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Abstract

Various non-trivial spaces are becoming popular for embedding structured data1

such as graphs, texts, or images. Following spherical and hyperbolic spaces, more2

general product spaces have been proposed. However, searching for the best con-3

figuration of product space is a resource-intensive procedure, which reduces the4

practical applicability of the idea. We generalize the concept of product space and5

introduce an overlapping space that does not have the configuration search problem.6

The main idea is to allow subsets of coordinates to be shared between spaces of dif-7

ferent types (Euclidean, hyperbolic, spherical). As a result, parameter optimization8

automatically learns the optimal configuration. Additionally, overlapping spaces9

allow for more compact representations since their geometry is more complex.10

Our experiments confirm that overlapping spaces outperform the competitors in11

graph embedding tasks. Here, we consider both distortion setup, where the aim12

is to preserve distances, and ranking setup, where the relative order should be13

preserved. The proposed method effectively solves the problem and outperforms14

the competitors in both settings. We also perform an empirical analysis in a realistic15

information retrieval task, where we compare all spaces by incorporating them into16

DSSM. In this case, the proposed overlapping space consistently achieves nearly17

optimal results without any configuration tuning. This allows for reducing training18

time, which can be significant in large-scale applications.19

1 Introduction20

Building vector representations of various objects is one of the central tasks of machine learning.21

Word embeddings such as Glove [21] and Word2Vec [18] are widely used in natural language22

processing; a similar Prod2Vec [7] approach is used in recommendation systems. There are many23

algorithms proposed for graph embeddings, e.g., Node2Vec [8] and DeepWalk [22]. Recommendation24

systems often construct embeddings of a bipartite graph that describes interactions between users and25

items. Such embeddings can be constructed via matrix factorization techniques such as ALS [10].26

For a long time, embeddings were considered exclusively in Rn. However, the hyperbolic space27

was shown to be more suitable for graph, word, and image representations due to the underlying28

hierarchical structure [12, 19, 20, 25]. Going beyond spaces of constant curvature, a recent study [9]29

proposed product spaces, which combine several copies of Euclidean, spherical, and hyperbolic30

spaces. While these spaces demonstrate promising results, the optimal signature (types of combined31

spaces and their dimensions) has to be chosen via brute force, which may not be acceptable in32

large-scale applications.33

In this paper, we propose a more general metric space called overlapping space together with an34

optimization algorithm that trains signature simultaneously with embedding allowing us to avoid35
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brute-forcing. The main idea is to allow coordinates to be shared between different spaces, which36

allows us to significantly reduce the number of coordinates needed.37

Importantly, we also suggest adding non-metric approaches such as weighted inner product [13] as38

an additional similarity measure complementing metric ones, whereas usually metric methods are39

compared with metric methods, which, as we show below, can be suboptimal. Moreover, we offer a40

flexible hybrid measure OS-Mixed that allows us to take the best of the two approaches and can be41

extended with additional base metric spaces and non-metric measures.42

To validate the usefulness of the proposed overlapping space, we provide an extensive empirical43

evaluation for the task of graph embedding, where we consider both distortion-based and ranking-44

based objectives. In both cases, the proposed measure outperforms the competitors. We also compare45

the spaces in information retrieval and recommendation tasks, for which we apply them to train46

embeddings via DSSM [11]. Our method works comparable to the best signature tested in these47

cases, while it does not require brute-forcing for the best signature. Thus, using the overlapping space48

may significantly reduce the training time, which can be crucial in large-scale applications.49

2 Background and related work50

2.1 Embeddings and loss functions51

For a graph G = (V,E) an embedding is a mapping f : V → U , where U is a metric space equipped52

with a distance dU : U × U → R+.1 On the graph, one can consider a shortest path distance53

dG : V × V → R+. In the graph reconstruction task, it is expected that a good embedding preserves54

the original graph distances: dG(v, u) ≈ dU (f(v), f(u)). The most commonly used evaluation55

mertic is distortion, which averages relative errors of distance reconstruction over all pairs of nodes:56

Davg =
2

|V |(|V | − 1)

∑
(v,u)∈V 2,v 6=u

|dU (f(v), f(u))− dG(v, u)|
dG(v, u)

. (1)

While commonly used in graph reconstruction, distortion is not the best choice for many practical57

applications. For example, in recommendation tasks, one usually deals with a partially observed58

graph (some positive and negative element pairs), so a huge graph distance between nodes in the59

observed part does not necessarily mean that the nodes are not connected by a short path in the full60

graph. Also, often only the order of the nearest elements is essential while predicting distances to61

faraway objects is not critical. In such cases, it is more reasonable to consider a local ranking metric,62

e.g. the mean average precision (mAP) that measures the relative closeness of the relevant (adjacent)63

nodes compared to the others:264

mAP =
1

|V |
∑
v∈V

AP(v) =
1

V

∑
v∈V

1

deg(v)

∑
u∈Nv

|Nv ∩Rv(u)|
|Rv(u)|

,

Rv(u) = {w ∈ V |dU
(
f(v), f(w)

)
≤ dU

(
f(v), f(u)

)
}, Nv = {w ∈ V |(v, w) ∈ E}.

(2)

Note that mAP cannot be directly optimized since it is not differentiable. In our experiments, we use65

the following probabilistic loss function as a proxy:366

Lproxy = −
∑

(v,u)∈E

log P((v, u) ∈ E) = −
∑

(v,u)∈E

log
exp(−dU (f(v), f(u)))∑

w∈V
exp(−dU (f(v), f(w)))

. (3)

Note that when substituting dU (x, y) = c−f(x)T f(y) (assuming that f(x) ∈ Rn, so the dot product67

is defined), we get the standard word2vec loss function.68

2.2 Spaces, distances, and similarities69

In the previous section, we assumed that dU : U × U → R+ is an arbitrary distance. In this section,70

we discuss particular choices often assumed in the literature.71

1Note that any discrete metric space corresponds to a weighted graph, so graph terminology is not restrictive.
2For mAP, the relevance labels are assumed to be binary (unweighted graphs). If a graph is weighted, then we

say that Nv consists of the closest element to v (or several closest elements if the distances to them are equal).
3See Table 5 of the supplemental material with other ways of converting distance to probability.
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For many years, Euclidean space was the primary choice for structured data embeddings [6]. For two72

points x, y ∈ Rd, Euclidean distance is defined as dE(x, y) =
(

d∑
i=1

(xi − yi)
2

)1/2

.73

Spherical spaces were also found to be suitable for some applications [17, 23, 29]. Indeed, in practice,74

vector representations are often normalized, so cosine similarity between vectors is a natural way to75

measure their similarity. This naturally corresponds to a spherical space Sd = {x ∈ Rd+1 : ‖x‖22 =76

1} equipped with a distance dS(x, y) = arccos(xT y).77

In recent years, hyperbolic spaces also started to gain popularity. Hyperbolic embeddings have78

shown their superiority over Euclidean ones in a number of tasks, such as graph reconstruction79

and word embedding [19, 20, 24, 25]. To represent the points, early approaches used the Poincare80

model of the hyperbolic space [19], but later it has been shown that the hyperboloid (Lorentz)81

model may lead to more stable results [20]. In this work, we also adopt the hyperboloid model82

Hd = {x ∈ Rd+1|〈x, x〉h = 1, x1 > 0} equipped with a distance dH = arccosh(〈x, y〉h), where83

〈x, y〉h := x1y1 −
d+1∑
i=2

xiyi.84

Going even further, a recent paper [9] proposed more complex product spaces that combine several
copies of Euclidean, spherical, and hyperbolic spaces. Namely, the overall dimension d is split

into k parts (smaller dimensions): d =
k∑

i=1

di, di > 0. Each part is associated with the space

Di ∈ {Edi , Sdi , Hdi} and scale coefficient wi ∈ R+. Varying scale coefficients corresponds to
changing curvature of hyperbolic and spherical spaces, while in Euclidean space this coefficient is
not used (wi = 1). Then, the distance in the product space is defined as:

dP (x, y) =

√√√√ k∑
i=1

wi dDi(x[ti−1 + 1 : ti], y[ti−1 + 1 : ti])2 ,

where t0 = 0, ti = ti−1 + di, and x[s : e] is a subvector (xs, . . . , xe) ∈ Re−s+1. If k = 1, we get a85

standard Euclidean, spherical, or hyperbolic space. In [9], it is proposed to learn an embedding and86

scale coefficients wi simultaneously. However, choosing the optimal signature (how to split d into di87

and which types of spaces to choose) is challenging. A heuristics proposed in [9] allows to guess88

types of spaces if di’s are given. If d1 = d2 = 5, this heuristics agrees well with the experiments89

on three considered datasets. The generalizability of this idea to other datasets and configurations90

is unclear. In addition, it cannot be applied if a dataset is partially observed (e.g., there are several91

known positive-negative pairs), i.e., graph distances cannot be computed. Hence, in practice, it is92

more reliable to choose a signature via the brute-force, which can be inapplicable on large datasets.93

Another way to measure objects’ similarity, which is rarely compared with metric methods but is94

frequently used in practical applications, is via the dot product of vectors xT y or its weighted version95

xTWy with a diagonal matrix W , which is also known as a weighted inner product [13]. Such96

measures cannot be converted to a distance via a monotone transformation; however, they can be used97

to predict similarity or dissimilarity between objects, which is often sufficient in practice, especially98

when ranking metrics are used.99

In this paper, we stress that when comparing different methods, both metric and non-metric variants100

should be used when appropriate because different methods are better for different tasks. In particular,101

dot-product allows one to easily differentiate between more popular and less popular items (the vector102

norm can be considered a measure of popularity). This feature is also attributed to hyperbolic spaces,103

where more popular items are located closer to the origin.104

2.3 Optimization105

Gradient optimization in Euclidean space is straightforward, while for spherical or hyperbolic106

embeddings, we have to additionally control that points belong to a surface. In previous works,107

Riemann-SGD was used to solve this problem [2]. In short, it projects Euclidean gradients on the108

tangent space at a point and then uses a so-called exponential map to move the point along the surface109

according to the gradient projection. For product spaces, a generalization of the exponential map has110

been proposed [5, 26].111
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In [28], the authors compare RSGD with the retraction technique, where points are moved along112

the gradients in the ambient space and are projected onto the surface after each update. From their113

experiment, the retraction technique requires from 2% to 46% more iterations, depending on the114

learning rate. However, the exponential update step takes longer. Hence the advantage of RSGD in115

terms of computation time depends on the specific implementation.116

3 Overlapping spaces117

3.1 Overlapping spaces118

In this section, we propose a new concept of overlapping spaces. This concept generalizes product119

spaces and allows us to make the signature (types and dimensions of combined spaces) trainable. Our120

main idea is to divide the embedding vector into several overlapping (unlike product spaces) segments,121

each segment corresponding to its own space. Then, instead of discrete signature brute-forcing, we122

optimize the weights of the signature elements.123

Importantly, we allow the same coordinates of an embedding vector to define distances in spaces of124

different geometry. For this purpose, we need to map a vector x ∈ Rd (for any d ≥ 1) to a point125

in Euclidean, hyperbolic, and spherical space. Let us denote this mapping by M . Obviously, for126

Euclidean space, we may take ME(x) = x. We may use the vector normalization for spheres, and127

for Hd we use a projection from a hyperplane to a hyperboloid:128

MS(x) =
x

|x|
∈ Sd−1,MH(x) =


√√√√1 +

d∑
i=2

x2
i , x1, . . . , xd

 ∈ Hd. (4)

Note that for such parametrization a d-dimensional vector x is mapped into Euclidean and hyperbolic129

spaces of dimension d and into a spherical space of dimension d− 1. Hence, in standard implementa-130

tions of product spaces, a sphere Sd is parametrized by d+ 1-dimensional vector [9]. However, this131

requires more coordinates to be stored for each spherical space. Hence, to make a fair comparison of132

all spaces, we use the hyperspherical coordinates for Sd:133

M̂S(x) =


cosx1 cosx2 ... cosxd−1 cosxd

cosx1 cosx2 ... cosxd−1 sinxd

cosx1 cosx2 ... sinxd−1
...

sinx1

 ∈ Sd. (5)

Now we are ready to define an overlapping space. Consider two vectors x, y ∈ Rd. Let p1, . . . , pk134

denote some subsets of coordinates, i.e., pi ⊂ {1, . . . , d}. We assume that together these subsets135

cover all coordinates, i.e., ∪ki=1pi = {1, . . . , d}. By x[pi] we denote a subvector of x induced by136

pi. Let Di ∈ {E,S,H}. We define di(x, y) = dDi

(
MDi

(x[pi]),MDi
(y[pi])

)
and aggregate these137

distances with arbitrary positive weights w1 . . . wk ∈ R+:138

dl0O(x, y) = max
(
w1d1(x, y), . . . , wkdk(x, y)

)
,

dl1O(x, y) =

k∑
i=1

widi(x, y) , dl2O(x, y) =

(
k∑

i=1

wid
2
i (x, y)

)1/2

.
(6)

Definition 1. Od = {x ∈ Rd} equipped with a distance dl0O , dl1O , or dl2O defined in (6) is called an139

overlapping space. This space is defined by pi, Di, and wi.140

Note that it is sufficient to assume that spherical and hyperbolic spaces have curvatures 1 and −1,141

respectively, since changing curvature is equivalent to changing scale, which is captured by wi. The142

following statement follows from the definition above and from the fact that dE , dS , and dH are143

distances.144

Statement 1. If ∪ki=1pi = {1, . . . , d} and w1 . . . wk ∈ R+, then dl0O , dl1O , dl2O are distances on145

Rd × Rd, i.e., they satisfy the metric axioms.146

It is easy to see that overlapping spaces generalize product spaces. Indeed, if we assume pi ∩ pj = ∅147

for all i 6= j, then an overlapping space reduces to a product space. However, the fact that we allow148

pi ∩ pj 6= ∅ gives us a significantly larger expressive power for the same dimension d.149
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3.2 Generalization with WIPS: OS-Mixed measure150

Surprisingly, in our experiments, we notice that in some cases, the non-metrical methods can151

successfully be used for graph embeddings even with the distortion loss, where model approximates152

metric distances. A shortcoming of such measures is that they cannot be converted to a distance via a153

monotone transformation. On the other hand, for ranking loss functions, weighted and standard dot154

products can have good performance [13].155

To close the gap between metric and non-metric methods, we propose a generalization of the156

overlapping spaces that also includes weighted inner product similarity (WIPS): we extend the list157

of base distance functions {dE , dS , dH} with ddot = c− xT y. Note that by mixing such ‘distance’158

function with all possible subsets pi ∈ 2{1...d} using l1-aggregation (6), we get WIPS measure159

dW = c̃−
d∑

i=1

w̃ixiyi, where c̃ and w̃i are trainable values. Next, we suggest using an extended set of160

base distances {dE , dS , dH , dW } together, as shown in equation (6). It will be shown that this design161

gives very good results for both distortion and ranking versions of the graph reconstruction task. We162

further refer to this approach as OS-Mixed.163

4 Optimization in overlapping spaces164

4.1 Universal signature165

Overlapping spaces defined in Sections 3 and 3.2 are flexible and allow capturing various geometries.166

However, similarly to product spaces, they need a signature (pi and Di) to be chosen in advance.167

This section shows that a universal signature can be chosen, so no brute-force is needed to choose the168

best signature for a particular dataset.169

Let t ≥ 0 denote the depth (complexity) of the signature for a d-dimensional embedding.170

Each layer l, 0 ≤ l ≤ t, of the signature consists of 2l subsets of coordinates: pli =171 {[
d(i− 1)/2l

]
+ 1, . . . ,

[
di/2l

]}
, 1 ≤ i ≤ 2l . Each pli is associated with Euclidean, spherical,172

and hyperbolic spaces simultaneously. The corresponding weights are denoted by wl,E
i , wl,S

i , wl,H
i .173

Then, the distance is computed according to (6). See Figure 1 for an illustration of the procedure (for174

d = 10 and t = 1).175

Informally, we first consider the original vectors x, y and compute Euclidean, spherical, and hyper-176

bolic distances between them. Then, we split the vectors into two halves, and for each half, we177

also compute all three distances, and so on. Finally, all the obtained distances are averaged with178

the weights coefficient according to (6). Note that we have 3(2t+1 − 1) different weights in our179

structure in general, but with l2-aggregation this value may be reduced to 2(2t+1 − 1) + 2t since180

for the Euclidean space, the distances between subvectors at the upper layers can be split into terms181

corresponding to smaller subvectors, so we essentially need only the last layer with 2t terms.182

Recall that in product spaces, the weights correspond to curvatures of the combined spaces. In183

our case, they also play another important role: weights allow us to balance between different184

spaces. Indeed, for each subset of coordinates, we simultaneously compute the distance between185

the points assuming each of the combined spaces. Varying the weights, we can increase or decrease186

the contribution of a particular space to the distance. As a result, our signature allows us to learn187

the optimal signature, which does not have to be a product space since all weights can be non-zero.188

Note that the procedure described in this section naturally extends to OS-Mixed by adding the189

corresponding ‘distance’ to Euclidean, hyperbolic, and spherical.190

4.2 Optimization191

In this section, we describe how we embed into the overlapping space. Although Riemann-SGD (see192

Section 2.3) is a good solution from the theoretical point of view, in practice, due to errors in storing193

and processing real numbers, it may cause some problems. A point that we assume to lie on a surface194

(sphere or hyperboloid) does not numerically lie on it usually. Due to the accumulation of numerical195

errors, with each iteration of RSGD, the point may move away from the surface. Therefore, in practice,196

after each step, all embeddings are explicitly projected onto the surface, which may slow down the197

algorithm. Moreover, RSGD is not applicable if one needs to process the output of a neural network,198
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Figure 1: Overlapping space with d = 10, t = 1, and l1 (sum) aggregation

which cannot be required to belong to a given surface (e.g., to satisfy 〈x, x〉h = 1⇔ x ∈ Hd). As a199

result, before finding the hyperbolic distance between two outputs of a neural network in Siamese [3]200

setup, one first needs to somehow map them to a hyperboloid.201

Instead of RSGD, we store the embedding vectors in Euclidean space and calculate distances202

between them using the mappings (4) to the corresponding surfaces. Thus, we can evaluate the203

distances between the outputs of neural networks and also use conventional optimizers. To optimize204

embeddings, we first map Euclidean vectors into the corresponding spaces, calculate distances and205

loss function, and then backpropagate through projection functions. To improve the convergence, we206

use Adam [14] instead of the standard SGD. Applying this to product spaces, we achieve the results207

similar to the original paper [9] (see Table 2 of the supplemental material), where RSGD was used208

with the learning rate brute-forcing, custom learning rate for curvature coefficients, and other tricks.209

5 Experiments210

5.1 Compared spaces211

In this section, we provide a thorough analysis to compare all metric spaces discussed in the paper,212

including product spaces with all signatures from [9] and the proposed overlapping space. For the213

non-metric distance (similarity) functions, we consider d(x, y) = c− xT y, d(x, y) = c−
∑

wixiyi214

(WIPS), d(x, y) = c exp(−xT y) with trainable parameters c, wi ∈ R, and the proposed OS-Mixed215

measure. We add them to analyze whether they are able to approximate graph distances in distortion216

setup. Similarly to [9], we fix the dimension d = 10. However, for a fair comparison, we fix the217

number of stored values for each embedding and used hypersperical parametrization (5) instead of218

just storing d+ 1 coordinates.4 The training details are given in Supplemental A. The code of our219

experiments supplements the submission.220

5.2 Graph reconstruction221

Graph datasets We use the following graph datasets: the USCA312 dataset of distances between222

North American cities [4] (weighted complete graph), a graph of computer science Ph.D. advisor-223

4In Supplemental B.2, we evaluate spherical spaces without this modification to compare with [9].
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Table 1: Datasets for graph reconstruction

UCSA312 CS PhDs Power Facebook WLA6 EuCore

Nodes 312 1025 4941 4039 3227 986
Edges 48516 (weighted) 1043 6594 88234 3604 16687

Table 2: Distortion graph reconstruction, top results are highlighted, top metric results are underlined

Signature UCSA312 CS PhDs Power Facebook WLA6 EuCore

E10 0.00318 0.0475 0.0408 0.0487 0.0530 0.1242
H10 0.01104 0.0443 0.0348 0.0483 0.0279 0.1144
S10 0.01065 0.0519 0.0453 0.0561 0.0608 0.1260
H2

5 ≡ H5 ×H5 0.00573 0.0345 0.0255 0.0372 0.0279 0.1106
S5 × S5 ≡ S2

5 0.00700 0.0501 0.0438 0.0552 0.0584 0.1251
H5 × S5 0.00541 0.0341 0.0254 0.0346 0.0310 0.1195
H5

2 0.00592 0.0344 0.0273 0.0439 0.0356 0.1163
S5
2 0.00604 0.0464 0.0416 0.0512 0.0543 0.1244

H2
2 × E2 × S2

2 0.00537 0.0344 0.0302 0.0406 0.0437 0.1193
Ol1, t = 0 0.00324 0.0368 0.0281 0.0458 0.0286 0.1141
Ol1, t = 1 0.00325 0.0300 0.0231 0.0371 0.0272 0.1117
Ol2, t = 1 0.00530 0.0328 0.0246 0.0324 0.0278 0.1127

c− dot 0.04005 0.0412 0.0461 0.0236 0.0296 0.1085
c− wips 0.06468 0.0358 0.0442 0.0161 0.0238 0.1016
ce−dot 0.08142 0.0424 0.0505 0.0192 0.0270 0.1048
Omix−l1, t = 1 0.00277 0.0243 0.0235 0.0172 0.0187 0.1026
Omix−l2, t = 1 0.00464 0.0220 0.0258 0.0163 0.0198 0.1028

advisee relationships [1], a power grid distribution network with backbone structure [27], a dense224

social network from Facebook [16], and EuCore dataset generated using email data from a large225

European research institution [15]. We also created a new dataset, obtained by launching the breadth-226

first search on the Wikipedia category graph, starting from the “Linear Algebra” category with227

search depth limited to 6. Further, we refer to this dataset as WLA6; more details are given in228

Supplemental A.2. This graph is very close to being a tree, although it has some cycles. We expect229

the hyperbolic space to give a significant profit for this graph, and we observe that product spaces230

give almost no additional advantage. The purpose of using this additional dataset is to evaluate231

overlapping spaces on a dataset where product spaces do not provide quality gains. Table 1 lists the232

properties of all considered datasets.233

Distortion loss We start with the standard graph reconstruction task with distortion loss (1). The234

goal is to embed all nodes of a given graph into a d-dimensional space approximating the pairwise235

graph distances between the nodes. In this setup, all models are trained to minimize distortion (1), the236

results are shown in Table 2. It can be seen that the overlapping spaces outperform other metric spaces,237

and the best overlapping space (among considered) is the one with l1 aggregation and complexity238

t = 1. Interestingly, the performance of such overlapping space is often better than for the best239

product space.240

Simple non-metric distance functions show highly unstable results for this task: for the UCSA312241

dataset, the obtained distortion is orders of magnitude worse than the best one. However, on some242

datasets (Facebook and WLA6), the performance is quite good, and for Facebook, these similarities243

have much better performance than all metric solutions. We conclude that such functions are worth244

trying for the graph reconstruction with the distortion loss, but their performance is unstable. In245

contrast, the overlapping spaces show good and stable results on all datasets, and the proposed246

OS-Mixed modification (see Section 3.2) outperforms all other approaches.247

Ranking loss As discussed in Section 2.1, in many practical applications, only the order of the248

nearest neighbors matters. In this case, it is more reasonable to use mAP (2). In previous work [9],249

mAP was also reported, but the models were trained to minimize distortion. In our experiments, we250

observed that distortion optimization weakly correlates with mAP optimization. Hence, we minimize251
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Table 3: mAP graph reconstruction, top results are highlighted, top metric results are underlined

Signature UCSA312 CS PhDs Power Facebook WLA6 EuCore

E10 0.9290 0.9487 0.9380 0.7876 0.7199 0.6108
H10 0.9173 0.9399 0.9385 0.7997 0.9617 0.6670
S10 0.9183 0.9519 0.9445 0.7768 0.7289 0.6037
H2

5 0.9247 0.9481 0.9415 0.8084 0.9682 0.6783
S2
5 0.9316 0.9600 0.9482 0.7790 0.7307 0.6116

H5 × S5 0.9397 0.9538 0.9505 0.7947 0.9751 0.6847
H5

2 0.9364 0.9671 0.9508 0.7979 0.8597 0.6611
S5
2 0.9439 0.9656 0.9511 0.7800 0.7358 0.6169

H2
2 × E2 × S2

2 0.9519 0.9638 0.9507 0.7873 0.7794 0.6492
Ol1, t = 0 0.9538 0.9879 0.9728 0.8093 0.6759 0.6580
Ol1, t = 1 0.9522 0.9904 0.9762 0.8185 0.9598 0.6691
Ol2, t = 1 0.9522 0.9938 0.9907 0.8326 0.9694 0.7078

c− dot 1 1 0.9983 0.8745 0.9990 0.7409
c− wips 1 1 1 0.8704 1 0.7742
Omix−l1, t = 1 1 1 0.9994 0.8806 0.9997 0.7860
Omix−l2, t = 1 1 1 1 0.9021 1 0.8405

Table 4: DSSM results, top three results are highlighted

Signature Test mAP

E10 0.4459
H10 0.4047
S10 0.4364
H2

5 0.4492
S2
5 0.4573

H5 × S5 0.3295
H5

2 0.3681
S5
2 0.4616

H2
2 × E2 × S2

2 0.3526
c− dot 0.4194
Ol1, t = 0 0.4562
Ol1, t = 1 0.4498
Ol2, t = 1 0.4456
Omix−l1, t = 1 0.4447
Omix−l2, t = 1 0.4483

Signature Test mAP

E256 0.717
H256 0.412 5

S255 0.588
H2

128 0.547
S2
127 0.662

H128 × S127 0.501
H4

61 ×H62 0.621
S4
60 × S61 0.701

c− dot 0.738
Ol1, t = 0 0.677
Ol1, t = 1 0.662
Omix−l1, t = 1 0.663
Omix−l2, t = 1 0.655

the proxy-loss defined in equation (3). The results are shown in Table 3, and the obtained values252

for mAP are indeed much better than the ones obtained with distortion optimization [9], i.e., it is253

important to use an appropriate loss function. According to Table 3, among the metric spaces, the254

best results are achieved with the overlapping spaces (especially for l2-aggregation with t = 1).255

However, in contrast to distortion loss, ranking based on the dot-product outperforms all metric256

spaces. However, using OS-Mixed measure allows us to improve these results further.257

5.3 DSSM experiment258

From a practical perspective, it is also important to analyze whether an embedding can generalize to259

unseen examples. For instance, an embedding can be made via a neural network based on objects’260

characteristics, such as text descriptions or images. This section analyzes whether it is reasonable to261

use complex geometries, including product spaces and overlapping spaces, in such a scenario.262

For this purpose, we trained a classic DSSM model [11]6 on a private Wikipedia search dataset263

consisting of 491044 pairs (search query, relevant page), examples are given in the supplemental264

material. All queries are divided into train, validation, and test sets, and for each signature, the265

5The gap between E256 and H256 may seem suspicious, but in Table 5 of [9] a similar pattern is observed.
6We changed dense layers sizes in order to achieve the required embedding length and used more complex

text tokenization with char bigrams, trigrams, and words, instead of just char trigrams.
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Table 5: Bipartite graph reconstruction (short version)

mAP distortion

best metric space (type) 0.824 (Ol1, t = 0) 0.082 (Ol1, t = 1)
c− dot 0.863 0.079

c− wips 1 0.091
Omix−l2, t = 1 1 0.070

Table 6: WIPS distortion (5 restarts; best learning rate)

avg. worst best std

c− wips 0.092 0.100 0.078 0.0078
Omix−l2, t = 1 0.071 0.074 0.069 0.0018

optimal iteration was selected on the validation set. Table 4 compares all models for two embedding266

sizes. For short embeddings, we see that a product space based on spherical geometry is useful, and267

overlapping spaces have comparable quality. However, in large “industrial size” dimensions, the best268

results are achieved with the standard dot product, questioning the utility of complex geometries in269

the case of large dimensions.270

Note that in DSSM-like models, the most time-consuming task is model training. Hence, training271

multiple models for choosing the best configuration can be infeasible. Hence, for small dimensions,272

overlapping spaces can be preferable over product spaces since they are universal and do not273

require parameter tuning. Moreover, calculating element embeddings is more time-consuming than274

calculating distances. Hence, even though calculating distances in the overlapping space has larger275

complexity than in simpler spaces, it does not have a noticeable effect in real applications.276

5.4 Synthetic bipartite graph reconstruction277

Let us additionally illustrate that some graph structures are poorly embedded in the considered278

metric spaces. Our intuition is that the dot product is suitable for datasets in which a few objects are279

more popular than the other ones. Hence, we perform graph reconstruction on a synthetic bipartite280

graph with two sets of sizes 20 and 700 with 5% edge probability (isolated nodes were removed,281

and the remaining graph is connected). Clearly, there are a few popular nodes and many nodes of282

small degrees in the obtained graph. Table 5 compares the performance of the best metric space283

with the dot-product performance. As we can see, this experiment confirms our assumption that284

specific graphs are poorly embedded in metric spaces, even with distortion loss. We also see that our285

dO−Mixed approach gives the best result with a margin. This additionally confirms the universality of286

the proposed approach. We also note that the optimization of WIPS is highly unstable on this dataset,287

see Table 6 for details.288

6 Conclusion289

This paper proposed the new concept of overlapping spaces that do not require signature brute-290

forcing and have better or comparable performance relative to the best product space in the graph291

reconstruction task. Improvements are observed for both global distortion and local mAP loss292

functions. In our experiments, we noticed that the conventional dot product often outperforms the293

best product space. An important advantage of our method is that it allows us to easily incorporate294

new distance or similarity as a building block. The obtained overlapping-mixed non-metric measure295

achieves the best results for both distortion and mAP. We also evaluated the proposed overlapping296

spaces in the DSSM setup, and in the case of short embeddings, product space gives a better result297

than standard spaces, and the OS is comparable to it. In the case of long embeddings, no profit from298

complex spaces was found.299

9



References300

[1] Phillip Bonacich. 2008. Book Review: W. de Nooy, A. Mrvar, and V. Batagelj Exploratory301

Social Network Analysis With Pajek. (2004). Sociological Methods & Research - SOCIOL302

METHOD RES 36 (05 2008), 563–564. https://doi.org/10.1177/0049124107306674303

[2] Silvere Bonnabel. 2013. Stochastic Gradient Descent on Riemannian Manifolds. IEEE Trans.304

Automat. Control 58 (2013), 2217–2229.305

[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1994.306

Signature verification using a" siamese" time delay neural network. In Advances in neural307

information processing systems. 737–744.308

[4] John Burkardt. 2011. Cities – City Distance Datasets. https://people.sc.fsu.edu/309

~jburkardt/datasets/cities/cities.html310

[5] Frederick Arthur Ficken. 1939. The Riemannian and affine differential geometry of product-311

spaces. (1939), 892–913.312

[6] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications, and313

performance: A survey. Knowledge-Based Systems 151 (2018), 78–94. https://doi.org/314

10.1016/j.knosys.2018.03.022315

[7] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla,316

Varun Bhagwan, and Doug Sharp. 2015. E-commerce in your inbox: Product recommendations317

at scale. In Proceedings of the 21th ACM SIGKDD international conference on knowledge318

discovery and data mining. 1809–1818.319

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks.320

CoRR abs/1607.00653 (2016). arXiv:1607.00653 http://arxiv.org/abs/1607.00653321

[9] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. 2019. Learning mixed-curvature322

representations in product spaces. International Conference on Learning Representations323

(ICLR) (2019).324

[10] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit325

Feedback Datasets. In IEEE International Conference on Data Mining (ICDM 2008). 263–272.326

http://yifanhu.net/PUB/cf.pdf327

[11] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013.328

Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. ACM329

International Conference on Information and Knowledge Management (CIKM).330

[12] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lem-331

pitsky. 2020. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF Conference on332

Computer Vision and Pattern Recognition. 6418–6428.333

[13] Geewook Kim, Akifumi Okuno, Kazuki Fukui, and Hidetoshi Shimodaira. 2019. Representation334

learning with weighted inner product for universal approximation of general similarities. arXiv335

preprint arXiv:1902.10409 (2019).336

[14] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. Interna-337

tional Conference on Learning Representations (12 2014).338

[15] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification339

and shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD) 1, 1340

(2007), 2–es.341

[16] Jure Leskovec and Julian J. Mcauley. 2012. Learning to Discover Social Circles in Ego Networks.342

In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,343

and K. Q. Weinberger (Eds.). Curran Associates, Inc., 539–547. http://papers.nips.cc/344

paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf345

10

https://doi.org/10.1177/0049124107306674
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
http://arxiv.org/abs/1607.00653
http://yifanhu.net/PUB/cf.pdf
http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf
http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf
http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf


[17] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. 2017. Sphereface:346

Deep hypersphere embedding for face recognition. In Proceedings of the IEEE conference on347

computer vision and pattern recognition. 212–220.348

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word349

Representations in Vector Space. CoRR abs/1301.3781 (2013). http://dblp.uni-trier.350

de/db/journals/corr/corr1301.html#abs-1301-3781351

[19] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings352

for learning hierarchical representations. In Advances in neural informa-353

tion processing systems. 6338–6347. http://papers.nips.cc/paper/354

7213-poincare-embeddings-for-learning-hierarchical-representations.pdf355

[20] Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in the Lorentz356

Model of Hyperbolic Geometry. In International Conference on Machine Learning. 3776–3785.357

https://arxiv.org/abs/1806.03417358

[21] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors359

for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP).360

1532–1543. http://www.aclweb.org/anthology/D14-1162361

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social362

Representations. CoRR abs/1403.6652 (2014). arXiv:1403.6652 http://arxiv.org/abs/363

1403.6652364

[23] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. 2004. Similarity between Euclidean365

and Cosine Angle Distance for Nearest Neighbor Queries. In Proceedings of the 2004 ACM366

Symposium on Applied Computing (SAC ’04). Association for Computing Machinery, New367

York, NY, USA, 1232–1237. https://doi.org/10.1145/967900.968151368

[24] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. 2018. Representation Tradeoffs for369

Hyperbolic Embeddings. In International Conference on Machine Learning. 4457–4466.370

[25] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. 2018. Poincar\’e GloVe:371

Hyperbolic Word Embeddings. arXiv preprint arXiv:1810.06546 (2018).372

[26] Pavan K Turaga and Anuj Srivastava. 2016. Riemannian Computing in Computer Vision.373

Springer.374

[27] Steven H Watts, Duncan J./Strogatz. 1998. Collective Dynamics of Small- World Networks.375

Nature. 393:440 – 442. https://doi.org/10.1007/978-3-658-21742-6_130376

[28] Benjamin Wilson and Matthias Leimeister. 2018. Gradient descent in hyperbolic space. arXiv377

preprint arXiv:1805.08207 (2018).378
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