Overlapping Spaces for Compact Graph Representations

Anonymous Author(s) Affiliation Address email

Abstract

Various non-trivial spaces are becoming popular for embedding structured data 1 such as graphs, texts, or images. Following spherical and hyperbolic spaces, more 2 general product spaces have been proposed. However, searching for the best con-3 figuration of product space is a resource-intensive procedure, which reduces the 4 practical applicability of the idea. We generalize the concept of product space and 5 introduce an *overlapping space* that does not have the configuration search problem. 6 The main idea is to allow subsets of coordinates to be shared between spaces of dif-7 ferent types (Euclidean, hyperbolic, spherical). As a result, parameter optimization 8 automatically learns the optimal configuration. Additionally, overlapping spaces 9 allow for more compact representations since their geometry is more complex. 10 Our experiments confirm that overlapping spaces outperform the competitors in 11 graph embedding tasks. Here, we consider both distortion setup, where the aim 12 is to preserve distances, and *ranking* setup, where the relative order should be 13 preserved. The proposed method effectively solves the problem and outperforms 14 15 the competitors in both settings. We also perform an empirical analysis in a realistic 16 information retrieval task, where we compare all spaces by incorporating them into DSSM. In this case, the proposed overlapping space consistently achieves nearly 17 optimal results without any configuration tuning. This allows for reducing training 18 time, which can be significant in large-scale applications. 19

20 1 Introduction

Building vector representations of various objects is one of the central tasks of machine learning. Word embeddings such as Glove [21] and Word2Vec [18] are widely used in natural language processing; a similar Prod2Vec [7] approach is used in recommendation systems. There are many algorithms proposed for graph embeddings, e.g., Node2Vec [8] and DeepWalk [22]. Recommendation systems often construct embeddings of a bipartite graph that describes interactions between users and items. Such embeddings can be constructed via matrix factorization techniques such as ALS [10].

For a long time, embeddings were considered exclusively in \mathbb{R}^n . However, the hyperbolic space was shown to be more suitable for graph, word, and image representations due to the underlying hierarchical structure [12, 19, 20, 25]. Going beyond spaces of constant curvature, a recent study [9] proposed *product spaces*, which combine several copies of Euclidean, spherical, and hyperbolic spaces. While these spaces demonstrate promising results, the optimal signature (types of combined spaces and their dimensions) has to be chosen via brute force, which may not be acceptable in large-scale applications.

³⁴ In this paper, we propose a more general metric space called *overlapping space* together with an ³⁵ optimization algorithm that trains signature *simultaneously* with embedding allowing us to avoid ³⁶ brute-forcing. The main idea is to allow coordinates to be shared between different spaces, which ³⁷ allows us to significantly reduce the number of coordinates needed.

³⁸ Importantly, we also suggest adding non-metric approaches such as *weighted inner product* [13] as

³⁹ an additional similarity measure complementing metric ones, whereas usually metric methods are

40 compared with metric methods, which, as we show below, can be suboptimal. Moreover, we offer a

flexible hybrid measure *OS-Mixed* that allows us to take the best of the two approaches and can be

42 extended with additional base metric spaces and non-metric measures.

To validate the usefulness of the proposed overlapping space, we provide an extensive empirical evaluation for the task of graph embedding, where we consider both distortion-based and rankingbased objectives. In both cases, the proposed measure outperforms the competitors. We also compare the spaces in information retrieval and recommendation tasks, for which we apply them to train embeddings via DSSM [11]. Our method works comparable to the best signature tested in these cases, while it does not require brute-forcing for the best signature. Thus, using the overlapping space may significantly reduce the training time, which can be crucial in large-scale applications.

50 2 Background and related work

51 2.1 Embeddings and loss functions

For a graph G = (V, E) an embedding is a mapping $f: V \to U$, where U is a metric space equipped with a distance $d_U: U \times U \to \mathbb{R}_+$.¹ On the graph, one can consider a shortest path distance $d_G: V \times V \to \mathbb{R}_+$. In the graph reconstruction task, it is expected that a good embedding preserves the original graph distances: $d_G(v, u) \approx d_U(f(v), f(u))$. The most commonly used evaluation metric is *distortion*, which averages relative errors of distance reconstruction over all pairs of nodes:

$$D_{avg} = \frac{2}{|V|(|V|-1)} \sum_{(v,u)\in V^2, v\neq u} \frac{|d_U(f(v), f(u)) - d_G(v, u)|}{d_G(v, u)} \,. \tag{1}$$

While commonly used in graph reconstruction, distortion is not the best choice for many practical 57 applications. For example, in recommendation tasks, one usually deals with a partially observed 58 graph (some positive and negative element pairs), so a huge graph distance between nodes in the 59 observed part does not necessarily mean that the nodes are not connected by a short path in the full 60 61 graph. Also, often only the order of the nearest elements is essential while predicting distances to faraway objects is not critical. In such cases, it is more reasonable to consider a local ranking metric, 62 e.g. the mean average precision (mAP) that measures the relative closeness of the relevant (adjacent) 63 nodes compared to the others:² 64

$$mAP = \frac{1}{|V|} \sum_{v \in V} AP(v) = \frac{1}{V} \sum_{v \in V} \frac{1}{\deg(v)} \sum_{u \in N_v} \frac{|N_v \cap R_v(u)|}{|R_v(u)|},$$

$$R_v(u) = \{ w \in V | d_U(f(v), f(w)) \le d_U(f(v), f(u)) \}, N_v = \{ w \in V | (v, w) \in E \}.$$
(2)

⁶⁵ Note that mAP cannot be directly optimized since it is not differentiable. In our experiments, we use ⁶⁶ the following probabilistic loss function as a proxy:³

$$L_{proxy} = -\sum_{(v,u)\in E} \log P((v,u)\in E) = -\sum_{(v,u)\in E} \log \frac{\exp(-d_U(f(v), f(u)))}{\sum_{w\in V} \exp(-d_U(f(v), f(w)))}.$$
 (3)

Note that when substituting $d_U(x,y) = c - f(x)^T f(y)$ (assuming that $f(x) \in \mathbb{R}^n$, so the dot product is defined), we get the standard word2vec loss function.

69 2.2 Spaces, distances, and similarities

In the previous section, we assumed that $d_U: U \times U \to \mathbb{R}_+$ is an arbitrary distance. In this section, we discuss particular choices often assumed in the literature.

¹Note that any discrete metric space corresponds to a weighted graph, so graph terminology is not restrictive. ²For mAP, the relevance labels are assumed to be binary (unweighted graphs). If a graph is weighted, then we say that N_v consists of the closest element to v (or several closest elements if the distances to them are equal).

³See Table 5 of the supplemental material with other ways of converting distance to probability.

72 For many years, Euclidean space was the primary choice for structured data embeddings [6]. For two

points $x, y \in \mathbb{R}^d$, Euclidean distance is defined as $d_E(x, y) = \left(\sum_{i=1}^d (x_i - y_i)^2\right)^{1/2}$.

⁷⁴ Spherical spaces were also found to be suitable for some applications [17, 23, 29]. Indeed, in practice,

vector representations are often normalized, so cosine similarity between vectors is a natural way to

⁷⁶ measure their similarity. This naturally corresponds to a spherical space $S_d = \{x \in \mathbb{R}^{d+1} : \|x\|_2^2 = 1\}$

1} equipped with a distance $d_S(x, y) = \arccos(x^T y)$.

⁷⁸ In recent years, hyperbolic spaces also started to gain popularity. Hyperbolic embeddings have ⁷⁹ shown their superiority over Euclidean ones in a number of tasks, such as graph reconstruction ⁸⁰ and word embedding [19, 20, 24, 25]. To represent the points, early approaches used the Poincare ⁸¹ model of the hyperbolic space [19], but later it has been shown that the hyperboloid (Lorentz) ⁸² model may lead to more stable results [20]. In this work, we also adopt the hyperboloid model ⁸³ $H_d = \{x \in \mathbb{R}^{d+1} | \langle x, x \rangle_h = 1, x_1 > 0\}$ equipped with a distance $d_H = \operatorname{arccosh}(\langle x, y \rangle_h)$, where

84
$$\langle x, y \rangle_h := x_1 y_1 - \sum_{i=2}^{n-1} x_i y_i.$$

Going even further, a recent paper [9] proposed more complex *product spaces* that combine several copies of Euclidean, spherical, and hyperbolic spaces. Namely, the overall dimension d is split into k parts (smaller dimensions): $d = \sum_{i=1}^{k} d_i$, $d_i > 0$. Each part is associated with the space $D_i \in \{E_{d_i}, S_{d_i}, H_{d_i}\}$ and scale coefficient $w_i \in \mathbb{R}_+$. Varying scale coefficients corresponds to changing curvature of hyperbolic and spherical spaces, while in Euclidean space this coefficient is not used ($w_i = 1$). Then, the distance in the product space is defined as:

$$d_P(x,y) = \sqrt{\sum_{i=1}^k w_i \, d_{D_i} (x[t_{i-1}+1:t_i], y[t_{i-1}+1:t_i])^2},$$

where $t_0 = 0$, $t_i = t_{i-1} + d_i$, and x[s:e] is a subvector $(x_s, \ldots, x_e) \in \mathbb{R}^{e-s+1}$. If k = 1, we get a 85 standard Euclidean, spherical, or hyperbolic space. In [9], it is proposed to learn an embedding and 86 scale coefficients w_i simultaneously. However, choosing the optimal signature (how to split d into d_i) 87 and which types of spaces to choose) is challenging. A heuristics proposed in [9] allows to guess 88 types of spaces if d_i 's are given. If $d_1 = d_2 = 5$, this heuristics agrees well with the experiments 89 on three considered datasets. The generalizability of this idea to other datasets and configurations 90 is unclear. In addition, it cannot be applied if a dataset is partially observed (e.g., there are several 91 known positive-negative pairs), i.e., graph distances cannot be computed. Hence, in practice, it is 92 more reliable to choose a signature via the brute-force, which can be inapplicable on large datasets. 93

Another way to measure objects' similarity, which is rarely compared with metric methods but is frequently used in practical applications, is via the dot product of vectors $x^T y$ or its weighted version $x^T W y$ with a diagonal matrix W, which is also known as a weighted inner product [13]. Such measures cannot be converted to a distance via a monotone transformation; however, they can be used to predict similarity or dissimilarity between objects, which is often sufficient in practice, especially when ranking metrics are used.

In this paper, we stress that when comparing different methods, both metric and non-metric variants should be used when appropriate because different methods are better for different tasks. In particular, dot-product allows one to easily differentiate between more popular and less popular items (the vector norm can be considered a measure of popularity). This feature is also attributed to hyperbolic spaces, where more popular items are located closer to the origin.

105 2.3 Optimization

Gradient optimization in Euclidean space is straightforward, while for spherical or hyperbolic embeddings, we have to additionally control that points belong to a surface. In previous works, Riemann-SGD was used to solve this problem [2]. In short, it projects Euclidean gradients on the tangent space at a point and then uses a so-called exponential map to move the point along the surface according to the gradient projection. For product spaces, a generalization of the exponential map has been proposed [5, 26]. In [28], the authors compare RSGD with the retraction technique, where points are moved along the gradients in the ambient space and are projected onto the surface after each update. From their experiment, the retraction technique requires from 2% to 46% more iterations, depending on the learning rate. However, the exponential update step takes longer. Hence the advantage of RSGD in terms of computation time depends on the specific implementation.

117 3 Overlapping spaces

118 3.1 Overlapping spaces

In this section, we propose a new concept of *overlapping spaces*. This concept generalizes product spaces and allows us to make the signature (types and dimensions of combined spaces) trainable. Our main idea is to divide the embedding vector into several *overlapping* (unlike product spaces) segments, each segment corresponding to its own space. Then, instead of discrete signature brute-forcing, we optimize the weights of the signature elements.

Importantly, we allow the same coordinates of an embedding vector to define distances in spaces of different geometry. For this purpose, we need to map a vector $x \in \mathbb{R}^d$ (for any $d \ge 1$) to a point in Euclidean, hyperbolic, and spherical space. Let us denote this mapping by M. Obviously, for Euclidean space, we may take $M_E(x) = x$. We may use the vector normalization for spheres, and for H_d we use a projection from a hyperplane to a hyperboloid:

$$M_S(x) = \frac{x}{|x|} \in S_{d-1}, M_H(x) = \left(\sqrt{1 + \sum_{i=2}^d x_i^2, x_1, \dots, x_d}\right) \in H_d.$$
(4)

Note that for such parametrization a d-dimensional vector x is mapped into Euclidean and hyperbolic spaces of dimension d and into a spherical space of dimension d - 1. Hence, in standard implementations of product spaces, a sphere S_d is parametrized by d + 1-dimensional vector [9]. However, this requires more coordinates to be stored for each spherical space. Hence, to make a fair comparison of all spaces, we use the hyperspherical coordinates for S_d :

$$\hat{M}_{S}(x) = \begin{pmatrix} \cos x_{1} & \cos x_{2} & \dots & \cos x_{d-1} & \cos x_{d} \\ \cos x_{1} & \cos x_{2} & \dots & \cos x_{d-1} & \sin x_{d} \\ \cos x_{1} & \cos x_{2} & \dots & \sin x_{d-1} \\ \dots & & & \\ \sin x_{1} & & & & \end{pmatrix} \in S_{d}.$$
(5)

Now we are ready to define an overlapping space. Consider two vectors $x, y \in \mathbb{R}^d$. Let p_1, \ldots, p_k denote some subsets of coordinates, i.e., $p_i \subset \{1, \ldots, d\}$. We assume that together these subsets cover all coordinates, i.e., $\bigcup_{i=1}^k p_i = \{1, \ldots, d\}$. By $x[p_i]$ we denote a subvector of x induced by p_i . Let $D_i \in \{E, S, H\}$. We define $d_i(x, y) = d_{D_i}(M_{D_i}(x[p_i]), M_{D_i}(y[p_i]))$ and aggregate these distances with arbitrary positive weights $w_1 \ldots w_k \in \mathbb{R}_+$:

$$d_O^{l0}(x,y) = \max\left(w_1 d_1(x,y), \dots, w_k d_k(x,y)\right),$$

$$d_O^{l1}(x,y) = \sum_{i=1}^k w_i d_i(x,y), \ d_O^{l2}(x,y) = \left(\sum_{i=1}^k w_i d_i^2(x,y)\right)^{1/2}.$$
 (6)

Definition 1. $O_d = \{x \in \mathbb{R}^d\}$ equipped with a distance d_O^{l0} , d_O^{l1} , or d_O^{l2} defined in (6) is called an overlapping space. This space is defined by p_i , D_i , and w_i .

Note that it is sufficient to assume that spherical and hyperbolic spaces have curvatures 1 and -1, respectively, since changing curvature is equivalent to changing scale, which is captured by w_i . The following statement follows from the definition above and from the fact that d_E , d_S , and d_H are distances.

Statement 1. If $\bigcup_{i=1}^{k} p_i = \{1, \ldots, d\}$ and $w_1 \ldots w_k \in \mathbb{R}_+$, then d_O^{l0} , d_O^{l1} , d_O^{l2} are distances on $\mathbb{R}^d \times \mathbb{R}^d$, *i.e.*, they satisfy the metric axioms.

It is easy to see that overlapping spaces generalize product spaces. Indeed, if we assume $p_i \cap p_j = \emptyset$ for all $i \neq j$, then an overlapping space reduces to a product space. However, the fact that we allow $p_i \cap p_j \neq \emptyset$ gives us a significantly larger expressive power for the same dimension d.

150 3.2 Generalization with WIPS: OS-Mixed measure

Surprisingly, in our experiments, we notice that in some cases, the non-metrical methods can successfully be used for graph embeddings even with the distortion loss, where model approximates metric distances. A shortcoming of such measures is that they cannot be converted to a distance via a monotone transformation. On the other hand, for ranking loss functions, weighted and standard dot products can have good performance [13].

To close the gap between metric and non-metric methods, we propose a generalization of the overlapping spaces that also includes weighted inner product similarity (WIPS): we extend the list of base distance functions $\{d_E, d_S, d_H\}$ with $d_{dot} = c - x^T y$. Note that by mixing such 'distance' function with all possible subsets $p_i \in 2^{\{1...d\}}$ using *l*1-aggregation (6), we get WIPS measure $d_W = \tilde{c} - \sum_{i=1}^d \tilde{w}_i x_i y_i$, where \tilde{c} and \tilde{w}_i are trainable values. Next, we suggest using an extended set of

base distances $\{d_E, d_S, d_H, d_W\}$ together, as shown in equation (6). It will be shown that this design gives very good results for both distortion and ranking versions of the graph reconstruction task. We further refer to this approach as *OS-Mixed*.

¹⁶⁴ **4 Optimization in overlapping spaces**

165 4.1 Universal signature

Overlapping spaces defined in Sections 3 and 3.2 are flexible and allow capturing various geometries. However, similarly to product spaces, they need a signature $(p_i \text{ and } D_i)$ to be chosen in advance. This section shows that a universal signature can be chosen, so no brute-force is needed to choose the best signature for a particular dataset.

Let $t \ge 0$ denote the depth (complexity) of the signature for a *d*-dimensional embedding. Each layer l, $0 \le l \le t$, of the signature consists of 2^l subsets of coordinates: $p_i^l = \left\{ \left[d(i-1)/2^l \right] + 1, \dots, \left[di/2^l \right] \right\}, 1 \le i \le 2^l$. Each p_i^l is associated with Euclidean, spherical, and hyperbolic spaces simultaneously. The corresponding weights are denoted by $w_i^{l,E}, w_i^{l,S}, w_i^{l,H}$. Then, the distance is computed according to (6). See Figure 1 for an illustration of the procedure (for d = 10 and t = 1).

Informally, we first consider the original vectors x, y and compute Euclidean, spherical, and hyperbolic distances between them. Then, we split the vectors into two halves, and for each half, we also compute all three distances, and so on. Finally, all the obtained distances are averaged with the weights coefficient according to (6). Note that we have $3(2^{t+1} - 1)$ different weights in our structure in general, but with l2-aggregation this value may be reduced to $2(2^{t+1} - 1) + 2^t$ since for the Euclidean space, the distances between subvectors at the upper layers can be split into terms corresponding to smaller subvectors, so we essentially need only the last layer with 2^t terms.

Recall that in product spaces, the weights correspond to curvatures of the combined spaces. In 183 our case, they also play another important role: weights allow us to balance between different 184 spaces. Indeed, for each subset of coordinates, we simultaneously compute the distance between 185 the points assuming each of the combined spaces. Varying the weights, we can increase or decrease 186 the contribution of a particular space to the distance. As a result, our signature allows us to learn 187 the optimal signature, which does not have to be a product space since all weights can be non-zero. 188 Note that the procedure described in this section naturally extends to OS-Mixed by adding the 189 corresponding 'distance' to Euclidean, hyperbolic, and spherical. 190

191 4.2 Optimization

In this section, we describe how we embed into the overlapping space. Although Riemann-SGD (see Section 2.3) is a good solution from the theoretical point of view, in practice, due to errors in storing and processing real numbers, it may cause some problems. A point that we assume to lie on a surface (sphere or hyperboloid) does not numerically lie on it usually. Due to the accumulation of numerical errors, with each iteration of RSGD, the point may move away from the surface. Therefore, in practice, after each step, all embeddings are explicitly projected onto the surface, which may slow down the algorithm. Moreover, RSGD is not applicable if one needs to process the output of a neural network,

Figure 1: Overlapping space with d = 10, t = 1, and l1 (sum) aggregation

which cannot be required to belong to a given surface (e.g., to satisfy $\langle x, x \rangle_h = 1 \Leftrightarrow x \in H_d$). As a result, before finding the hyperbolic distance between two outputs of a neural network in Siamese [3] setup, one first needs to somehow map them to a hyperboloid.

Instead of RSGD, we store the embedding vectors in Euclidean space and calculate distances 202 between them using the mappings (4) to the corresponding surfaces. Thus, we can evaluate the 203 distances between the outputs of neural networks and also use conventional optimizers. To optimize 204 205 embeddings, we first map Euclidean vectors into the corresponding spaces, calculate distances and 206 loss function, and then backpropagate through projection functions. To improve the convergence, we use Adam [14] instead of the standard SGD. Applying this to product spaces, we achieve the results 207 similar to the original paper [9] (see Table 2 of the supplemental material), where RSGD was used 208 with the learning rate brute-forcing, custom learning rate for curvature coefficients, and other tricks. 209

210 5 Experiments

211 5.1 Compared spaces

212 In this section, we provide a thorough analysis to compare all metric spaces discussed in the paper, including product spaces with all signatures from [9] and the proposed overlapping space. For the 213 non-metric distance (similarity) functions, we consider $d(x,y) = c - x^T y$, $d(x,y) = c - \sum w_i x_i y_i$ 214 (WIPS), $d(x, y) = c \exp(-x^T y)$ with trainable parameters $c, w_i \in \mathbb{R}$, and the proposed OS-Mixed 215 measure. We add them to analyze whether they are able to approximate graph distances in distortion 216 setup. Similarly to [9], we fix the dimension d = 10. However, for a fair comparison, we fix the 217 number of stored values for each embedding and used hypersperical parametrization (5) instead of 218 just storing d + 1 coordinates.⁴ The training details are given in Supplemental A. The code of our 219 experiments supplements the submission. 220

221 5.2 Graph reconstruction

Graph datasets We use the following graph datasets: the USCA312 dataset of distances between North American cities [4] (weighted complete graph), a graph of computer science Ph.D. advisor-

⁴In Supplemental B.2, we evaluate spherical spaces without this modification to compare with [9].

Table 1: Datasets for graph reconstruction

	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
Nodes	312	1025	4941	4039	3227	986
Edges	48516 (weighted)	1043	6594	88234	3604	16687

Table 2: Distortion graph reconstruction, top results are highlighted, top metric results are underlined

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
E_{10}	0.00318	0.0475	0.0408	0.0487	0.0530	0.1242
H_{10}	0.01104	0.0443	0.0348	0.0483	0.0279	0.1144
S_{10}	0.01065	0.0519	0.0453	0.0561	0.0608	0.1260
$H_5^2 \equiv H_5 \times H_5$	0.00573	0.0345	0.0255	0.0372	0.0279	0.1106
$S_5 \times S_5 \equiv S_5^2$	0.00700	0.0501	0.0438	0.0552	0.0584	0.1251
$H_5 \times S_5$	0.00541	0.0341	0.0254	0.0346	0.0310	0.1195
H_2^5	0.00592	0.0344	0.0273	0.0439	0.0356	0.1163
S_{2}^{5}	0.00604	0.0464	0.0416	0.0512	0.0543	0.1244
$H_2^2 \times E_2 \times S_2^2$	0.00537	0.0344	0.0302	0.0406	0.0437	0.1193
$O_{l1}, t = 0$	0.00324	0.0368	0.0281	0.0458	0.0286	0.1141
$O_{l1}, t = 1$	0.00325	<u>0.0300</u>	<u>0.0231</u>	0.0371	0.0272	0.1117
$O_{l2}, t = 1$	0.00530	<u>0.0328</u>	<u>0.0246</u>	0.0324	0.0278	<u>0.1127</u>
c - dot	0.04005	0.0412	0.0461	0.0236	0.0296	0.1085
c - wips	0.06468	0.0358	0.0442	0.0161	0.0238	0.1016
ce^{-dot}	0.08142	0.0424	0.0505	0.0192	0.0270	0.1048
$O_{mix-l1}, t = 1$	0.00277	0.0243	0.0235	0.0172	0.0187	0.1026
$O_{mix-l2}, t = 1$	0.00464	0.0220	0.0258	0.0163	0.0198	0.1028

advisee relationships [1], a power grid distribution network with backbone structure [27], a dense 224 social network from Facebook [16], and EuCore dataset generated using email data from a large 225 European research institution [15]. We also created a new dataset, obtained by launching the breadth-226 first search on the Wikipedia category graph, starting from the "Linear Algebra" category with 227 search depth limited to 6. Further, we refer to this dataset as WLA6; more details are given in 228 Supplemental A.2. This graph is very close to being a tree, although it has some cycles. We expect 229 the hyperbolic space to give a significant profit for this graph, and we observe that product spaces 230 give almost no additional advantage. The purpose of using this additional dataset is to evaluate 231 overlapping spaces on a dataset where product spaces do not provide quality gains. Table 1 lists the 232 properties of all considered datasets. 233

Distortion loss We start with the standard graph reconstruction task with distortion loss (1). The goal is to embed all nodes of a given graph into a *d*-dimensional space approximating the pairwise graph distances between the nodes. In this setup, all models are trained to minimize distortion (1), the results are shown in Table 2. It can be seen that the overlapping spaces outperform other metric spaces, and the best overlapping space (among considered) is the one with *l*1 aggregation and complexity t = 1. Interestingly, the performance of such overlapping space is often better than for the *best* product space.

Simple non-metric distance functions show highly unstable results for this task: for the UCSA312 dataset, the obtained distortion is orders of magnitude worse than the best one. However, on some datasets (Facebook and WLA6), the performance is quite good, and for Facebook, these similarities have much better performance than all metric solutions. We conclude that such functions are worth trying for the graph reconstruction with the distortion loss, but their performance is unstable. In contrast, the overlapping spaces show good and stable results on all datasets, and the proposed OS-Mixed modification (see Section 3.2) outperforms all other approaches.

Ranking loss As discussed in Section 2.1, in many practical applications, only the order of the nearest neighbors matters. In this case, it is more reasonable to use mAP (2). In previous work [9], mAP was also reported, but the models were trained to minimize distortion. In our experiments, we observed that distortion optimization weakly correlates with mAP optimization. Hence, we minimize

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
E_{10}	0.9290	0.9487	0.9380	0.7876	0.7199	0.6108
H_{10}	0.9173	0.9399	0.9385	0.7997	0.9617	0.6670
S_{10}	0.9183	0.9519	0.9445	0.7768	0.7289	0.6037
H_{5}^{2}	0.9247	0.9481	0.9415	0.8084	0.9682	<u>0.6783</u>
S_{5}^{2}	0.9316	0.9600	0.9482	0.7790	0.7307	0.6116
$H_5 \times S_5$	0.9397	0.9538	0.9505	0.7947	<u>0.9751</u>	<u>0.6847</u>
H_{2}^{5}	0.9364	0.9671	0.9508	0.7979	0.8597	0.6611
S_{2}^{5}	0.9439	0.9656	0.9511	0.7800	0.7358	0.6169
$H_2^2 \times E_2 \times S_2^2$	0.9519	0.9638	0.9507	0.7873	0.7794	0.6492
$O_{l1}, t = 0$	<u>0.9538</u>	<u>0.9879</u>	0.9728	0.8093	0.6759	0.6580
$O_{l1}, t = 1$	<u>0.9522</u>	<u>0.9904</u>	<u>0.9762</u>	<u>0.8185</u>	0.9598	0.6691
$O_{l2}, t = 1$	<u>0.9522</u>	<u>0.9938</u>	0.9907	<u>0.8326</u>	0.9694	0.7078
c - dot	1	1	0.9983	0.8745	0.9990	0.7409
c - wips	1	1	1	0.8704	1	0.7742
$O_{mix-l1}, t = 1$	1	1	0.9994	0.8806	0.9997	0.7860
$O_{mix-l2}, t = 1$	1	1	1	0.9021	1	0.8405

Table 3: mAP graph reconstruction, top results are highlighted, top metric results are underlined

Table 4: DSSM results, top three results are highlighted

Signature	Test mAP		
E_{10}	0.4459	Signature	Test mAP
H_{10}	0.4047	E_{256}	0.717
S_{10}	0.4364	H_{256}	0.412 5
H_{5}^{2}	0.4492	S_{255}	0.588
S_{5}^{2}	0.4573	H^{2}_{128}	0.547
$H_5 \times S_5$	0.3295	S_{127}^2	0.662
H_2^5	0.3681	$H_{128} \times S_{127}$	0.501
S_2^5	0.4616	$H_{61}^4 \times H_{62}$	0.621
$H_2^2 \times E_2 \times S_2^2$	0.3526	$S_{60}^4 \times S_{61}$	0.701
c - dot	0.4194	c - dot	0.738
$O_{l1}, t = 0$	0.4562	$O_{l1}, t = 0$	0.677
$O_{l1}, t = 1$	0.4498	$O_{l1}, t = 1$	0.662
$O_{l2}, t = 1$	0.4456	$O_{mix-l1}, t = 1$	0.663
$O_{mix-l1}, t = 1$	0.4447	$O_{mix-l2}, t = 1$	0.655
$O_{mix-l2}, t = 1$	0.4483		

the proxy-loss defined in equation (3). The results are shown in Table 3, and the obtained values for mAP are indeed much better than the ones obtained with distortion optimization [9], i.e., it is important to use an appropriate loss function. According to Table 3, among the metric spaces, the best results are achieved with the overlapping spaces (especially for *l*2-aggregation with t = 1). However, in contrast to distortion loss, ranking based on the dot-product outperforms all metric spaces. However, using OS-Mixed measure allows us to improve these results further.

258 5.3 DSSM experiment

From a practical perspective, it is also important to analyze whether an embedding can generalize to unseen examples. For instance, an embedding can be made via a neural network based on objects' characteristics, such as text descriptions or images. This section analyzes whether it is reasonable to use complex geometries, including product spaces and overlapping spaces, in such a scenario.

For this purpose, we trained a classic DSSM model [11]⁶ on a private Wikipedia search dataset consisting of 491044 pairs (search query, relevant page), examples are given in the supplemental material. All queries are divided into train, validation, and test sets, and for each signature, the

⁵The gap between E_{256} and H_{256} may seem suspicious, but in Table 5 of [9] a similar pattern is observed.

⁶We changed dense layers sizes in order to achieve the required embedding length and used more complex text tokenization with char bigrams, trigrams, and words, instead of just char trigrams.

	mAP	distortion
best metric space (type) $c - dot$	$0.824 (O_{l1}, t = 0)$ 0.863	$0.082 (O_{l1}, t = 1)$ 0.079
c - wips	1	0.091
$O_{mix-l2}, t = 1$	1	0.070

Table 5: Bipartite graph reconstruction (short version)

Table 6: WIPS distortion (5 restarts; best learning rate)

	avg.	worst	best	std
c - wips	0.092	0.100	0.078	0.0078
$O_{mix-l2}, t = 1$	0.071	0.074	0.069	0.0018

optimal iteration was selected on the validation set. Table 4 compares all models for two embedding sizes. For short embeddings, we see that a product space based on spherical geometry is useful, and overlapping spaces have comparable quality. However, in large "industrial size" dimensions, the best results are achieved with the standard dot product, questioning the utility of complex geometries in the case of large dimensions.

Note that in DSSM-like models, the most time-consuming task is model training. Hence, training multiple models for choosing the best configuration can be infeasible. Hence, for small dimensions, overlapping spaces can be preferable over product spaces since they are universal and do not require parameter tuning. Moreover, calculating element embeddings is more time-consuming than calculating distances. Hence, even though calculating distances in the overlapping space has larger complexity than in simpler spaces, it does not have a noticeable effect in real applications.

277 5.4 Synthetic bipartite graph reconstruction

Let us additionally illustrate that some graph structures are poorly embedded in the considered 278 metric spaces. Our intuition is that the dot product is suitable for datasets in which a few objects are 279 more popular than the other ones. Hence, we perform graph reconstruction on a synthetic bipartite 280 graph with two sets of sizes 20 and 700 with 5% edge probability (isolated nodes were removed, 281 and the remaining graph is connected). Clearly, there are a few popular nodes and many nodes of 282 small degrees in the obtained graph. Table 5 compares the performance of the best metric space 283 with the dot-product performance. As we can see, this experiment confirms our assumption that 284 specific graphs are poorly embedded in metric spaces, even with distortion loss. We also see that our 285 $d_{Q-Mixed}$ approach gives the best result with a margin. This additionally confirms the universality of 286 the proposed approach. We also note that the optimization of WIPS is highly unstable on this dataset, 287 see Table 6 for details. 288

289 6 Conclusion

This paper proposed the new concept of overlapping spaces that do not require signature brute-290 forcing and have better or comparable performance relative to the best product space in the graph 291 reconstruction task. Improvements are observed for both global distortion and local mAP loss 292 functions. In our experiments, we noticed that the conventional dot product often outperforms the 293 best product space. An important advantage of our method is that it allows us to easily incorporate 294 new distance or similarity as a building block. The obtained overlapping-mixed non-metric measure 295 achieves the best results for both distortion and mAP. We also evaluated the proposed overlapping 296 spaces in the DSSM setup, and in the case of short embeddings, product space gives a better result 297 than standard spaces, and the OS is comparable to it. In the case of long embeddings, no profit from 298 complex spaces was found. 299

300 References

- [1] Phillip Bonacich. 2008. Book Review: W. de Nooy, A. Mrvar, and V. Batagelj Exploratory
 Social Network Analysis With Pajek. (2004). Sociological Methods & Research SOCIOL
 METHOD RES 36 (05 2008), 563–564. https://doi.org/10.1177/0049124107306674
- [2] Silvere Bonnabel. 2013. Stochastic Gradient Descent on Riemannian Manifolds. *IEEE Trans. Automat. Control* 58 (2013), 2217–2229.
- [3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1994.
 Signature verification using a" siamese" time delay neural network. In *Advances in neural information processing systems*. 737–744.
- [4] John Burkardt. 2011. Cities City Distance Datasets. https://people.sc.fsu.edu/ ~jburkardt/datasets/cities.html
- [5] Frederick Arthur Ficken. 1939. The Riemannian and affine differential geometry of productspaces. (1939), 892–913.
- [6] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications, and
 performance: A survey. *Knowledge-Based Systems* 151 (2018), 78–94. https://doi.org/
 10.1016/j.knosys.2018.03.022
- [7] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla,
 Varun Bhagwan, and Doug Sharp. 2015. E-commerce in your inbox: Product recommendations
 at scale. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*. 1809–1818.
- [8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks.
 CoRR abs/1607.00653 (2016). arXiv:1607.00653 http://arxiv.org/abs/1607.00653
- [9] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. 2019. Learning mixed-curvature
 representations in product spaces. *International Conference on Learning Representations* (*ICLR*) (2019).
- [10] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit
 Feedback Datasets. In *IEEE International Conference on Data Mining (ICDM 2008)*. 263–272.
 http://yifanhu.net/PUB/cf.pdf
- [11] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013.
 Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. ACM
 International Conference on Information and Knowledge Management (CIKM).
- [12] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lem pitsky. 2020. Hyperbolic image embeddings. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 6418–6428.
- [13] Geewook Kim, Akifumi Okuno, Kazuki Fukui, and Hidetoshi Shimodaira. 2019. Representation
 learning with weighted inner product for universal approximation of general similarities. *arXiv preprint arXiv:1902.10409* (2019).
- [14] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. *Interna- tional Conference on Learning Representations* (12 2014).
- [15] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification and shrinking diameters. *ACM transactions on Knowledge Discovery from Data (TKDD)* 1, 1 (2007), 2–es.
- [16] Jure Leskovec and Julian J. Mcauley. 2012. Learning to Discover Social Circles in Ego Networks.
 In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
 and K. Q. Weinberger (Eds.). Curran Associates, Inc., 539–547. http://papers.nips.cc/
- 345 paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf

- [17] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. 2017. Sphereface: 346 Deep hypersphere embedding for face recognition. In Proceedings of the IEEE conference on 347 computer vision and pattern recognition. 212–220. 348
- [18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word 349 Representations in Vector Space. CoRR abs/1301.3781 (2013). http://dblp.uni-trier. 350 de/db/journals/corr/corr1301.html#abs-1301-3781 351
- [19] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings 352 for learning hierarchical representations. In Advances in neural informa-353 6338-6347. http://papers.nips.cc/paper/ tion processing systems. 354 7213-poincare-embeddings-for-learning-hierarchical-representations.pdf 355
- [20] Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in the Lorentz 356 Model of Hyperbolic Geometry. In International Conference on Machine Learning. 3776–3785. 357 https://arxiv.org/abs/1806.03417 358
- [21] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors 359 for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP). 360 1532-1543. http://www.aclweb.org/anthology/D14-1162 361
- [22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social 362 Representations. CoRR abs/1403.6652 (2014). arXiv:1403.6652 http://arxiv.org/abs/ 363 1403.6652 364
- [23] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. 2004. Similarity between Euclidean 365 and Cosine Angle Distance for Nearest Neighbor Queries. In Proceedings of the 2004 ACM 366 Symposium on Applied Computing (SAC '04). Association for Computing Machinery, New 367 York, NY, USA, 1232-1237. https://doi.org/10.1145/967900.968151 368
- [24] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. 2018. Representation Tradeoffs for 369 Hyperbolic Embeddings. In International Conference on Machine Learning. 4457–4466. 370
- [25] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. 2018. Poincar\'e GloVe: 371 Hyperbolic Word Embeddings. arXiv preprint arXiv:1810.06546 (2018). 372
- [26] Pavan K Turaga and Anuj Srivastava. 2016. Riemannian Computing in Computer Vision. 373 374 Springer.
- [27] Steven H Watts, Duncan J./Strogatz. 1998. Collective Dynamics of Small- World Networks. 375 *Nature*. 393:440-442. https://doi.org/10.1007/978-3-658-21742-6_130 376
- [28] Benjamin Wilson and Matthias Leimeister. 2018. Gradient descent in hyperbolic space. arXiv 377 preprint arXiv:1805.08207 (2018). 378
- [29] Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. 2014. Spherical 379 380 and hyperbolic embeddings of data. *IEEE transactions on pattern analysis and machine*
- intelligence 36, 11 (2014), 2255–2269. 381

382 Checklist

383	1. For all authors
384	(a) Do the main claims made in the abstract and introduction accurately reflect the paper's
385	contributions and scope? [Yes] We have made an effort to do this.
386	(b) Did you describe the limitations of your work? [Yes] See sections 5 and 6.
387	(c) Did you discuss any potential negative societal impacts of your work? [No] Any
388	possible impact depends on the usage, not the approach itself.
389	(d) Have you read the ethics review guidelines and ensured that your paper conforms to
390	them? [Yes] Yes, the paper conforms General Ethical Conduct: for example, we do not
391	provide users' data from Section 5.3.
392	2. If you are including theoretical results
393	(a) Did you state the full set of assumptions of all theoretical results? $[N/A]$
394	(b) Did you include complete proofs of all theoretical results? [N/A]
395	3. If you ran experiments
396	(a) Did you include the code, data, and instructions needed to reproduce the main experi-
397	mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
398	tal materials for code and data (users' requests for 5.3 are not provided due to privacy
399	rules; public graph datasets are sufficient to reproduce the main results).
400	(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
401	were chosen)? [Yes] Both in supplemental material and code.
402	(c) Did you report error bars (e.g., with respect to the random seed after running exper-
403	ducibility is ensured by checking on different datasets in the experiments with DSSM
404	restarting does not change the final results in any significant way.
406	(d) Did you include the total amount of compute and the type of resources used (e.g., type
407	of GPUs, internal cluster, or cloud provider)? [Yes] Technical requirements for our
408	implementation are provided with code, small experiments can be reproduced on a
409	regular computer.
410	4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets
411	(a) If your work uses existing assets, did you cite the creators? [Yes] See section 5.2.
412	(b) Did you mention the license of the assets? [No] No, although the data is available now,
413	this may change for reasons beyond our control.
414	(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
415	Yes, the WLA6 dataset.
416	(d) Did you discuss whether and how consent was obtained from people whose data you're
417	using/curating? [Yes] Indirectly, it is widely known that Wikipedia uses the Creative
418	Commons license.
419	(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [No] We only collect the Wikipedia category graph
421	5. If you used crowdsourcing or conducted research with human subjects
721	(a) Did you include the full text of instructions given to participants and concernshets if
422	(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] Not used
424	(b) Did you describe any notential participant risks with links to Institutional Paview
424 425	Board (IRB) approvals, if applicable? [N/A] Not used.
426	(c) Did you include the estimated hourly wave paid to participants and the total amount
427	spent on participant compensation? [N/A] Not used.