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Reproducibility Summary1

Scope of Reproducibility2

We attempt to reproduce Pan et al. [19] claim that Softmax Deep Double Deterministic Policy Gradient (SD3) achieves3

superior performance over Twin Delayed Deep Double Deterministic Policy Gradient (TD3) [9] on continuous control4

reinforcement learning tasks. We utilize both environments that were used by the paper and expand to include some5

not present.6

Methodology7

We compare the performance of TD3 and SD3 on a variety of continuous control tasks. We use the author’s PyTorch8

code but also provide Tensorflow implementations of SD3 and TD3 (which we did not use for optimization reasons).9

For the control tasks we utilize OpenAI Gym environments with PyBullet implementations, as opposed to MuJoCo, in10

an effort to bolster claims of generalization and to avoid exclusionary research practices. Experiments are conducted11

both on similar environments in the original paper and those that were not mentioned.12

Results13

Overall we reach similar, albeit much milder, conclusions as the paper, specifically, that SD3 outperforms TD3 on14

some of continuous control tasks. However, the advantage is not always as readily apparent as in the original work.15

Algorithmic performance was comparable on most environments, with SD3 providing limited evidence of definitive16

superiority. Further investigation and improvements are warranted. The results are not directly comparable to the17

original paper due to differences in physics simulators. Additionally, we did not perform hyperparameter optimization,18

which could potentially bolster returns on some environments.19

What was easy20

The author’s made their code extremely easy to use, run, modify and rewrite in a different package. Because everything21

was available on their github and required only common reinforcement learning packages it was quick and painless to22

run. It was trivial to use the algorithms on different environments from different packages and collect their results for23

analysis.24

What was difficult25

One of the biggest difficulties was the time and resource consumption’s of the experiments. Running each algorithm26

on each environment with a sufficient number of random seeds took the vast majority of the time. We had a total27

runtime of around 310 GPU hours (or 13 days). Time was our primary constraint and was the primary reason we did28

no investigate other environments. Simulator differences also proved to be somewhat challenging.29

Communication with original authors30

Our contact with the authors was limited to a discussion we had at their poster presentation at NeurIPS 2020.31
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1 Introduction32

Deep reinforcement learning (RL) has achieved a great deal in the past decade. From mastering games such as Go33

[21], Dota 2 [5], StarCraft II [25], and Atari [4], to precision robotic control [2] and robotic movements [11]. However,34

none of these are solved environments and we are always looking to find better and faster algorithms. Here we strive to35

evaluate a novel approach presented in Pan et al. [19], the Softmax Deep Double Deterministic Policy Gradient (SD3).36

SD3 presents an empirical and theoretical argument for the usage of the softmax operator in continuous control re-37

inforcement learning tasks. It is standard practice to use the softmax operator for stochastic algorithms in discrete38

environments. However, with the recent successes of entropy maximizing RL [10], [11], [12], [13], [7], [26], there has39

been an increase of interest in the softmax operator for RL [3], [22]. SD3 continues this trend, utilizing the softmax40

operator to expand upon and gain improvements over TD3 [9] on the MuJoCo benchmark.41

In this work, we attempt to replicate the results of Pan et al. [19] utilizing a variety of environments based in the open42

source PyBullet physics simulator. These environments include those from the original paper and in addition to some43

that were not present, to test SD3’s ability to generalize to other problems. These test environments utilize the PyBullet44

physics simulator and are adapted for OpenAI Gym [6] via PyBullet-Gym and includes many similar environments45

from the MuJoCo benchmark. We use PyBullet over MuJoco to support efforts to make reinforcement learning more46

equitable [18], and we reject exclusionary MuJoCo usage and conduct all of our experiments exclusively on free and47

open source software. Note that all code and results will be available for a final copy (but are not presented here to48

preserve anonymity).49

2 Preliminaries50

2.1 Reinforcement Learning Background51

Prior to getting evaluating the claims of the paper, a proper background is essential. Reinforcement learning is a field52

of machine learning in which an agent seeks to maximize a numerical reward signal from an environment [23]. RL is53

often formalized as a Markov Decision Process (MDP), defined by the tuple 〈S,A, R, γ〉. Here S represents the set of54

states, A the set of actions, R the reward and γ the reward discount between 0 and 1. It is common to also see a P in55

this tuple representing the probability of state transitions; however, our environments are not stochastic and therefore56

P = 1. The goal of an RL algorithm is to design (or learn) a policy π such that it maximizes the expected return (also57

called objective): J = E
[

∑T

t=0 γ
tr(st, at)|π

]

.58

There are a number of techniques to design the policy π, but the dominant trend in contemporary RL is to use non-59

linear function approximators (i.e. deep neural networks) to learn value and policy functions. The focus of this work60

are actor-critic algorithms. In these systems an actor (or policy) network outputs the actions and is updated with61

a critic network that learns the value function. These policy functions can either be stochastic or deterministic, i.e.62

they can either output the mean and standard deviation of the policy distribution for an action to be chosen from, or63

output a single value for the action. We will largely be considering deterministic policy algorithms. The policy is64

network, parameterized by θ, is denoted as πθ. This allows us to represent the objective function J , as an expectation,65

J(πθ) =
∫

S
r(s, πθ(s))ds = E [R(s, πθ(s))], take the gradient to yield ∇J(πθ) =

∫

S
∇πθ(s)∇Q(s, πθ(s))ds =66

E [∇πθ(s)∇Q(s, πθ(s))], where Q(s, a) indicates the expected return of taking action a in state s [20]. This is known67

as the deterministic policy gradient. There are a variety of techniques to optimize this function and we will outline68

how these techniques lead to SD3. For a visual outline of this see Figure 1.69

DPG is essentially what is presented above, the policy is updated via the gradient above and the Q network is up-70

dated with the standard Bellman error: L(Qθ) = rt + γQθ(st+1, πθ(st+1)) − Qθ(st, at) [20]. DDPG improved71

upon DPG by adding noise to the policies to increase exploration, and by adding target networks for the policy72

and value networks [9]. TD3 attempts to address the well know overestimation problem in Q learning. Because73

E [maxaQ(st, a)] ≥ maxaE [Q(st, a)], Q function approximators often overestimate the Q value leading to con-74

vergence problems [16]. To address these overestimation errors, TD3 borrows from Double DQN [24] and uses two75

(hence the name ’twin’) Q function approximators in addition to updating the policy network less frequently [9]. While76

TD3 does successfully address the overestimation problem, it introduces the new underestimation problem, something77

SD3 tries to combat [19]. Parallel to this are the entropy based methods: soft Q Learning [10] and soft actor-critic78

[12]. These methods maximize a different objective than presented above due to the addition of an entropy term:79

J(π) =
∑T

t=0E [r(st, at) + αH(π(st))]. This entropy objective (under optimal conditions) is functionally the same80

as the softmax operator.81
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Figure 1: Outline of Continuous Control Algorithms. Deterministic Policy Gradient (DPG) [20], Deep Deterministic
Policy Gradient (DDPG) [17], Double Deep Q Networks (Double DQN) [24], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [9], Soft Q Learning (SQL) [10], Softmax Deep Double Deterministic Policy Gradients (SD3)
[19], Soft Actor-Critic (SAC) [13]

2.2 SD382

SD3 is essentially the same as TD3, with the main difference being the use of the softmax operator in the value83

function Bellman error. Hence, key to understanding SD3 is understanding the softmax operator. The soft-84

max operator is common in RL problems, but is typically seen in discrete action spaces where it is easy to cal-85

culate: σ(z)i = ezi∑
K
j=0

e
zj

. In continuous space action spaces, the form becomes computationally intractable:86

σ(Q(s, ·)) =
∫

A

exp(βQ(s,a))∫
A

exp(βQ(s,a′))da′Q(s, a)da. However, Pan et al. [19] proves helpful bounds on the difference87

between maxqQ(s, a) and σ (Q(s, a)), showing that the softmax operator does not overestimate and worst case only88

slightly underestimate. In order to make the continuous softmax operator computationally feasible, SD3 utilizes a89

sampling technique from Haarnoja et al. [13]: σ(Q(s, ·)) = E [exp(βQ(s, a))Q(s, a))] /E [exp(βQ(s, a))]. To illu-90

minate the similarities and differences between the TD3 and SD3 we present them side by side highlighting a few key91

differences (blue are highlighted in both to show differences and red are only highlighted in one to show addition of a92

new feature).93

Algorithm 1: TD3

Initialize value networks Q1, Q2 with
parameters θ1, θ2

Initialize policy network π with parameters φ
Initialize target networks Q′

1, Q
′
2, π

′ with
parameters θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ

Initialize replay buffer D
for for t = 0 to T do

Select noisy action a← π(s) +N and
observe reward and new state s′

Store 〈s, a, r, s′〉 in D
Randomly sample N tuples from D
y ← r + γmini=1,2Qθ′

i
(s′, πφ(s

′) +N )
Update critics via the loss

L ← 1
N

∑

(y −Qθi(s, a))
2

if policy update then
Update φ via gradient

1
N

∑

∇πφ(s)∇Qθ1(s, πφ(s) +N )

if target update then
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

Algorithm 2: SD3

Initialize value networks Q1, Q2 with parameters θ1, θ2
Initialize policy networks π1, π2 with parameters φ1, φ2

Initialize target networks Q′
1, Q

′
2, π

′
1, π

′
2 with parameters

θ′1 ← θ1, θ′2 ← θ2, φ′
1 ← φ1, φ′

2 ← φ2

Initialize replay buffer D
for for t = 0 to T do

Select action a← πi(s), i← maxi=1,2Qi(s, π1(s))
and observe reward and new state s′

Store 〈s, a, r, s′〉 in D
for i = 1, 2 do

Randomly sample N tuples from D
Sample K noises ǫ
â′ ← πθ′

1
(s) + ǫ

Q̂← mini=1,2(Qθ′
i
(s′, â′))

σ(Q̂)← exp(βQ̂(s′, â′))Q̂(s′, â′)/exp(βQ̂(s′, â′))

y ← r + γσ(Q̂)

Update Qθi via the loss L = 1
N

∑

(y −Qθi(s, a))
2

Update φi via gradient
1
N

∑

∇πφi
(s)∇Qθi(s, πφi

(s))

if target update then
θ′i ← τθi + (1− τ)θ′i
φ′
i ← τφi + (1− τ)φ′

i

94
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3 Methodology95

3.1 Target Questions96

In order to assess the validity of the paper and the conclusions it makes, we present three central questions.97

• To what extent can we replicate the superior performance of SD3 over TD3 on the given environments?98

• To what extent does this performance generalize to other continuous control tasks?99

• What improvements can be made to the SD3 algorithm?100

3.2 Experimental Setup101

Although we provide TensorFlow [1] implementations of both TD3 and SD3, we run all experiments using the author’s102

provided PyTorch implementations. This strengthens our results on generalizability, and is also more efficient due to103

code efficiency differences. As stated before, we opted not to use MuJoCo, favoring the open source pybullet which104

has the same environments as MuJoCo (in addition to many others). The PyBullet gym adaptions and implementations105

can be found here. We begin by collecting data for the 6 of the 8 environments in the original paper, specifically: Ant,106

Hopper, Lunar Lander, Walker2D, Humanoid, and Half Cheetah environments. We also evaluated three additional107

environments: Pendulum, InvertedDoublePendulum and HumanoidFlagrun. Similar to the original paper we collected108

data for 1 million iterations and repeated each experiment five times with a different random seed each time. For109

the extended experiments we only collected three runs due to time constraints. All experiments were conducted on110

two personal computers with CUDA enabled GPUs, specifically a GTX 1060 and a GTX 1080. Depending on the111

environment each run would take between 2 - 8 hours.112

3.3 Hyperparameters113

We largely used the same hyperparameters as the original paper. For all environments and algorithms refer to Table 1.114

Batch size 100

Network architecture (policy and value) (400,300)

ADAM[15] learning rate 1 ∗ 10−3

Replay buffer size 1 ∗ 106

Training delay 1 ∗ 104

Noise, N N (0, 0.1)
γ 0.99

τ 0.005

Policy update frequency (TD3 only) 2

K 50

Table 1: Hyperparameters

The one notable difference is that Pan et al. [19] uses a separate set of hyperparameters for the Humanoid environment115

which we do not do. The second important note on hyperparameters is the SD3 unique hyperparameter β. In the116

original paper this is determined to be a specific value for each environment, ranging from 0.001 to 500. On the117

environments utilized in the paper we use the same values of β. Given our time and computational constraints, we do118

not perform ablation studies on the extended environments to determine the optimal β. merely adopting values from119

similar environments. For all β value see Table 2120

4 Results121

Our results are overall indicative that SD3 does provide an advantage on the some of the environments, although these122

advantages are relatively small.123

4.1 Results on Paper Benchmarks124

Results for six of the eight original environments can be seen in Figure 2. Blue represents SD3 and red TD3. The125

shaded area represents a confidence interval of one standard deviation. The exact numerical reward values of the126
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Ant 0.001

Half Cheetah 0.005

Hopper 0.05

Lunar Lander 0.5

Walker 2D 0.1

Humanoid 0.05

Pendulum 0.5

Inverted Double Pendulum 0.5

Humanoid Flagrun 0.05

Table 2: β Values

Figure 2: Paper Environments Reward vs Million Steps

PyBullet are not directly comparable to the MuJoCo rewards; the environments are similar but not exactly the same127

with PyBullet being supposedly harder. The key takeaway from these graphs is the relative performance of the two128

algorithms. SD3 presents slight improvements for Ant, comparable performance for Lunar Lander, Half Cheetah,129

and Hopper, and definitively superior performance on Walker2D. Walker2D is the only environment that one could130

universally recommend SD3 over TD3 as in every other environment the standard deviation curves overlap. There131

was a potential issue with the Humanoid PyBullet environment, which has seemed to have hardly any change for both132

algorithms.133
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4.2 Additional results not present in the original paper134

(a) Pendulum Reward vs Million Steps (b) Double Inverted Pendulum Reward vs Million Steps

Figure 3: Humanoid Flagrun Reward vs Million Steps

Standard benchmarks are often problematic and may not always generalize (a reinforcement learning of "teaching for135

the test" so to speak). While there are proposals for other metrics of evaluation [14], we choose to simply evaluate the136

algorithm on environments that are not part of the "standard" benchmark. These three environments present similarly137

to the environmental results. Specifically on Pendulum and Humanoid Flagrun, SD3 offers slight advantages but on138

double inverted pendulum SD3 is far too volatile and performs inferior to TD3. We acknowledge that these may not139

be the optimal results for SD3, that being said, the β values are well within the standard range. These results are less140

about the potential strength of SD3 compared to TD3, and more about the generalizability and out of the box usability.141

5 Discussion142

First, let us consider the target questions we set in the beginning of this work. To what extent can we replicate the143

superior performance of SD3 over TD3 on the given environments? Somewhat. We were able to replicate generally144

good performance of SD3. However, the size of the advantages present in the original paper do not appear to be as145

large here. Pan et al. [19] presents 3 environments that SD3 definitively (i.e. the standard deviation curves do not146

overlap) performs better on: Half Cheetah, Ant, Walker2d, Hopper. However, we were only able to replicate this level147

of superior performance on Walker2d. On the other three environments, SD3’s advantage was minimal to nonexistent.148

This is not to suggest that there is anything wrong with their results, rather, that the results may not generalize as well149
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as hoped. Because PyBullet is not the same as MuJoCo (although the tasks are comparable) the exact comparison isn’t150

necessarily important; however, the lack of clear advantages is.151

To what extent does this performance generalize to other continuous control tasks? As was mentioned above, this152

generalization is weak. The generalization is minimal even to the same environments in a different physics simulator153

and this is also true for the new environments. We cannot say SD3 is the inferior algorithm on Pendulum and Double154

Inverted Pendulum as we did not do the full ablation studies to determine the optimal β values. However, we can say155

that if one wants SD3 to perform definitely better, specific values of β are needed, and even then performance may156

not be superior to TD3. This need for hyperparameter optimization is a weakness of the algorithm. Given the already157

numerous challenges of real world RL [8], requiring extensive trial and error to obtain the necessary parameters for158

algorithmic superiority is a steep price.159

What improvement can be made to the SD3 algorithm? The most obvious improvement is to make the β parameter160

automatically adjustable. This idea is very similar to the improvements made to Soft-Actor critic. In the original paper,161

the entropy parameter, α, was determined via trial and error [12]; however, automating this parameter showed to be162

more effective from both a computation expense and a maximum reward standpoint [13].163

6 Conclusion164

In this work, we evaluate the reprehensibility of the paper Softmax Deep Double Deterministic Policy Gradients [19].165

To promote inclusive research practices, we ran all code on the open source PyBullet physics engine. Our results166

generally align with the original paper’s but are not very compelling overall. Some environments saw somewhat better167

performance with SD3, but many others saw similar performance with both SD3 and TD3. This may warrant further168

investigation there is the potential that hyperparameter optimization would bolster the performance of SD3. It is worth169

noting that this level of scrutiny is not applied to all algorithms, and we make no claims that other SotA continuous170

control algorithms would generalize any better.171
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