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Abstract

The matching principles behind optimal transport (OT) play an increasingly impor-1

tant role in machine learning, a trend which can be observed when OT is used to2

disambiguate datasets in applications (e.g. single-cell genomics) or used to improve3

more complex methods (e.g. balanced attention in transformers or self-supervised4

learning). To scale to more challenging problems, there is a growing consensus that5

OT requires solvers that can operate on millions, not thousands, of points. The low-6

rank optimal transport (LOT) approach advocated in Scetbon et al. [2021] holds7

several promises in that regard, and was shown to complement more established8

entropic regularization approaches, being able to insert itself in more complex9

pipelines, such as quadratic OT. LOT restricts the search for low-cost couplings to10

those that have a low-nonnegative rank, yielding linear time algorithms in cases of11

interest. However, these promises can only be fulfilled if the LOT approach is seen12

as a legitimate contender to entropic regularization when compared on properties13

of interest, where the scorecard typically includes theoretical properties (statistical14

bounds, relation to other methods) or practical aspects (debiasing, hyperparameter15

tuning, initialization). We target each of these areas in this paper in order to cement16

the impact of low-rank approaches in computational OT.17

1 Introduction18

Optimal transport (OT) is used across data-science to put in correspondence different sets of observa-19

tions. These observations may come directly from datasets, or, in more advanced applications, depict20

intermediate layered representations of data. OT theory provides a single grammar to describe and21

solve increasingly complex matching problems (linear, quadratic, regularized, unbalanced, etc...),22

making it gain a stake in various areas of science such as as single-cell biology Schiebinger et al.23

[2019], Yang et al. [2020], Demetci et al. [2020], imaging Schmitz et al. [2018], Heitz et al. [2020],24

Zheng et al. [2020] or neuroscience Janati et al. [2020], Koundal et al. [2020].25

Regularized approaches to OT. Solving OT problems at scale poses, however, formidable challenges.26

The most obvious among them is computational: the Kantorovich [1942] problem on discrete27

measures of size n is a linear program that requires O(n3
log n) operations to be solved. A second28

and equally important challenge lies in the estimation of OT in high-dimensional settings, since it29

suffers from the curse-of-dimensionality Fournier and Guillin [2015]. The advent of regularized30

approaches, such as entropic regularization [Cuturi, 2013], has pushed these boundaries thanks for31

faster algorithms [Chizat et al., 2020, Clason et al., 2021] and improved statistical aspects [Genevay32

et al., 2018a]. Despite these clear strengths, regularized OT solvers remain, however, costly as they33

typically scale quadratically in the number of observations.34

Scaling up using low-rank couplings. While it is always intuitively possible to reduce the size35

of measures (e.g. using k-means) prior to solving an OT between them, a promising line of work36
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proposes to combine both [Forrow et al., 2019, Scetbon et al., 2021, 2022]. Conceptually, these37

low-rank approaches solve simultaneously both an optimal clustering/aggregation strategy with the38

computation of an effective transport. This intuition rests on an explicit factorization of couplings into39

two sub-couplings. This has several computational benefits, since its computational cost becomes40

linear in n if the ground cost matrix seeded to the OT problem has itself a low-rank. While these41

computational improvements, mostly demonstrated empirically, hold several promises, the theoretical42

properties of these methods are not yet well established. This stands in stark contrast to the Sinkhorn43

approach, which is comparatively much better understood.44

Our Contributions. The goal of this paper is to advance our knowledge, understanding and practical45

ability to leverage low-rank factorizations in OT. This paper provides five contributions, targeting46

theoretical and practical properties of LOT: (i) We derive the rate of convergence of the low-rank OT47

to the true OT with respect to the non-nnegative rank parameter. (ii) We provide an upper-bound of48

the (statistical) sample complexity when estimating LOT using the plug-in estimator, and attain a49

parametric rate O(
p
1/n) that is independent of the dimension. (iii) We introduce a debiased version50

of LOT: as the Sinkhorn divergence [Feydy et al., 2018], we show that it can interpolate between51

the maximum mean discrepancy [Gretton et al., 2012] and OT, it is nonnegative and it metrizes the52

weak convergence. (iv) We exhibit links between the bias induced by the low-rank factorization and53

clustering methods. (v) We propose solutions to practical issues such as the tuning the step-length or54

the choice of the initialization when applying the algorithm proposed in [Scetbon et al., 2021].55

Notations. We consider (X , dX ) and (Y, dY) two nonempty compact Polish spaces and we denote56

M
+
1 (X ) (resp. M

+
1 (Y)) the space of positive Radon probability measures on X (resp. Y). For57

all n � 1, we denote �n the probability simplex of size n and �
⇤
n the subset of �n of positive58

histograms. We write 1n , (1, . . . , 1)T 2 Rn and we denote similarly k · k2 the Euclidean norm and59

the Euclidean distance induced by this norm depending on the context.60

2 Background on Low-rank Optimal Transport61

Let µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) and c : X ⇥ Y ! R+ a nonnegative and continuous function. The62

Kantorovitch formulation of optimal transport between µ and ⌫ is defined by63

OTc(µ, ⌫) , min
⇡2⇧(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y) (1)

where the feasible set is the set of distributions over the product space X ⇥Y with marginals µ and ⌫:
⇧(µ, ⌫) ,

�
⇡ 2 M

+
1 (X ⇥ Y) s.t. P1#⇡ = µ, P2#⇡ = ⌫

 
,

with P1#⇡ (resp. P2#⇡), the pushforward probability measure of ⇡ using the projection maps64

P1(x, y) = x (resp. P2(x, y) = y). When there exists an optimal coupling solution of (1) supported65

on a graph of a function, we call such function a Monge map. In the discrete setting, one can66

reformulate the optimal transport problem as a linear program over the space of nonnegative matrices67

satisfying the marginal constraints. More precisely, let a and b be respectively elements of �⇤
n and68

�
⇤
m and let also X , {x1, . . . , xn} and Y , {y1, . . . , ym} be respectively two subsets of X and Y .69

By denoting µa,X , Pn
i=1 ai�xi and ⌫b,Y , Pm

j=1 bj�yj the two discrete distributions associated70

and writing C , [c(xi, yj)]i,j , the discrete optimal transport problem can be formulated as71

OTc(µa,X, ⌫b,Y) = min
P2⇧a,b

hC,P i where ⇧a,b , {P 2 Rn⇥m
+ s.t. P1m = a, PT1n = b} . (2)

Scetbon et al. [2021] propose to constrain the discrete optimal transport problem to couplings that72

have a low-nonnegative rank:73

Definition 1. Given M 2 Rn⇥m
+ , the nonnegative rank of M is defined by: rk+(M) ,74

min{q|M =
Pq

i=1 Ri, 8i, rk(Ri) = 1, Ri � 0} .75

Note that for any M 2 Rn⇥m
+ , we always have that rk+(M)  min(n,m). For r � 1, we76

consider the set of couplings satisfying marginal constaints with nonnegative-rank of at most r as77

⇧a,b(r) , {P 2 ⇧a,b, rk+(P )  r}. The discrete Low-rank Optimal Transport (LOT) problem is78

defined by:79

LOTr,c(µa,X, ⌫b,Y) , min
P2⇧a,b(r)

hC,P i . (3)
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To solve this problem, Scetbon et al. [2021] show that Problem (3) is equivalent to80

min
(Q,R,g)2C1(a,b,r)\C2(r)

hC,Q diag(1/g)RT
i (4)

where C1(a, b, r) ,
n
(Q,R, g) 2 Rn⇥r

+ ⇥ Rm⇥r
+ ⇥ (R⇤

+)
r s.t. Q1r = a,R1r = b

o
and C2(r) ,n

(Q,R, g) 2 Rn⇥r
+ ⇥ Rm⇥r

+ ⇥ Rr
+ s.t. QT1n = RT1m = g

o
. They propose to solve it using

a mirror descent scheme and prove the non-asymptotic stationary convergence of their algorithm.
While Scetbon et al. [2021] only focus on the discrete setting, we consider here its extension for
arbitrary probability measures. Following [Forrow et al., 2019], we define the set of rank-r couplings
satisfying marginal constraints by:

⇧r(µ, ⌫) , {⇡ 2 ⇧(µ, ⌫) : 9(µi)
r
i=1 2 M

+
1 (X )

r, (⌫i)
r
i=1 2 M

+
1 (Y)

r, � 2 �
⇤
r s.t. ⇡ =

rX

i=1

�iµi⌦⌫i} .

This more general definition of LOT between µ 2 M
+
1 (X ) and ⌫ 2 M

+
1 (Y) reads:81

LOTr,c(µ, ⌫) , inf
⇡2⇧r(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y) . (5)

Note that this definition of LOTr,c is consistent as it coincides with the one defined in (3) on discrete82

probability measures. Observe also that ⇧r(µ, ⌫) is compact for the weak topology and therefore the83

infimum in (5) is attained. See Appendix A for more details.84

3 Approximation Error of LOT to original OT as a function of rank85

Our goal in this section is to obtain a control of the error induced by the low-rank constraint when86

trying to approximate the true OT cost. We provide first a control of the approximation error in the87

discrete setting. The proof is given in Appendix B.1.88

Proposition 1. Let n,m � 2, X , {x1, . . . , xn} ⇢ X , Y , {y1, . . . , ym} ⇢ Y and a 2 �
⇤
n and89

b 2 �
⇤
m. Then for 2  r  min(n,m), we have that90

|LOTr,c(µa,X, ⌫b,Y)�OTc(µa,X, ⌫b,Y)|  kCk1 ln(min(n,m)/(r � 1))

Remark 1. Note that this result improves the control obtained in [Liu et al., 2021], where they obtain91

that |LOTr,c(µa,X, ⌫b,Y)�OTc(µa,X, ⌫b,Y)| . kCk1
p
nm(min(n,m)� r) as we have for any92

z, z0 � 1, | ln(z)� ln(z0)|  |z � z0|.93

It is in fact possible to obtain another control of the approximation error by partitioning the space94

where the measures are supported. For that purpose let us introduce the notion of entropy numbers.95

Definition 2. Let (Z, d) a metric space, W ⇢ Z and k � 1 an integer. Then by denoting BZ(z, ") ,96

{y 2 Z : d(z, y)  "}, we define the k-th (dyadic) entropy number of W as97

Nk(W, d) , inf{" s.t. 9 z1, . . . , z2k 2 Z : W ⇢ [
2k

i=1BZ(zi, ")}

For example, any compact set W of Rd admits finite entropy numbers, and by denoting R ,98

supw2W kwk2, we have Nk(W, k · k2)  4R/2k/d. We obtain next a control the approximation99

error of LOTr,c to the true OT cost using entropy numbers (see proof in Appendix B.2).100

Proposition 2. Let µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) and assume that c is L-Lipschitz w.r.t. x and y. Then101

for any r � 1, we have102

|LOTr,c(µ, ⌫)�OTc(µ, ⌫)|  2Lmax(Nblog2(b
p
rc)c(X , dX ),Nblog2(b

p
rc)c(Y, dY))

This results in the following bound for the p-Wasserstein distance for any p � 1 on Rd.103

Corollary 1. Let d � 1, p � 1, X a compact subspace of Rd
and µ, ⌫ 2 M

+
1 (X ). By denoting104

R , supx2X kxk2, we obtain that for any r � 1,105

|LOTr,k·kp
2
(µ, ⌫)�OTk·kp

2
(µ, ⌫)|  4dp

(8R2
)
p

rp/2d
.
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As per the Proof of Proposition 2 we can provide a tighter control, assuming a Monge map exists.106

Corollary 2. Under the same assumptions of Proposition 2 and by assuming in addition that there107

exists a Monge map solving OTc(µ, ⌫), we obtain that for any r � 1,108

|LOTr,c(µ, ⌫)�OTc(µ, ⌫)|  LNblog2(r)c(Y, dY)

When X = Y are a subspaces of Rd, a sufficient condition for a Monge map to exists is that either µ109

or ⌫ is absolutely continuous with respect to the Lebesgue measure and that c is of the form h(x� y)110

where h : X ! R+ is a strictly convex function [Santambrogio, 2015, Theorem 1.17]. Therefore if111

µ is absolutely continuous with respect to the Lebesgue measure, we obtain that for any r, p � 1112

|LOTr,k·kp
2
(µ, ⌫)� OTk·kp

2
(µ, ⌫)|  2dp

(8R2
)
p

rp/d
.

4 Sample Complexity of LOT113

We now focus on the statistical performance of the plug-in estimator for LOT. In the following114

we assume that X = Y for simplicity. Given µ, ⌫ 2 M
+
1 (X ), we denote the empirical measures115

associated µ̂n , 1
n

Pn
i=1 �Xi and ⌫̂n , 1

n

Pn
i=1 �Yi , where (Xi, Yi)

n
i=1 are sampled independently116

from µ⌦ ⌫. We consider the plug-in estimator defined as LOTr,c(µ̂n, ⌫̂n), and we aim at quantifying117

the rate at which it converges towards the true low-rank optimal transport cost LOTr,c(µ, ⌫). Before118

doing so, in the next Proposition we show that this estimator is consistent on compact spaces. The119

proof is given in Appendix B.3.120

Proposition 3. Let r � 1 and µ, ⌫ 2 M
+
1 (X ), then LOTr,c(µ̂n, ⌫̂n) �����!

n!+1
LOTr,c(µ, ⌫) a.s.121

Next we aim at obtaining the convergence rates of our plug-in estimator. In the following Proposition,122

we obtain a non-asymptotic upper-bound of the statistical error. See Appendix B.4 for the proof.123

Proposition 4. Let r � 1 and µ, ⌫ 2 M
+
1 (X ). Then, there exists a constant Kr such that for any124

� > 0 and n � 1, we have, with a probability of at least 1� 2�, that125

LOTr,c(µ̂n, ⌫̂n)� LOTr,c(µ, ⌫)  11kck1

r
r

n
+Krkck1

"r
log(40/�)

n
+

p
r log(40/�)

n

#

This result shows that the estimation of LOTr,c is independent of the dimension and can be performed126

on general compact metric spaces. Therefore, LOTr,c presents a clear statistical benefit compared to127

unregularized OT which suffers from the curse of dimensionality [Dudley, 1969]. In addition, LOT128

compares favorably to known results on entropic optimal transport. The rate of entropy regularized OT129

does not depend on the ambient dimension with respect to n, but carries an exponential dependence in130

dimension with respect to the regularization parameter " [Mena and Niles-Weed, 2019]. By contrast,131

the term associated with the nonnegative rank r has no direct dependence on dimension.132

Our next aim is to obtain an explicit rate with respect to r and n. In Proposition 4, we cannot control133

explicitly Kr in the general setting. Indeed, in our proof, we obtain that Kr , 14/mini �⇤
i where134

(�⇤
i )

r
i=1 2 �

⇤
r are the weights involved in the decomposition of one optimal solution of the true135

LOTr,c(µ, ⌫). Therefore the control of Kr requires additional assumptions on the optimal solutions136

of LOTr,c(µ, ⌫). In the following Proposition, we obtain an explicit upper-bound of the statistical137

error with respect to r and n in the asymptotic regime.138

Proposition 5. Let r � 1, � > 0 and µ, ⌫ 2 M
+
1 (X ). Then there exists a constant Nr,� such that if139

n � Nr,� then with a probability of at least 1� 2�, we have140

LOTr,c(µ̂n, ⌫̂n)� LOTr,c(µ, ⌫)  11kck1

r
r

n
+ 77kck1

r
log(40/�)

n
.

Note that one cannot recover the result obtained in Proposition 5 from the one obtained in Proposition141

in 4 as we have that Kr � 14r �����!
r!+1

+1. In order to prove the above result, we use an extension142

of the McDiarmid’s inequality when differences are bounded with high probability [Kutin, 2002].143

See proof in Appendix B.5 for more details.144
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5 Debiased Formulation of LOT145

We introduce here the debiased formulation of LOTr,c and show that it is able to distinguish two146

distributions, metrize the convergence in law and can be used as a new objective in order to learn147

distributions. We focus next on the debiasing terms involving measures with themselves LOTr,c(µ, µ)148

in this new divergence, and show that they can be interpreted as defining a new clustering method149

generalizing k-means for any geometry.150

5.1 On the Proprieties of the Debiased Low-rank Optimal Transport151

When it comes to learn (or generate) a distribution in ML applications given samples, it is crucial to152

consider a divergence that is able to distinguish between two distributions and metrize the convergence153

in law. In general, LOTr,c(µ, µ) 6= 0 and the minimum of LOTr,c(⌫, µ) with respect to ⌫ will not154

necessarily recover µ. In order to alleviate this issue we propose a debiased version of LOTr,c defined155

for any µ, ⌫ 2 M
+
1 (X ) as156

DLOTr,c(µ, ⌫) , LOTr,c(µ, ⌫)�
1

2
[LOTr,c(µ, µ) + LOTr,c(⌫, ⌫)] .

Note that DLOTr,c(⌫, ⌫) = 0. In the next Proposition, we show that, as the Sinkhorn diver-157

gence [Genevay et al., 2018b, Feydy et al., 2018], DLOTr,c interpolates between the Maximum Mean158

Discrepancy (MMD) and OT. See proof in Appendix B.6.159

Proposition 6. Let µ, ⌫ 2 M
+
1 (X ). Let us assume that c is symmetric, then we have

DLOT1,c(µ, ⌫) =
1

2

Z

X 2

�c(x, y)d[µ� ⌫]⌦ d[µ� ⌫](x, y) .

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have160

DLOTr,c(µ, ⌫) �����!
r!+1

OTc(µ, ⌫) .

Next, we aim at showing some useful properties of the debiased low-rank OT for machine learning161

applications. For that purpose, let us first recall some definitions.162

Definition 3. We say that the cost c : X ⇥ X ! R+ is a semimetric on X if for all x, x0
2 X ,163

c(x, x0
) = c(x0, x) and c(x, x0

) = 0 if and only if x = x0
. In addition we say that c has a negative type164

if 8n � 2, x1, . . . , xn 2 X and ↵1, . . . ,↵n 2 R such that
Pn

i=1 ↵i = 0,
Pn

i,j=1 ↵i↵jc(xi, xj)  0.165

We say also that c has a strong negative type if for all µ, ⌫ 2 M
+
1 (X ), µ 6= ⌫ =)

R
X 2 c(x, y)d[µ�166

⌫]⌦ [µ� ⌫] < 0.167

Note that if c has a strong negative type, then c has a negative type too. For example, all Euclidean168

spaces and even separable Hilbert spaces endowed with the metric induced by their inner products169

have strong negative type. Also, on Rd, the squared Euclidean distance has a negative type [Sejdinovic170

et al., 2013].171

We can now provide stronger geometric guarantees for DLOTr,c. In the next Proposition, we show172

that for a large class of cost functions, DLOTr,c is nonnegative, able to distinguish two distributions,173

and metrizes the convergence in law. The proof is given in Appendix B.7.174

Proposition 7. Let r � 1, and let us assume that c is a semimetric of negative type. Then for all

µ, ⌫ 2 M
+
1 (X ), we have that

DLOTr(µ, ⌫) � 0 .

In addition, if c has strong negative type then we have also that175

DLOTr,c(µ, ⌫) = 0 () µ = ⌫ and

µn ! µ () DLOTr,c(µn, µ) ! 0 .

where the convergence of the sequence of probability measures considered is the convergence in law.176

Observe that when c has strong negative type, ⌫ ! DLOTr,c(⌫, µ) � 0 and it admits a unique global177

minimizer at ⌫ = µ. Therefore, DLOTr,c has desirable properties to be used as a loss.178
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5.2 Low-Rank Transport Bias and Clustering179

We turn next to the debiasing terms appearing in DLOT and exhibit links between LOT and clustering180

methods. Indeed, in the discrete setting, the low-rank bias of a probability measure µ defined as181

LOTk,c(µ, µ) can be seen as a generalized version of the k-means method for any geometry. In the182

next Proposition we obtain a new formulation of LOTk,c(µ, µ) viewed as a general clustering method183

on arbitrary metric space. See proof in Appendix B.8.184

Proposition 8. Let n � k � 1, X , {x1, . . . , xn} ⇢ X and a 2 �
⇤
n. If c is a semimetric of negative185

type, then by denoting C = (c(xi, xj))i,j , we have that186

LOTk,c(µa,X, µa,X) = min
Q

hC,QDiag(1/QT1n)Q
T
i s.t. Q 2 Rn⇥k

+ , Q1k = a . (6)

Let us now explain in more details the link between (15) and k-means. When X is a subspace of Rd,187

c is the squared Euclidean distance and a = 1n, we recover exactly the k-means algorithm.188

Corollary 3. Let n � k � 1 and X , {x1, . . . , xn} ⇢ Rd
. We have that189

LOTk,k·k2
2
(µ1n,X, µa,X) = 2 min

Q,z1,...,zk

nX

i=1

kX

q=1

Qi,qkxi � zqk
2
2 s.t. Q 2 {0, 1}n⇥k, Q1k = 1n .

In the general setting, solving LOTk,c(µa,X, µa,X) for a given geometry c, and a prescribed histro-190

gram a offers a new clustering method where the assignment of the points to the clusters is determined191

by the matrix Q⇤ solution of (15).192

6 Computing LOT: Adaptive Stepsizes and Better Initializations193

We target in this section practical issues that arises when using [Scetbon et al., 2021, Algo.3] to194

solve (4). Scetbon et al. [2021] propose to apply a mirror descent scheme with respect to the Kullback-195

Leibler divergence which boils down to solve at each iteration k � 0 the following convex problem:196

197

(Qk+1, Rk+1, gk+1) , argmin

⇣2C1(a,b,r)\C2(r)
KL(⇣, ⇠k) (7)

where (Q0, R0, g0) 2 C1(a, b, r) \ C2(r), ⇠k , (⇠(1)k , ⇠(2)k , ⇠(3)k ), ⇠(1)k , Qk �198

exp(��kCRk diag(1/gk)), ⇠
(2)
k , Rk � exp(��kCTQk diag(1/gk)), ⇠

(3)
k , gk � exp(�k!k/g2k)199

with [!k]i , [QT
kCRk]i,i for all i 2 {1, . . . , r}, KL(w, r) , P

i wi log(wi/ri) and (�k)k�0 is a200

sequence of positive step sizes. In the general setting, each iteration of their algorithm requires201

O(nmr) operations and when the ground cost matrix C admits a low-rank factorization of the form202

C = ABT where A 2 Rn⇥d and B 2 Rm⇥d with d ⌧ min(n,m), then the total complexity per203

iteration becomes linear O((n+m)rd). In the following we investigate two practical aspects of the204

algorithm: the choice of the step sizes and the initialization.205

Adaptive choice of �k. Scetbon et al. [2021] show experimentally that the choice of (�k)k�0 does
not impact the solution obtained upon convergence, but rather the speed at which it is attained. Indeed
the larger �k is, the faster the algorithm will converge. As a result, their algorithm simply relies
on a fixed � schedule. However, the range of admissible � depends on the problem considered and
it may vary from one problem to another. It may be of particular interest for practitioners to have
a generic range of admissible values for � independently of the considered problem, in order to
alleviate parameter tuning issues. We propose to consider instead an adaptive choice of (�k)k�0

along iterations. D’Orazio et al. [2021], Bayandina et al. [2018] have proposed adaptive mirror
descent schemes where, at each iteration, the step-size is normalized by the squared dual-norm of the
gradient. Applying such a strategy in our case amounts to consider at each iteration

�k =
�

k (CR diag(1/g), CTQ diag(1/g),�D(QTRC)/g2) k21
.

where the initial � > 0 is fixed. We recommend to set such as global � 2 [1, 10], and observe that206

this range works whatever the problem considered.207
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Figure 1: In this experiment, we consider a mixture of 10 anisotropic Gaussians and we plot the value
of DLOTr,c between two independent empirical measures associated to this mixture when varying
the number of samples n and the dimension d for multiple ranks r. The ground cost considered
is the squared Euclidean distance. Note that LOTr(µ, µ) 6= 0 and therefore we use DLOTr,c(µ, µ)
instead to evaluate the rates. Each point has been obtained by repeating 10 times the experiment. We
compare the empirical rates obtained with the theoretical one derived in Proposition 4. We observe
that our theoretical results match the empirical ones and, as expected, the rates do not depend on d.

On the choice of the initialization. As LOTr,c (4) is a non-convex optimization problem, the ques-208

tion of choosing an efficient initialization arises in practice. Scetbon et al. [2021] show experimentally209

that the convergence of the algorithm does not depend on the initalization chosen if no stopping210

criterion is used. Indeed, their experimental findings support that only well behaved local minimas211

are attractive. However, in practice one needs to use a stopping criterion in order to terminate the212

algorithm. We do observe in many instances that using trivial initializers may result in spurious213

local minima, which trigger the stopping criterion early on and prevent the algorithm to reach a good214

solution. Based on various experimentations, we propose to consider a novel initialization of the215

algorithm. Our initialization aims at being close to a well-behaved local minimum by clustering216

the input measures. When the measures are supported on Euclidean space, we propose to find r217

centroids (zi)ri=1 of one of the two input discrete probability measures using k-means and to solve218

the following convex barycenter problem:219

min
Q,R

hCX,Z , Qi+ hCY,Z , Ri � "H(Q)� "H(R) s.t. Q1n = a, R1n = b, QT1r = RT1r (8)

where CX,Z = (c(xi, zj))i,j , CY,Z = (c(yi, zj))i,j , and H(P ) = �
P

i,j Pi,j(log(Pi,j � 1). In220

practice we fix " = 1/10 and we then initialize LOTr,c using (Q,R) solution of (8) and g ,221

QT1r(= RT1r). Note that (Q,R, g) is an admissible initialization and finding the centroids as well222

as solving (8) requires O((n + m)r) algebraic operations. Therefore such initialization does not223

change the total complexity of the algorithm.224

In the general (non-Euclidean) case, we propose to initialize the algorithm by applying our generalized225

k-means approach defined in (15) on each input measure where we fix the common marginal to226

be g = 1r/r. More precisely, by denoting CX,X = (c(xi, xj))i,j and CY,Y = (c(yi, yj))i,j , we227

initialize the algorithm by solving:228

Q 2 argmin
Q

hCX,X , QDiag(1/QT1n)Q
T
i s.t. Q 2 Rn⇥k

+ , Q1k = a, QT1n = 1r/r and

R 2 argmin
R

hCY,Y , RDiag(1/RT1m)RT
i s.t. R 2 Rm⇥k

+ , R1k = b, RT1n = 1r/r .
(9)

Note that again the (Q,R, g) obtained is an admissible initialization and the complexity of solving (9)229

is of the same order as solving (4), thus the total complexity of the algorithm remains the same.230

7 Experiments231

In this section, we illustrate experimentally our theoretical findings and show how our initialization232

provide practical improvements. For that purpose we consider 3 synthetic problems and one real233

world dataset to: (i) provide illustrations on the statistical rates of LOTr,c, (ii) exhibit the gradient234

flow of the debiased formulation DLOTr,c, (iii) use the clustering method induced by LOTr,c, and235

(iv) show the effect of the initialization. All experiments were run on a MacBook Pro 2019 laptop.236

Statistical rates. We aim at showing the statistical rates of the plug-in estimator of LOTr,c. As237

LOTr,c(µ, µ) 6= 0 and as we do not have access to the this value given samples from µ, we consider238
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Figure 2: We compare the gradient flows (µt)t�0 (in red) starting from a Gaussian distribution, µ0,
to a moon shape distribution (in blue), ⌫, in 2D when minimizing either L(µ) , DLOTr,c(µ, ⌫)
or L(µ) , LOTr,c(µ, ⌫). The ground cost is the squared Euclidean distance and we fix r = 100.
We consider 1000 samples from each distribution and and we plot the evolution of the probability
measure obtained along the iterations of a gradient descent scheme. We also display in green the
vector field in the descent direction. We show that the debiased version allows to recover the target
distribution while LOTr,c is learning a biased version with a low-rank structure.

instead the debiased version of the low-rank optimal transport, DLOTr,c. In figure 1, we show that239

the empiricial rates match the theoretical bound obtained in Proposition 4. In particular, we show that240

that these rates does not depend on the dimension of the ground space.241

Gradient Flows using DLOT. We illustrate here a practical use of DLOT for ML application. In242

figure 2, we consider Y1, . . . , Yn independent samples from a moon shape distribution in 2D, and by243

denoting ⌫̂n the empirical measure associated, we show the iterates obtained by a gradient descent244

scheme on the following optimization problem:245

min
X2Rn⇥2

DLOTr,c(µ1n/n,X, ⌫̂n) .

We initialize the algorithm using n = 1000 samples drawn from a Gaussian distribution. We show246

that the gradient flow of our debiased version is able to recover the target distribution. We also247

compare it with the gradient flow of the biased version (LOT) and show that it fails to reproduce the248

target distribution as it is learning a biased one with a low-rank structure.249

Figure 3: In this experiment, we draw 1000 samples from multiple distributions from the python
package scikit-learn [Pedregosa et al., 2011] and we apply the method proposed in (15) for two
different costs: in the top row we consider the squared Euclidean distance while in the bottom row, we
consider the shortest path distance on the graph associated with the ground cost c(x, y) = 1� k(x, y)
where k is a Gaussian kernel. In the two first problem (starting from the left), we fix r = 2, in the
next three problem we fix r = 3 and in the last one we fix r = 4. We observe that the flexibility of
our method allows to recover the clustering for a well chosen ground cost.

Application to Clustering. In this experiment we show some applications of the clustering method250

induced by LOTr,c. In figure 3, we consider 6 datasets with different structure and we aim at251

recovering the clusters using (15) for some well chosen costs. We compare the clusters obtained252

8



Figure 4: In this experiment, we consider the Newsgroup20 dataset [Pedregosa et al., 2011] constituted
of texts and we embed them into distributions in 50D using the same pre-processing steps as in [Cuturi
et al., 2022]. We compare different initialization when applying the algorithm of [Scetbon et al.,
2021] to compare random texts viewed as distributions for multiple choices of rank r. The ground
cost considered in the squared Euclidean distance. We repeat the experiments 50 times by sampling
randomly multiple problems of similar size (' 250 samples). Note that we normalize the cost
matrix by its maximum value in order to have comparable LOT cost. We consider 4 different
initialization: the one using k-means algorithm (8), the one using the generalized k-means (9), the
rank-2 initialization [Scetbon et al., 2021] and a random initialization where Q,R and g are drawn
from Gaussians. We compare both the cost value and the criterion value (�k) along the iterations of
the MD scheme. First we observe that whatever the initialization considered, the algorithm converges
toward the same value. In addition, we observe that both k-means and general k-means are able
to initialize well the algorithm by avoiding bad local minima at initialization while the two other
initialization are close to spurious local minima at initialization.

when considering either the squared Euclidean cost (which amounts at applying the k-means) and the253

shortest-path distance on the data viewed as a graph. We show that our method is able to recover the254

clusters on these settings for well chosen costs and therefore the proposed algorithm in Scetbon et al.255

[2021] can be seen as a new alternative in order to clusterize data.256

Effect of the Initialization. Our goal here is to show the effect of the initialization. In figure 4, we257

display the evolution of the cost as well as the value of the stopping criterion along the iterations258

of the MD scheme solving (4) when considering different initialization. Recall that the stopping259

criterion introduced in [Scetbon et al., 2021] is defined for all k � 1 by260

�k , 1

�2
k

(KL((Qk, Rk, gk), (Qk�1, Rk�1, gk�1)) + KL((Qk�1, Rk�1, gk�1), (Qk, Rk, gk))),

where ((Qk, Rk, gk))k�0 is the sequence solution of (7). We show that whatever the initialization261

chosen, the algorithm manages to converge to an efficient solution if no stopping criterion is used.262

However, the choice of the initialization may impact the termination of the algorithm as some263

initialization might be too close to some spurious local minima. We show also that the initialization264

we propose in (8) and (9) are sufficiently far away from bad local minima and allow the algorithm to265

converge directly toward the desired solution.266

8 Conclusion267

We assembled in this work theoretical and practical arguments to support low-rank factorizations268

for OT. We have presented two controls: one concerning the approximation error to the true optimal269

transport and another concerning the statistical rates of the plug-in estimator. The latter is showed to270

be independent of the dimension, which is of particular interest when studying OT in ML settings.271

We have motivated further the use of LOT as a loss by introducing its debiased version and showed272

that it possesses desirable properties: positivity and metrization of the convergence in law. We have273

also presented the links between the bias induced by such regularization and clustering methods,274

and studied empirically the effects of hyperparameters involved in the practical estimation of LOT.275

The strong theoretical foundations provided in this paper motivate further studies of the empirical276

behaviour of LOT estimator, notably on finding suitable local minima and on improvements on the277

convergence of the MD scheme using other adaptive choices for step sizes.278
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