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Abstract

The prevalence of graph-based data has spurred the rapid development of graph1

neural networks (GNNs) and related machine learning algorithms. Yet, despite the2

many datasets naturally modeled as directed graphs, including citation, website,3

and traffic networks, the vast majority of this research focuses on undirected graphs.4

In this paper, we propose MagNet, a spectral GNN for directed graphs based on a5

complex Hermitian matrix known as the magnetic Laplacian. This matrix encodes6

undirected geometric structure in the magnitude of its entries and directional7

information in their phase. A “charge” parameter attunes spectral information to8

variation among directed cycles. We apply our network to a variety of directed9

graph node classification and link prediction tasks showing that MagNet performs10

well on all tasks and that its performance exceeds all other methods on a majority11

of such tasks. The underlying principles of MagNet are such that it can be adapted12

to other spectral GNN architectures.13

1 Introduction14

Endowing a collection of objects with a graph structure allows one to encode pairwise relationships15

among its elements. These relations often possess a natural notion of direction. For example, the16

WebKB dataset [32] contains a list of university websites with associated hyperlinks. In this context,17

one website might link to a second without a reciprocal link to the first. Such datasets are naturally18

modeled by directed graphs. In this paper, we introduce MagNet, a graph convolutional neural19

network for directed graphs based on the magnetic Laplacian.20

Most graph neural networks fall into one of two families, spectral networks or spatial networks.21

Spatial methods define graph convolution as a localized averaging operation with iteratively learned22

weights. Spectral networks, on the other hand, define convolution on graphs via the eigendecomposi-23

ton of the (normalized) graph Laplacian. The eigenvectors of the graph Laplacian assume the role24

of Fourier modes, and convolution is defined as entrywise multiplication in the Fourier basis. For a25

comprehensive review of both spatial and spectral networks, we refer the reader to [42] and [40].26

Many spatial graph CNNs have natural extensions to directed graphs. However, it is common for27

these methods to preprocess the data by symmetrizing the adjacency matrix, effectively creating28

an undirected graph. For example, while [38] explicitly notes that their network is well-defined on29

directed graphs, their experiments treat all citation networks as undirected for improved performance.30

Extending spectral methods to directed graphs is not straightforward since the adjacency matrix is31

asymmetric and, thus, there is no obvious way to define a symmetric, real-valued Laplacian with a32

full set of real eigenvalues that uniquely encodes any directed graph. We overcome this challenge33

by constructing a network based on the magnetic Laplacian L(q) defined in Section 2. Unlike the34

directed graph Laplacians used in works such as [26, 30, 36, 37], the magnetic Laplacian is not a35

real-valued symmetric matrix. Instead, it is a complex-valued Hermitian matrix that encodes the36

fundamentally asymmetric nature of a directed graph via the complex phase of its entries.37
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Since L(q) is Hermitian, the spectral theorem implies it has an orthonormal basis of complex38

eigenvectors corresponding to real eigenvalues. Moreover, Theorem 1, stated in Section 5 of the39

supplement, shows that L(q) is positive semidefinite, similar to the traditional Laplacian. Setting40

q = 0 is equivalent to symmetrizing the adjacency matrix and no importance is given to directional41

informatio. When q = .25, on the other hand, we have that L(.25)(u, v) = −L(.25)(v, u) whenever42

there is an edge from u to v but not from v to u. Different values of q highlight different graph motifs43

[16, 17, 19, 29], and therefore the optimal choice of q varies. Learning the appropriate value of q44

from data allows MagNet to adaptively incorporate directed information. We also note that L(q) has45

been applied to graph signal processing [18], community detection [17], and clustering [10, 16, 15].46

In Section 3, we show how the networks constructed in [6, 13, 22] can be adapted to directed graphs47

by incorporating complex Hermitian matrices, such as the magnetic Laplacian. When q = 0, we48

effectively recover the networks constructed in those previous works. Therefore, our work generalizes49

these networks in a way that is suitable for directed graphs. Our method is very general and is not50

tied to any particular choice of network architecture. Indeed, the main ideas of this work could be51

adapted to nearly any spectral network.52

In Section 4, we summarize related work on directed graph neural networks as well as other papers53

studying the magnetic Laplacian and its applications in data science. In Section 5, we apply our54

network to node classification and link prediction tasks. We compare against several spectral and55

spatial methods as well as networks designed for directed graphs. We find that MagNet obtains56

the best or second-best performance on five out of six node-classification tasks and has the best57

performance on seven out of eight link-prediction tasks tested on real-world data, in addition to58

providing excellent node-classification performance on difficult synthetic data. We also provide a59

supplementary document with full implementation details, theoretical results concerning the magnetic60

Laplacian, extended examples, and further numerical details.61

2 The magnetic Laplacian62

Spectral graph theory has been remarkably successful in relating geometric characteristics of undi-63

rected graphs to properties of eigenvectors and eigenvalues of graph Laplacians and related matrices.64

For example, the tasks of optimal graph partitioning, sparsification, clustering, and embedding may65

be approximated by eigenvectors corresponding to small eigenvalues of various Laplacians (see, e.g.,66

[9, 34, 2, 35, 11]). Similarly, the graph signal processing research community leverages the full set of67

eigenvectors to extend the Fourier transform to these structures [31]. Furthermore, numerous papers68

[6, 13, 22] have shown that this eigendecomposition can be used to define neural networks on graphs.69

In this section, we provide the background needed to extend these constructions to directed graphs70

via complex Hermitian matrices such as the magnetic Laplacian.71

We let G = (V,E) be a directed graph where V is a set of N vertices and E ⊆ V × V is a set of72

directed edges. If (u, v) ∈ E, then we say there is an edge from u to v. For the sake of simplicity, we73

will focus on the case where the graph is unweighted and has no self-loops, i.e., (v, v) /∈ E, but our74

methods have natural extensions to graphs with self-loops and/or weighted edges. If both (u, v) ∈ E75

and (v, u) ∈ E, then one may consider this pair of directed edges as a single undirected edge.76

A directed graph can be described by an adjacency matrix (A(u, v))u,v∈V where A(u, v) = 1 if77

(u, v) ∈ E and A(u, v) = 0 otherwise. Unless G is undirected, A is not symmetric, and, indeed, this78

is the key technical challenge in extending spectral graph neural networks to directed graphs. In the79

undirected case, where the adjacency matrix A is symmetric, the (unnormalized) graph Laplacian80

can be defined by L = D −A, where D is a diagonal degree matrix. It is well-known that L is81

a symmetric, positive-semidefinite matrix and therefore has an orthonormal basis of eigenvectors82

associated with non-negative eigenvalues. However, when A is asymmetric, direct attempts to83

define the Laplacian this way typically yield complex eigenvalues. This impedes the straightforward84

extension of classical methods of spectral graph theory and graph signal processing to directed graphs.85

A key point of this paper is to represent the directed graph through a complex Hermitian matrix86

L such that: (1) the magnitude of L(u, v) indicates the presence of an edge, but not its direction;87

and (2) the phase of L(u, v) indicates the direction of the edge, or if the edge is undirected. Such88

matrices have been explored in the directed graph literature (see Section 4), but not in the context of89

graph neural networks. They have several advantages over their real-valued matrix counterparts. In90

particular, a single symmetric real-valued matrix will not uniquely represent a directed graph. Instead,91
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one must use several matrices, as in [37], but this increases the complexity of the resulting network.92

Alternatively, one can work with an asymmetric, real-valued matrix, such as the adjacency matrix or93

the random walk matrix. However, the spatial graph filters that result from such matrices are typically94

limited by the fact that they can only aggregate information from the vertices that can be reached95

in one hop from a central vertex, but ignore the equally important subset of vertices that can reach96

the central vertex in one hop. Complex Hermitian matrices, however, lead to filters that aggregate97

information from both sets of vertices. Finally, one could use a real-valued skew-symmetric matrix98

but such matrices do not generalize well to graphs with both directed and undirected edges.99

The optimal choice of complex Hermitian matrix is an open question. Here, we utilize a parameterized100

family of magnetic Laplacians, which have proven to be useful in other data-driven contexts [17, 10,101

16, 15]. We first define the symmetrized adjacency matrix and corresponding degree matrix by,102

As(u, v) :=
1

2
(A(u, v) + A(v, u)), 1 ≤ u, v ≤ N, Ds(u, u) :=

∑
v∈V

As(u, v), 1 ≤ u ≤ N ,

with Ds(u, v) = 0 for u 6= v. We capture directional information via a phase matrix,1 Θ(q),103

Θ(q)(u, v) := 2πq(A(u, v)−A(v, u)) , q ≥ 0 ,

where exp(iΘ(q)) is defined component-wise by exp(iΘ(q))(u, v) := exp(iΘ(q)(u, v)). Letting �104

denotes componentwise multiplication, we define the complex Hermitian adjacency matrix H(q) by105

H(q) := As � exp(iΘ(q)) .

Since Θ(q) is skew-symmetric, H(q) is Hermitian. When q = 0, we have Θ(0) = 0 and so106

H(0) = As. This effectively corresponds to treating the graph as undirected. For q 6= 0, the phase of107

H(q) encodes edge direction. For example, if there is an edge from u to v but not from v to u we have108

H(.25)(u, v) =
i

2
= −H(.25)(v, u) .

Thus, in this setting, an edge from u to v is treated as the opposite of an edge from v to u. On109

the other hand, if (u, v), (v, u) ∈ E (which can be interpreted as a single undirected edge), then110

H(q)(u, v) = H(q)(v, u) = 1, and we see the phase, Θ(q)(u, v) = 0, encodes the lack of direction in111

the edge. For the rest of this paper, we will assume that q lies in between these two extreme values,112

i.e., 0 ≤ q ≤ .25. We define the normalized and unnormalized and magnetic Laplacians by113

L
(q)
U := Ds−H(q) = Ds−As�exp(iΘ(q)), L

(q)
N := I−

(
D−1/2s AsD

−1/2
s

)
�exp(iΘ(q)) . (1)

Note that when G is undirected, L
(q)
U and L

(q)
N reduce to the standard undirected Laplacians.114

L
(q)
U and L

(q)
N are Hermitian. Theorem 1 (see Section 5 of the supplement) shows they are positive-115

semidefinite and thus are diagonalized by an orthonormal basis of complex eigenvectors u1, . . . ,uN116

associated to real, nonnegative eigenvalues λ1, . . . , λN . Similar to the traditional normalized Lapla-117

cian, Theorem 2 (see Section 5 of the supplement) shows that the eigenvalues of LqN lie in [0, 2],118

and we may factor L
(q)
N = UΛU†, where U is the N ×N matrix whose k-th column is uk, Λ is119

the diagonal matrix with Λ(k, k) = λk, and U† is the conjugate transpose of U (a similar formula120

holds for L
(q)
U ). The magnetic Laplacian encodes in its eigenvectors and eigenvalues. In the directed121

star graph, for example, directional information is contained in the eigenvectors only, whereas the122

eigenvalues are invariant directionality. On the other hand, for the directed cycle graph the magnetic123

Laplacian encodes the directed nature of the graph solely in its spectrum (see Section 6 of the124

supplement). In general, both the eigenvectors and eigenvalues may contain important information.125

In Section 3, we will introduce MagNet, a network designed to leverage this spectral information.126

1Our definition of Θ(q) coincides with that used in [18]. However, another definition (differing by a minus
sign) also appears in the literature. These resulting magnetic Laplacians have the same eigenvalues and the
corresponding eigenvectors are complex conjugates of one another. Therefore, this difference does not affect the
performance of our network since our final layer separates the real and imaginary parts before multiplying by a
trainable weight matrix (see Section 3 for details on the network structure).
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3 MagNet127

Most graph neural network architectures can be described as being either spectral or spatial. Spatial128

networks such as [38, 20, 1, 14] typically extend convolution to graphs by performing a weighted129

average of features over neighborhoods N (u) = {v : (u, v) ∈ E}. These neighborhoods are130

well-defined even when E is not symmetric, so spatial methods typically have natural extensions131

to directed graphs. However, such simplistic extensions may miss important information in the132

directed graph. For example, filters defined using N (u) are not capable of assimilating the equally133

important information contained in {v : (v, u) ∈ E}. Alternatively, these methods may also use the134

symmetrized adjacency matrix, but they cannot learn to balance directed and undirected approaches.135

In this section, we show how to extend spectral methods to directed graphs using the magnetic136

Laplacian introduced in Section 2. To highlight the flexibility of our approach, we show how three137

spectral graph neural network architectures can be adapted to incorporate the magnetic Laplacian.138

Our approach is very general, and so for most of this section, we will perform our analysis for a139

general complex Hermitian, positive semidefinite matrix. However, we view the magnetic Laplacian140

as our primary object of interest (and use it in all of our experiments) because of the large body of141

literature studying its spectral properties and applying it to data science (see Section 4).142

3.1 Spectral convolution via the magnetic Laplacian143

In this section, we let L denote a Hermitian, positive semidefinite matrix, such as the normalized or144

unnormalized magnetic Laplacian introduced in Section 2, on a directed graph G = (V,E), |V | = N .145

We let u1 . . . ,uN be an orthonormal basis of eigenvectors for L and let U be the N × N matrix146

whose k-th column is uk. We define the directed graph Fourier transform for a signal x : V → C by147

x̂ = U†x, so that x̂(k) = 〈x,uk〉 . We regard the eigenvectors u1, . . . ,uN as the generalizations of148

discrete Fourier modes to directed graphs. Since U is unitary, we have the Fourier inversion formula149

x = Ux̂ =

N∑
k=1

x̂(k)uk . (2)

In Euclidean space, convolution corresponds to pointwise multiplication in the Fourier basis. Thus,150

we define the convolution of x with a filter y in the Fourier domain by ŷ ∗ x(k) = ŷ(k)x̂(k). By (2),151

this implies y ∗ x = UDiag(ŷ)x̂ = (UDiag(ŷ)U†)x, and so we say Y is a convolution matrix if152

Y = UΣU† , (3)

for a diagonal matrix Σ. This is the natural generalization of the class of convolutions used in [6].153

Next, following [13] (see also [21]), we show that a spectral network can be implemented in the154

spatial domain via polynomials of L by having Σ be a polynomial of Λ in (3). This reduces the155

number of trainable parameters to prevent overfitting, avoids explicit diagonalization of the matrix L,156

(which is expensive for large graphs), and improves stability to perturbations [24]. As in [13], we157

define a normalized eigenvalue matrix, with entries in [−1, 1], by Λ̃ = 2
λmax

Λ− I and assume158

Σ =

K∑
k=0

θkTk(Λ̃) ,

for some real-valued θ1, . . . , θk, where for k ≥ 0, Tk is the Chebyshev polynomial defined by159

T0(x) = 1, T1(x) = x, and Tk(x) = 2xTk−1(x) + Tk−2(x) for k ≥ 2. One can use the fact that160

(UΛ̃U†)k = UΛ̃kU† to see161

Yx = U

K∑
k=0

θkTk(Λ̃)U†x =

K∑
k=0

θkTk(L̃)x , (4)

where, analogous to Λ̃, we define L̃ := 2
λmax

L− I. It is important to note that, due to the complex162

Hermitian structure of L̃, the value Yx(u) aggregates information both from the values of x on163

Nk(u), the k-hop neighborhood of u, and the values of x on {v : dist(v, u) ≤ k}, which consists164

of those of vertices that can reach u in k-hops. While in an undirected graph these two sets of165
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Figure 1: MagNet (L = 2) applied to node classification. After two complex convolutional layers,
we unwind the real and imaginary parts of our feature matrix and apply a fully connected layer.

vertices are the same, that is not the case for general directed graphs. Furthermore, due to the166

difference in phase between an edge (u, v) and an edge (v, u), the filter matrix Y is also capable of167

aggregating information from these two sets in different ways. This capability is in contrast to any168

single, symmetric, real-valued matrix, as well as any matrix that encodes just N (u).169

To obtain a network similar to [22], we set K = 1, assume that L = L
(q)
N , using λmax ≤ 2 (see170

Theorem 2 in Section 5 of the supplement) make the approximation λmax ≈ 2, and set θ1 = −θ0.171

With this, we obtain172

Yx = θ0(I + (D−1/2s AsD
−1/2
s )� exp(iΘ(q)))x .

As in [22], we substitute (I + (D
−1/2
s AsD

−1/2
s ) � exp(iΘ(q)) → D̃

−1/2
s ÃsD̃

−1/2
s exp(iΘ(q)).173

This renormalization helps avoid instabilities arising from vanishing/exploding gradients and yields174

Yx = θ0D̃
−1/2
s ÃsD̃

−1/2
s � exp(iΘ(q)) , (5)

where Ãs = As + I and D̃s(i, i) =
∑
j Ãs(i, j).175

3.2 The MagNet architecture176

We now define our network. Let L be the number of convolution layers in our network, and let X(0)177

be an N × F0 input feature matrix with columns x
(0)
1 , . . .x

(0)
F0

. Since our filters are complex, we use178

a complex version of ReLU defined by σ(z) = z, if −π/2 ≤ arg(z) < π/2, and σ(z) = 0 otherwise179

(where arg(z) is the complex argument of z ∈ C). We let F` be the number of channels in layer `,180

and for 1 ≤ ` ≤ L, 1 ≤ i ≤ F`−1, and 1 ≤ j ≤ F`, we let Y
(`)
ij be a convolution matrix defined in181

the sense of either (3), (4), or (5). To obtain the layer ` channels from the layer `− 1 channels, we182

define the matrix X(`) with columns x
(`)
1 , . . .x

(`)
F`

as:183

x
(`)
j = σ

F`−1∑
i=1

Y
(`)
ij x

(`−1)
i

 . (6)

In matrix form we write X(`) = Z(`)
(
X(`−1)), where Z(`) is a hidden layer of the form (6).184

After the convolutional layers, we unwind the complex N × FL matrix X(L) into a real-valued185

N × 2FL matrix, apply a linear layer, consisting of right-multiplication by a 2FL × nc weight matrix186

W(L+1) (where nc is the number of classes) and apply softmax. In our experiments, we set L = 2 or187

3. When L = 2, our network applied to node classification, as illustrated in Figure 1, is given by188

softmax(unwind(Z(2)(Z(1)(X(0))))W(3)) .

For link-prediction, we apply the same method through the unwind layer, but then subtract the rows189

corresponding to pairs of nodes to obtain the edge features.190

4 Related work191

In Section 4.1, we describe other graph neural networks designed specifically for directed graphs.192

Notably, none of these methods encode directionality with complex numbers, instead opting for real-193

valued, symmetric matrices. In Section 4.2, we review other work studying the magnetic Laplacian194
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which has been studied for several decades and lately has garnered interest in the network science195

and graph signal processing communities. However, to the best of our knowledge, this is the first196

work to use it to construct a graph neural network. We also note there are numerous approaches to197

graph signal processing on directed graphs. Many of these rely on a natural analog of Fourier modes.198

These Fourier modes are typically defined through either a factorization of a graph shift operator or199

by solving an optimization problem. For further review, we refer the reader to [27].200

4.1 Neural networks for directed graphs201

In [26], the authors construct a directed Laplacian, via identities involving the random walk matrix202

and its stationary distribution Π. When G is undirected, one can use the fact that Π is proportional203

to the degree vector to verify this directed Laplacian reduces to the standard normalized graph204

Laplacian. However, this method requires G to be strongly connected, unlike MagNet. The authors205

of [37] use a first-order proximity matrix AF (equivalent to As here), as well as two second-order206

proximity matrices ASin and ASout . ASin is defined by ASin(u, v) 6= 0 if there exists a w such that207

(w, u), (w, v) ∈ E, and ASout is defined analogously. These three matrices collectively describe and208

distinguish the neighborhood of each vertex and those vertices that can reach a vertex in a single209

hop. The authors construct three different Laplacians and use a fusion operator to share information210

across channels. Similarly, inspired by [3], in [30], the authors consider several different symmetric211

Laplacian matrices corresponding to a number of different graph motifs.212

The method of [36] builds upon the ideas of both [26] and [37] and considers a directed Laplacian213

similar to the one used in [26], but with a PageRank matrix in place of the random-walk matrix.214

This allows for applications to graphs which are not strongly connected. Similar to [37], they use215

higher-order receptive fields (analogous to the second-order adjacency matrices discussed above) and216

an inception module to share information between receptive fields of different orders. We also note217

[23], which uses an approach based on PageRank in the spatial domain.218

4.2 Related work on the magnetic Laplacian and Hermitian adjacency matrices219

The magnetic Laplacian has been studied since at least [25]. The name originates from its interpreta-220

tion as a quantum mechanical Hamiltonian of a particle under magnetic flux. Early works focused on221

d-regular graphs, where the eigenvectors of the magnetic Laplacian are equivalent to those of the Her-222

mitian adjacency matrix. [19], for example, show that using a complex-valued Hermitian adjacency223

matrix rather than the symmetrized adjacency matrix reduces the number of small, non-isomorphic224

cospectral graphs. Topics of current research into Hermitian adjacency matrices include clustering225

tasks [12] and the role of the parameter q [29].226

The magnetic Laplacian is also the subject of ongoing research in graph signal processing [18],227

community detection [17], and clustering [10, 16, 15]. For example, [16] uses the phase of the228

eigenvectors to construct eigenmap embeddings analogous to [2]. The role of q is highlighted in the229

works of [16, 17, 19, 29], which show how particular choices of q may highlight various graph motifs.230

In our context, this indicates that q should be carefully tuned via cross-validation. Lastly, we note that231

numerous other directed graph Laplacians have been studied and applied to data science [7, 8, 39].232

However, as alluded to in Section 2, these methods typically do not use complex Hermitian matrices.233

5 Numerical experiments234

We test the performance of MagNet for node classification and link prediction on a variety of235

benchmark datasets as well as a directed stochastic block model.236

5.1 Datasets237

5.1.1 Directed Stochastic Block Model238

We construct a directed stochastic block (DSBM) model as follows. First we divide N vertices into239

nc clusters C1, . . . , Cnc . We, define {αi,j}1≤i,j≤nc to be a collection of probabilities, 0 < αi,j ≤ 1240

with αi,j = αj,i, and for an unordered pair u 6= v create an undirected edge between u and v with241

probability αi,j if u ∈ Ci, v ∈ Cj . To turn this undirected graph into a directed graph, we next define242

{βi,j}1≤i,j≤nc
to be a collection of probabilities such that 0 ≤ βi,j ≤ 1 and βi,j + βj,i = 1. For243
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Figure 2: Node classification accuracy. Error bars are one standard error. MagNet is bold red.

each undirected edge {u, v}, we assign that edge a direction by the rule that the edge points from u244

to v with probability βi,j if u ∈ Ci and v ∈ Cj , and points from v to u otherwise. We note that if245

αi,j is constant, then the only way to determine the clusters will be from the directional information.246
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(a) Ordered meta-graph.
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Noise edges
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(b) Cyclic meta-graph.

Figure 3: Meta-graphs for
the synthetic data sets.

In Figure 2, we plot the performance of MagNet and other methods247

on variations of the DSBM. In each of these, we set nc = 5 and the248

goal is to classify the vertices by cluster. We set N = 2500, except249

in Figure 2a where N = 500. In Figure 2a, we plot the performance250

of our model on the DSBM with αi,j := α∗ = .1, .08, and .05 for251

i 6= j, which varies the density of inter-cluster edges, and set αi,i = .1.252

Here we set βi,i = .5 and βi,j = .05 for i > j. This corresponds to253

the ordered meta-graph in Figure 3a. Figure 2b also uses the ordered254

meta-graph, but here we fix αi,j = .1 for all i, j, and set βi,j = β∗,255

for i > j, and allow β∗ to vary from .05 to .4, which varies the net256

flow from one cluster to another. The results in Figure 2c utilize a257

cyclic meta-graph structure as in Figure 3b (without the gray noise258

edges). Specifically, we set αi,j = .1 if i = j or i = j ± 1 mod 5259

and αi,j = 0 otherwise. We define βi,j = β∗, βj,i = 1 − β∗ when260

j = (i − 1) mod 5, and βi,j = 0 otherwise. In Figure 2d we add261

noise to the cyclic structure of our meta-graph by setting αi,j = .1 for262

all i, j and βi,j = .5 for all (i, j) connected by a gray edge in Figure263

3b (keeping βi,j the same as in Figure 2c for the blue edges).264

5.1.2 Real datasets265

Texas, Wisconsin, and Cornell are WebKB datasets modeling links266

between websites at different universities [32]. We use these datasets267

for both link prediction and node classification with nodes labeled as268

student, project, course, staff, and faculty in the latter case. Telegram269

[5] is a pairwise influence network between 245 Telegram channels270

with 8, 912 links. To the best of our knowledge, this dataset has not271

previously been studied in the graph neural network literature. Labels272

are generated from the method discussed in [5], with a total of four classes. The datasets Chameleon273

and Squirrel [33] represent links between Wikipedia pages related to chameleons and squirrels. We274

use these datasets for link prediction. Likewise, WikiCS [28] is a collection of Computer Science275

articles, which we also use for link prediction. Cora-ML and CiteSeer are popular citation networks276

with node labels corresponding to scientific subareas. We use the versions of these datasets provided277

in [4]. Further details are given in the supplementary material.278

5.2 Training and implementation details279

Node classification is performed in a semi-supervised setting (i.e., access to the test data, but not280

the test labels, during training). For the datasets Cornell, Texas, Wisconsin, and Telegram we use281

a 60%/20%/20% training/validation/test split, which might be viewed as more akin to supervised282

learning, because of the small graph size. For Cora-ML and CiteSeer, we use the same split as [36].283

For all of these datasets we use 10 random data splits. For the DSBM datasets, we generated 5 graphs284

randomly for each type and for each set of parameters, each with 10 different random node splits.285
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Table 1: Node classification accuracy. The best results are in bold and the second best are underlined.

Type Method Cornell Texas Wisconsin Cora-ML CiteSeer Telegram

Spectral ChebNet 79.8±5.0 79.2±7.5 81.6±6.3 80.0±1.8 66.7±1.6 70.2 ±6.8
GCN 59.0±6.4 58.7±3.8 55.9±5.4 82.0±1.1 66.0±1.5 73.4 ±5.8

Spatial

APPNP 58.7±4.0 57.0±4.8 51.8±7.4 82.6±1.4 66.9±1.8 67.3 ±3.0
SAGE 80.0±6.1 84.3±5.5 83.1±4.8 82.3±1.2 66.0±1.5 56.6 ±6.0
GIN 57.9±5.7 65.2±6.5 58.2±5.1 78.1±2.0 63.3±2.5 74.4 ±8.1
GAT 57.6±4.9 61.1±5.0 54.1±4.2 81.9±1.0 67.3±1.3 72.6 ±7.5

Directed
DGCN 67.3±4.3 71.7±7.4 65.5±4.7 81.3±1.4 66.3±2.0 90.4 ±5.6
Digraph 66.8±6.2 64.9±8.1 59.6±3.8 79.4±1.8 62.6±2.2 82.0 ±3.1

DiGraphIB 64.4±9.0 64.9±13.7 64.1±7.0 79.3± 1.2 61.1±1.7 64.1±7.0

This paper MagNet 84.3±7.0 83.3±6.1 85.7±3.2 79.8±2.5 67.5±1.8 87.6 ±2.9

Best q 0.25 0.15 0.05 0.0 0.0 0.15

We use 20% of the nodes for validation and we vary the proportion of training samples based on the286

classification difficulty, using 2%, 10%, and 60% of nodes per class for the ordered, cyclic, and noisy287

cyclic DSBM graphs, respectively, during training, and the rest for testing. Hyperpameters were288

selected using one of the five generated graphs, and then applied to the other four generated graphs.289

There are two types of link prediction tasks conducted for performance evaluation. The first type290

is to predict the edge direction of pairs of vertices u, v for which either (u, v) ∈ E or (v, u) ∈ E.291

The second type is existence prediction. The model is asked to predict if (u, v) ∈ E by considering292

ordered pairs of vertices (u, v). For the both types of link prediction, we removed 15% of edges for293

testing, 5% for validation, and use the rest of the edges for training. The connectivity was maintained294

during splitting. 10 splits were generated randomly for each graph and the input features are in-degree295

and out-degree of nodes. Full details are provided in the supplementary material.296

In all experiments, we used the normalized magnetic Laplacian and implement MagNet with con-297

volution defined as in (4), meaning that our network may be viewed as the magnetic Laplacian298

generalization of ChebNet. We compare with multiple baselines in three categories: (i) spectral299

methods: ChebNet [13], GCN [22]; (ii) spatial methods: APPNP [23], SAGE [20], GIN [41], GAT300

[38]; and (iii) methods designed for directed graphs: DGCN [37], and two variants of [36], a basic301

version (DiGraph) and a version with higher order inception blocks (DiGraphIB). All baselines in the302

experiments have two graph convolutional layers, except for the node classification on the DSBM303

using the cyclic meta-graphs (Figures 2c, 2d, and 3b) for which we also tested three layers during the304

grid search. For ChebNet, we use the symmetrized adjacency matrix. For the spatial networks we305

apply both the symmetrized and asymmmetric adjacency matrix for node classification. The results306

reported are the better of the two results. Full details are provided in the supplemental material.307

5.3 Results308

We see that MagNet performs well across all tasks. As indicated in Table 1, our cross-validation309

procedure selects q = 0 for node classification on the citation networks Cora-ML and CiteSeer.310

This means we achieved the best performance when regarding directional information as noise,311

suggesting symmetrization-based methods are appropriate in the context of node classification on312

citation networks. This matches our intuition. For example, in Cora-ML, the task is to classify313

research papers by scientific subarea. If the topic of a given paper is “machine learning,” then it is314

likely to both cite and be cited by other machine learning papers. For all other datasets, we find315

the optimal value of q is nonzero, indicating that directional information is important. Our network316

exhibits the best performance on three out of six of these datasets and is a close second on Texas and317

Telegram. We also achieve an at least four percentage point improvement over both ChebNet and318

GCN on the four data sets for which q > 0. These networks are similar to ours but with the classical319

graph Laplacian. This isolates the effects of the magnetic Laplacian and shows that it is a valuable320

tool for encoding directional information. MagNet also compares favorably to non-spectral methods321

on the WebKB networks (Cornell, Texas, Wisconsin). Indeed, MagNet obtains a ∼ 4% improvement322
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Table 2: Link prediction accuracy. The best results are in bold and the second best are underlined.
Direction prediction Existence prediction

Cornell Wisconsin Cora-ML CiteSeer Cornell Wisconsin Cora-ML CiteSeer

ChebNet 71.0±5.5 67.5±4.5 72.7±1.5 68.0±1.6 80.1±2.3 82.5±1.9 80.0±0.6 77.4±0.4
GCN 56.2±8.7 71.0±4.0 79.8±1.1 68.9±2.8 75.1±1.4 75.1±1.9 81.6±0.5 76.9±0.5

APPNP 69.5±9.0 75.1±3.5 83.7±0.7 77.9±1.6 74.9±1.5 75.7±2.2 82.5±0.6 78.6±0.7
SAGE 75.2±11.0 72.0±3.5 68.2±0.8 68.7±1.5 79.8±2.4 77.3±2.9 75.0±0.0 74.1±1.0
GIN 69.3±6.0 74.8±3.7 83.2±0.9 76.3±1.4 74.5±2.1 76.2±1.9 82.5±0.7 77.9±0.7
GAT 67.9±11.1 53.2±2.6 50.0±0.1 50.6±0.5 77.9±3.2 74.6±0.0 75.0±0.0 75.0±0.0

DGCN 80.7±6.3 74.5±7.2 79.6±1.5 78.5±2.3 80.0±3.9 82.8±2.0 82.1±0.5 81.2±0.4
DiGraph 79.3±1.9 82.3±4.9 80.8±1.1 81.0±1.1 80.6±2.5 82.8±2.6 81.8±0.5 82.2±0.6

DiGraphIB 79.8±4.8 82.0±4.9 83.4±1.1 82.5±1.3 80.5±3.6 82.4±2.2 82.2±0.5 81.0±0.5

MagNet 80.7±2.7 83.6±2.8 86.1±0.9 85.1±0.8 80.6±3.8 82.9±2.6 82.8±0.7 79.9±0.5

Best q 0.10 0.05 0.05 0.15 0.25 0.25 0.05 0.05

on Cornell and a ∼ 2.5% improvement on Wisconsin, while on Texas it has the second best accuracy,323

close behind SAGE. We also see the other directed methods have relatively poor performance on the324

WebKB networks, perhaps since these graphs are fairly small and have very few training samples.325

On the DSBM, as illustrated in Figure 2, we see that MagNet generally performs quite well and is the326

best performing network in the vast majority cases (for full details, see Section 7 of the supplement).327

The networks DGCN and DiGraphIB rely on second order proximity matrices. As demonstrated328

in Figure 2c, these methods are well suited for networks with a cyclic meta-graph structure since329

nodes in the same cluster are likely to have common neighbors. MagNet, on the other hand, does not330

use second-order proximity, but can still learn the clusters by stacking multiple layers together. This331

improves MagNet’s ability to adapt to directed networks with different underlying topologies. This is332

illustrated in Figure 2d where the network has an approximately cyclic meta-graph structure. In this333

setting, MagNet continues to perform well, but the performance of DGCN and DiGraphIB deteriorate334

significantly. Interestingly, MagNet performs well on the DSBM cyclic meta-graph (Figure 2c)335

with q ≈ .1, whereas q ≥ .2 is preferred for the other three DSBM tests; we leave a more in-depth336

investigation for future work. Further details are available in Section 8 of the supplement.337

For link prediction, we achieve the best performance on seven out of eight tests as shown in Table338

2. We also note that Table 2 reports optimal non-zero q values for each task. This indicates that339

incorporating directional information is important for link prediction, even on citation networks such340

as Cora and CiteSeer. This matches our intuition, since there is a clear difference between a paper341

with many citations and one with many references.342

6 Conclusion343

We have introduced MagNet, a neural network for directed graphs based on the magnetic Laplacian.344

This network can be viewed as the natural extension of spectral graph convolutional networks to345

the directed graph setting. We demonstrate the effectiveness of our network, and the importance346

of incorporating directional information via a complex Hermitian matrix, for link prediction and347

node classification on both real and synthetic datasets. Interesting avenues of future research would348

be using multiple q’s along different channels, exploring the role of different normalizations of the349

magnetic Laplacian, and to incorporating the magnetic Laplacian into other network architectures.350

Limitations and Ethical Considerations: Our method has natural extensions to weighted, directed351

graphs when all edges are directed. However, it not clear what is the best way to extend it to weighted352

mixed graphs (with both directed and undirected edges). Our network does not incorporate an353

attention mechanism and, similar to many other networks, is not scalable to large graphs in its current354

form (although this may be addressed in future work). All of our data is publicly available for research355

purposes and does not contain personally identifiable information or offensive content. The method356

presented here has no greater or lesser impact on society than other graph neural network algorithms.357
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