarging the220

neural network’s width.221

In Theorem 3.2, the regularization parameter can take any rate that converges to zero. In particular, µ222

can be zero, and the corresponding classifier overfits the training data. Theorem 3.2 states that the223

convergence rate in the separable case is exponential, if a sufficiently wide neural network is applied.224

This is because the observed labels are not corrupted by noise, i.e., P(y = 1|x) is either one or zero.225

Therefore, it is easier to classify separable data, which is intuitively true.226

3.2 Robustness and calibration error227

If two classes are separable with positive margin, the decision boundary is not unique. Practitioners228

often prefer the decision boundary with large margins, which are robust against possible perturbation229

on input points [33, 34]. The following theorem states that the square loss trained margin can be230

lower bounded by a positive constant. Recall that in the separable case, ⌦ = ⌦1 [ ⌦2, where231

⌦1 = {x|⌘(x) = 1} and ⌦2 = {x|⌘(x) = 0}.232

2The term � only depends on the width of the neural network. A smaller � requires a wider neural network.
If � = 0, then the number of nodes in the hidden layer is infinity.
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Theorem 3.3 (Robustness in the separable case). Suppose the assumptions of Theorem 3.2233

are satisfied. Let µ = o(1). Then there exist positive constants C,C1, C2 such that234

minx2DT ,x02⌦1[⌦2 kx� x
0k2 � C, and the misclassification rate is 0% with probability at least235

1� � � C1 exp(�C2n) for all n, where DT is the decision boundary, and � is as in Theorem 3.2.236

Theorem 3.3 states that the square loss trained margin is robust in the sense that the predicted label will237

not change in case of any noise whose l2 norm is smaller than C. Since kx� x
0k1 �

p
d kx� x

0k2,238

Theorem 3.3 also indicates l1 robustness. To the best of our knowledge, similar theoretical robustness239

guarantee has not been provided for any other loss functions. The most relevant work is [35], but240

their result is not on the population and doesn’t apply to ReLU networks trained via GD.241

In the non-separable case, ⌘(x) varies within (0,1) and practitioners may not only want a clas-242

sifier with a small excess risk, but also want to recover the underlying conditional probability ⌘.243

Therefore, square loss is naturally preferred since it treats the classification problem as a regression244

problem. The following theorem states that, one can recover the conditional probability ⌘ by using an245

overparametrized neural network with `2 regularization and GD training.246

Theorem 3.4 (Calibration error). Suppose Assumptions D.1-D.4 are fulfilled. Let µ ⇣ n
d�1
2d�1 . Then247

��(fW (k),a + 1)/2� ⌘
��
L1

= OP(n
�1/(4d�2)).

Theorem 3.4 states that the underlying conditional probability in the non-separable case can be248

recovered by (fW (k),a +1)/2. The form (fW (k),a +1)/2 is to account for the {�1, 1} label coding.249

Under {0,1} coding, the estimator would be fW (k),a itself. The L1 consistency doesn’t hold for250

cross-entropy trained neural networks, due to the form of the optimal solution log( ⌘
1�⌘ ). With limited251

capacity, the network’s confidence prediction is bounded away from 0 and 1 [9]. In practice, we want252

to control the complexity of the neural network thus it is usually the case that
��fW (k),a

��
1 < C for253

some constant C. Hence, it cannot accurately estimate ⌘(x) when ⌘(x) > eC

1+eC or ⌘(x) < 1
1+eC ,254

which makes the calibration error under the cross-entropy loss always bounded away from zero.255

However, square loss does not have such a problem.256

Notice that the calibration error bound in Theorem 3.4 does not depend on the Tsybakov’s noise257

condition, and is slower than the excess risk. This is because a small calibration error is much258

stronger than a small excess risk, since the former requires the conditional probability estimation to259

be uniformly accurate, not just matching the sign of ⌘ � 1/2. To be more specific, a good estimated b⌘260

can always lead to a low risk plug-in classifier bf = 2b⌘ � 1, but not vice versa.261

Remark 1 (Technical challenge). Despite the similar forms of regression and classification using262

square loss, most of the regression analysis techniques cannot be directly applied to the classification263

problem, even if the supports of two classes are non-separable. Moreover, it is clear that classification264

problems in the separable case are completely different with regression problems.265

3.3 Transition from separable to non-separable266

The general non-separable case and the special separable case can be connected via Gaussian noise267

injection. In practice, data augmentation is an effective way to improve robustness and the simplest268

way is Gaussian noise injection [36]. In this section, we only consider it as an auxiliary tool for269

theoretical analysis purpose and not for actual robust training. Injecting Gaussian noise amounts270

to convoluting a Gaussian distribution N(0, �2
Id) to the marginal distribution PX , which enlarges271

both ⌦1 and ⌦2 to Rd and a unique decision boundary D� can be induced. Correspondingly, the272

“noisy" conditional probability, denoted as e⌘� , is also smoothed to be continuous on Rd. As � ! 0,273

ke⌘� � ⌘k1 ! 0 on ⌦1 and ⌦2 and the limiting e⌘0 is a piecewise constant function with discontinuity274

at the induced decision boundary.275

Lemma 3.5 (Tsybakov’s noise condition under Gaussian noises). Let the margin be 2� > 0, the276

noise be N(0, �2
Id). Then there exist some constants T,C > 0 such that277

PX(|2e⌘�(X)� 1| < t)  (C�2/�) exp(��2/(2�2))t, 8t 2 (0, T ).

Theorem 3.6 (Exponential convergence rate). Suppose the classes are separable with margin 2� > 0.278

No matter how complicated ⌦1 [ ⌦2 are, the excess risk of the over parameterized neural network279

classifier satisfying Assumptions D.1 and D.4 has the rate OP(e�n�/7).280
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Although Theorem 3.6 is similar to that in [37], the techniques are different. Our analysis is directly281

from the general non-separable case (Theorem 3.1), by the addition of auxiliary noises (Lemma 3.5).282

The proof of Theorem 3.6 involves taking the auxiliary noise to zero, e.g., v = vn ⇣ 1/
p
n. The283

exponential convergence rate is a direct outcome of Lemma 3.5 and Theorem 3.1. Note that our284

exponential convergence rate is much faster than existing ones under the similar separable setting285

[22, 24, 25], which are all polynomial with n, e.g., OP(1/
p
n).286

Remark 2 (Extension on NTK). Although our analysis only concerns overparametrized one-hidden-287

layer ReLU neural networks, it can potentially apply to other types of neural networks. Recently, it288

has been shown that overparametrized multi-layer networks correspond to the Laplace kernel [38, 39].289

As long as the trained neural networks can approximate the classifier induced by the NTK, our results290

can be naturally extended.291

Remark 3. Theorems 3.4 and 3.6 share the same gist: the overparameterized neural network292

classifiers can have exponential convergence rate when data are separable with positive margin. The293

result of Theorem 3.6 is weaker than that of Theorem 3.4, but with milder conditions. Technically,294

Theorem 3.6 also bridges the non-separable case and separable case through auxiliary noise injection.295

3.4 Multiclass Classification296

In binary classification, the labels are usually encoded as �1 and 1. When there are K > 2 classes,297

the default label coding is one-hot. However, it is empirically observed that this vanilla square loss298

struggles when the number of classes are large, for which scaling tricks have been proposed [4, 5].299

Another popular coding scheme is the simplex coding [8], which takes maximally separated K300

points on the sphere as label features. When K = 2, this reduces to the typical �1, 1 coding. Many301

advantages of the simplex coding have been discussed, including its relationship with cross-entropy302

loss and supervised contrastive learning [7, 26, 14, 40].303

In this work, we adopt the simplex coding. More discussion and empirical comparison about the304

coding choices can be found in Appendix G.2. Given the label coding, one can easily generalize the305

theoretical development in Section 3 by employing the following objective function306

minW
PK

j=1

Pn
i=1(fj,W ,a(xi)� yi,j)2 + µ kW k22 ,307

where fW ,a : ⌦ 7! RK , and yi = (yi,1, ..., yi,K)> is the label of i-th observation.308

Next proposition states a relationship between the simplex coding and the conditional probability.309

Proposition 3.7 (Conditional probability). Let f⇤ : ⌦ ! RK minimize the mean square error310

EX(f⇤(X)� vy)2, where vy is the simplex coding vector of label y. Then311

⌘k(x) := P (y = k|x) =
�
(K � 1)f⇤(x)>vk + 1

�
/K. (3.2)

Unlike the softmax function when using cross entropy, the estimated conditional probability using312

square loss is not guaranteed to be within 0 and 1. This will cause issues for adversarial attacks; see313

more discussions in Appendix G.2.314

4 Numerical experiments315

Although our theoretical results are for overparametrized neural network in the NTK regime, we316

expect our conclusions to generalize to practical network architectures. The focus of this section is317

not on improving the state-of-the-art performance for deep classifiers, but to illustrate the difference318

between cross-entropy and square loss. We provide experiment results on both synthetic and real319

data, to support our theoretical findings and illustrate the practical benefits of square loss in training320

overparametrized DNN classifiers. Compared with cross-entropy, the square loss has comparable321

generalization performance, but with stronger robustness and smaller calibration error.322

4.1 Synthetic data323

We consider the square loss based, cross-entropy based overparametrized neural networks (ONN) with324

`2 regularization, and the cross-entropy based ONN without `2 regularization, denoted as SL-ONN325
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Figure 1: Test misclassification rates and decision boundaries predicted by: SL-ONN + `2 (Left);
CE-ONN + `2 (Center); CE-ONN (Right) in the separable case.

+ `2, CE-ONN + `2, and CE-ONN respectively. For the separable case, we consider two separated326

classes with spiral curve like supports. Figure 1 shows one instance of the test misclassification327

rate and decision boundaries attained by three methods, where we can see that SL-ONN + `2 has328

a smaller test misclassification rate and a much smoother decision boundary. In particular, in the329

red region, where the training data are sparse, SL-ONN + `2 fits the correct data distribution best.330

For the non-separable case, we consider the calibration performance of SL-ONN + `2 and CE-ONN331

+ `2, where the classifiers are denoted by bfl2 and bfce, respectively. The results presented in Figure332

G.8 in the Appendix shows that bfl2 has the smaller mean and standard deviation than bfce. More333

implementation details are in Appendix G.1.334

4.2 Real data335

To make a fair comparison, we adopt popular architectures, ResNet [41] and Wide ResNet [42] and336

evaluate them on the CIFAR image classification datasets [43], with only the training loss function337

changed, from cross-entropy (CE) to square loss with simplex coding (SL). Further, we don’t employ338

any large scale hyper-parameter tuning and all the parameters are kept as default except for the339

learning rate (lr) and batch size (bs), where we are choosing from the better of (lr=0.01, bs=32) and340

(lr=0.1, bs=128). Each experiment setting is replicated 5 times and we report the average performance341

followed by its standard deviation in the parenthesis. (lr=0.01, bs=32) works better for the most cases342

except for square loss trained WRN-16-10 on CIFAR-100. More experiment details and additional343

results can be found in Appendix G.2.344

Generalization In both CIFAR-10 and CIFAR-100, the performance of cross-entropy and square345

loss with simplex coding are quite comparable, as observed in [4]. Cross-entropy tends to perform346

slightly better for ResNet, especially on CIFAR-100 with an advantage of less than 1%. There is a347

more significant gap with Wide ResNet where square loss outperforms cross-entropy by more than348

1% on both CIFAR-10 and CIFAR-100. The details can be found in Table 1.349

Table 1: Test accuracy on CIFAR datasets. Average accuracy larger than 0 but less than 0.1 is denoted
as 0⇤ without standard deviation.

Dataset Network Loss Clean acc %
PGD-100 (l1-strength) AutoAttack (l1-strength)

2/255 4/255 8/255 2/255 4/255 8/255

CIFAR-10
ResNet-18

CE 95.15 (0.11) 8.81 (1.61) 0.65 (0.24) 0 2.74 (0.09) 0 0
SL 95.04 (0.07) 30.53 (0.92) 6.64 (0.67) 0.86 (0.24) 4.10 (0.50) 0⇤ 0

WRN-16-10
CE 93.94 (0.16) 1.04 (0.10) 0 0 0.33 (0.06) 0 0
SL 95.02 (0.11) 37.47 (0.61) 23.16 (1.28) 7.88 (0.72) 5.37 (0.50) 0⇤ 0

CIFAR-100
ResNet-50

CE 79.82 (0.14) 2.31 (0.07) 0⇤ 0 0.99 (0.10) 0⇤ 0
SL 78.91 (0.14) 13.76 (1.30) 4.63 (1.20) 1.21 (0.80) 3.67 (0.60) 0.16 (0.05) 0

WRN-16-10
CE 77.89 (0.21) 0.83 (0.07) 0⇤ 0 0.42 (0.07) 0 0
SL 79.65 (0.15) 6.48 (0.40) 0.42 (0.04) 0⇤ 2.73 (0.20) 0⇤ 0

Adversarial robustness Naturally trained deep classifiers are found to be adversarially vulner-350

able and adversarial attacks provide a powerful tool to evaluate classification robustness. For our351

experiment, we consider the black-box Gaussian noise attack, the classic white-box PGD attack352

[44] and the state-of-the-art AutoAttack [45], with attack strength level 2/255, 4/255, 8/255 in l1353
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norm. AutoAttack contains both white-box and black-box attacks and offers a more comprehensive354

evaluation of adversarial robustness. The Gaussian noises results are presented in Table G.3 in the355

Appendix. At different noise levels, square loss consistently outperforms cross-entropy, especially356

for WRN-16-10, with around 2-4% accuracy improvement. More details can be found in Appendix357

G.2. The PGD and AutoAttack results are reported in Table 1. Even though classifiers trained with358

square loss is far away from adversarially robust, it consistently gives significantly higher adversarial359

accuracy. The same margin can be carried over to standard adversarial training as well. Table 2 lists360

results from standard PGD adversarial training with CE and SL. By substituting cross-entropy loss to361

square loss, the robust accuracy increased around 3% while maintaining higher clean accuracy.362

One thing to notice is that when constructing white-box attacks, square loss will not work well since363

it doesn’t directly reflect the classification accuracy. More specifically, for a correctly classified image364

(x, y), maximizing the square loss may result in linear scaling of the classifier f(x), which doesn’t365

change the predicted class (see Appendix G.2 for more discussion). To this end, we consider a special366

attack for classifiers trained by square loss by maximizing the cosine similarity between f(x) and367

vy. We call this angle attack and also utilize it for the PGD adversarial training paired with square368

loss in Table 2. In our experiments, this special attack rarely outperforms the standard PGD with369

cross-entropy and the reported PGD accuracy are from the latter settings. This property of square370

loss may be an advantage in defending adversarial attacks.371

Table 2: Performance on CIFAR-10 dataset for ResNet-18 under standard PGD adversarial training.

Loss Acc (%) PGD steps Strength(l1) AutoAttack

CE 86.87 3 8/255 37.08
84.50 7 8/255 41.88

SL 87.31 3 8/255 40.46
84.52 7 8/255 44.76

Model calibration The predicted class probabilities for square loss can be obtained from Equa-372

tion 3.2. Expected calibration error (ECE) measures the absolute difference between predicted373

confidence and actual accuracy. Deep classifiers are usually over-confident [46]. Using ResNet as374

an example, we report the typical reliability diagram in Figure 2. On CIFAR-10 with ResNet-18,375

the average ECE for cross-entropy is 0.028 (0.002) while that for square loss is 0.0097 (0.001). On376

CIFAR-100 with ResNet-50, the average ECE for cross-entropy is 0.094 (0.005) while that for square377

loss is 0.068 (0.005). Square loss results are much more calibrated with significantly smaller ECE.378

Figure 2: Reliability diagrams of ResNet-18 on CIFAR-10 and ResNet-50 on CIFAR-100. Square
loss trained models behave more well-calibrated while cross-entropy trained ones tend to be visibly
more over-confident.

5 Conclusions379

Classification problems are ubiquitous in deep learning. As a fundamental problem, any progress380

in classification can potentially benefit numerous relevant tasks. Despite its lack of popularity in381

practice, square loss has many advantages that can be easily overlooked. Through both theoretical382

analysis and empirical studies, we identify several ideal properties of using square loss in training383

neural network classifiers, including provable fast convergence rates, strong robustness, and small384

calibration error. We encourage readers to try square loss in your own application scenarios.385
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