
Model-Based Offline Reinforcement Learning with
Pessimism-Modulated Dynamics Belief

Anonymous Author(s)
Affiliation
Address
email

Abstract

Model-based offline reinforcement learning (RL) aims to find highly rewarding1

policy, by leveraging a previously collected static dataset and a learned dynamics2

model. While the dynamics model is learned by reusing the static dataset, its3

generalization ability hopefully promotes policy learning if properly utilized. To4

that end, several works propose to quantify the uncertainty of predicted dynamics,5

and explicitly apply it to penalize reward. However, as the dynamics has different6

implication than the reward, characterizing the impact of dynamics uncertainty7

through reward penalty may incur unexpected tradeoff between model utilization8

and risk avoidance. In this work, we instead maintain a belief distribution over9

dynamics, and evaluate/optimize policy through biased sampling from the belief.10

The sampling procedure, biased towards pessimism, is derived based on an alter-11

nating Markov game formulation of offline RL. We formally show that the biased12

sampling naturally induces an updated dynamics belief with policy-dependent13

reweighting factor, termed Pessimism-Modulated Dynamics Belief. To improve pol-14

icy, we devise an iterative regularized policy optimization algorithm for the game,15

with guarantee of monotonous improvement under certain condition. To make16

practical, we further devise an offline RL algorithm to approximately find the solu-17

tion. Empirical results show that the proposed approach achieves state-of-the-art18

performance on a wide range of offline RL benchmark tasks.19

1 Introduction20

In typical paradigm of RL, the agent actively interacts with environment and receives feedback21

to promote policy improvement. The essential trail-and-error procedure can be costly, unsafe or22

even prohibitory in practice (e.g. robotics [1], autonomous driving [2], and healthcare [3]), thus23

constituting a major impediment to actual deployment of RL. Meanwhile, in vast of applications,24

historical data records are available to reflect the system feedback under a predefined policy. This25

raises the opportunity to learn policy in purely offline setting.26

In offline setting, as no further interaction with environment is permitted, the dataset provides a limited27

coverage in state-action space. Then, the policy that induces out-of-distribution (OOD) state-action28

pairs can not be well evaluated in offline learning phase, and deploying it online potentially attains29

terrible performance. Recent studies have reported that applying vanilla RL algorithms to offline30

dataset exacerbates such a distributional shift [4–6], making them unsuitable for offline setting.31

To tackle the distributional shift issue, a number of offline RL approaches have been developed.32

Specifically, one category of them propose to directly constrain the policy close to the one collecting33

data [4, 5, 7, 8], or penalize Q-value towards conservatism for OOD state-action pairs [9–11]. While34

they achieve remarkable performance gains, the policy regularizer and the Q-value penalty tightly35

restricts the produced policy within the data manifold. Instead, more recent works consider to36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

quantify the uncertainty of Q-value with neural network ensembles [12], where the consistent Q-value37

estimates indicate high confidence and can be plausibly used during learning process, even for OOD38

state-action pairs [13, 14]. However, the uncertainty quantification over OOD region highly relies39

on how neural network generalizes [15]. As the prior knowledge of Q-function is hard to acquire40

and insert into the neural network, the generalization is unlikely reliable to facilitate meaningful41

uncertainty quantification [16]. Notably, all these works are model-free.42

Model-based offline RL optimizes policy based on a constructed dynamics model. Compared to the43

model-free approaches, one prominent advantage is that the prior knowledge of dynamics is easier44

to access. First, the generic prior like smoothness widely exists in various domains [17]. Second,45

the sufficiently learned dynamics models for relevant tasks can act as a data-driven prior for the46

concerned task [18–20]. With richer prior knowledge, the uncertainty quantification for dynamics is47

more trustworthy. Similar to the model-free approach, the dynamics uncertainty can be incorporated48

to find reliable policy beyond data coverage. However, an additional challenge is how to characterize49

the accumulative impact of dynamics uncertainty on the long-term reward, as the system dynamics is50

with entirely different implication compared to the reward or Q-value.51

Although existing model-based offline RL literature theoretically bounds the impact of dynamics52

uncertainty on final performance, their practical variants characterize the impact through reward53

penalty [6, 21, 22]. Concretely, the reward function is penalized by the dynamics uncertainty for each54

state-action pair [21], or the agent is enforced to a low-reward absorbing state when the dynamics55

uncertainty exceeds a certain level [6]. While optimizing policy in these constructed MDPs stimulates56

anti-uncertainty behavior, the final policy tends to be over-conservative. For example, even the57

transition dynamics for a state-action pair is ambiguous among several possible candidates, these58

candidates may generate the states from which the system evolves similarly.1 Then, such a state-action59

pair should not be treated specially. For a more detailed discussion of related works, see Appendix A.60

Motivated by the above intuition, we propose pessimism-modulated dynamics belief for model-based61

offline RL. In contrast with the previous approaches, the dynamics uncertainty is not explicitly62

quantified. To characterize its impact, we maintain a belief distribution over system dynamics, and63

the policy is evaluated and optimized through biased sampling from it. The sampling procedure,64

biased towards pessimism, is derived based on an alternating Markov game (AMG) formulation of65

offline RL. We formally show that the biased sampling naturally induces an updated dynamics belief66

with policy-dependent reweighting factor, termed Pessimism-Modulated Dynamics Belief. Besides,67

the degree of pessimism is monotonously determined by the hyperparameters in sampling procedure.68

The considered AMG formulation can be regarded as a generalization of robust MDP, which is69

proposed as an surrogate to optimize the percentile performance in face of dynamics uncertainty70

[23, 24]. However, robust MDP suffers from two significant shortcomings: 1) The percentile criterion71

is over-conservative since it fixates on a single pessimistic dynamics instance [25, 26]; 2) Robust72

MDP is constructed based on an uncertainty set, and the improper choice of uncertainty set would73

further aggravate the degree of conservatism [27, 28]. The AMG formulation is kept from these74

shortcomings. To solve the AMG, we devise an iterative regularized policy optimization algorithm,75

with guarantee of monotonous improvement under certain condition. To make practical, we further76

derive an offline RL algorithm to approximately find the solution, and empirically evaluate it on the77

offline RL benchmark D4RL. The results show that the proposed approach obviously outperforms78

previous state-of-the-art (SoTA) in 9 out of 18 environment-dataset configurations and performs79

competitively in the rest, without tuning hyperparameters for each task. The proof of theorems in this80

paper are presented in Appendix B.81

2 Preliminaries82

Markov Decision Process (MDP) A MDP is depicted by the tuple (S,A, T, r, ρ0, γ), where S,A83

are state and action spaces, T (s′|s, a) is the transition probability, r(s, a) is the reward function,84

ρ0(s) is the initial state distribution, and γ is the discount factor. The goal of RL is to find the policy85

π : s→ ∆(A) that maximizes the cumulative discounted reward:86

J(π, T) = Eρ0,T,π

[∞∑
t=0

γtr(st, at)

]
, (1)

1Or from these states, the system evolves differently but generates similar rewards.

2

where ∆(·) denotes the probability simplex. In typical RL paradigm, this is achieved via actively87

interacting with environment.88

Offline RL In offline setting, the environment is unaccessible, and only a static dataset D =89

{(s, a, r, s′)} is provided, containing the previously logged data samples under an unknown behavior90

policy. Offline RL aims to optimize the policy by solely leveraging the offline dataset.91

To simplify the presentation, we assume the reward function r and initial state distribution ρ0 are92

known. Then, the system dynamics is unknown only in terms of the transition probability T . Note93

that the considered formulation and the proposed approach can be easily extend to the general case94

without additional technical modification.95

Robust MDP With the offline dataset, a straightforward strategy is first learning a dynamics model96

τ(s′|s, a) and then optimizing policy via simulation. However, due to the limitedness of available data,97

the learned model is inevitably imprecise. Robust MDP [23] is an surrogate to optimize policy with98

consideration of the ambiguity of dynamics. Concretely, robust MDP is constructed by introducing an99

uncertainty set T = {τ} to contain plausible transition probabilities. If the uncertainty set includes100

the true transition with probability of (1 − δ), the performance of any policy π in true MDP can101

be lower bounded by minτ∈T J(π, τ) with probability of at least (1 − δ). Thus, the percentile102

performance for the true MDP can be optimized by finding a solution to103

max
π

min
τ∈T

J(π, τ). (2)

Despite its popularity, Robust MDP suffers from two major shortcomings: First, the percentile104

criterion overly fixates on a single pessimistic transition instance, especially when there are multiple105

optimal policies for this transition but they lead to dramatically different performance for other106

transitions [25, 26]. This behavior results in unnecessarily conservative policy.107

Second, the level of conservatism can be further aggravated when the uncertainty set is inappropriately108

constructed [27]. For a given policy π, the ideal situation is that T contains the (1− δ) proportion109

of transitions with which the policy achieves higher performance than with the other δ proportion.110

Then, minτ∈T J(π, τ) is exactly the δ-quantile performance. This requires the uncertainty set to111

be policy-dependent, and during policy optimization the uncertainty set should change accordingly.112

Otherwise, if T is predetermined and keeps fixed, it is possible to have τ ′ /∈ T with non-zero113

probability and satisfying J(π∗, τ ′) > minτ∈T J(π∗, τ), where π∗ is the optimal policy for (2).114

Then, adding τ ′ into T does not affect the optimal solution of the problem (2). This indicates that115

we are essentially optimizing a δ′-quantile performance, where δ′ can be much smaller than δ. In116

literature, the uncertainty sets are mostly predetermined before policy optimization [23, 29–31].117

3 Pessimism-Modulated Dynamics Belief118

In short, robust MDP is over-conservative due to the fixation on a single pessimistic transition instance119

and the predetermination of uncertainty set. In this work, we strive to take the entire spectrum of120

plausible transitions into account, and let the algorithm by itself determine which subset deserves121

more attention. To this end, we consider an alternating Markov game formulation of offline RL, based122

on which the proposed offline RL approach is derived.123

3.1 Formulation124

Alternating Markov game (AMG) The AMG is a specialization of two-player zero-sum game,125

depicted by (S, S̄,A, Ā, G, r, ρ0, γ). The game starts from a state sampled from ρ0, then two players126

alternatively choose actions a ∈ A and ā ∈ Ā under states s ∈ S and s̄ ∈ S̄, along with the game127

transition defined by G(s̄|s, a) and G(s|s̄, ā). At each round, the primary player receives reward128

r(s, a) and the secondary player receives its negative counterpart −r(s, a).129

Offline RL as AMG We formulate the offline RL problem as an AMG, where the primary player130

optimizes a reliable policy for our concerned MDP in face of stochastic disturbance from the131

secondary player. The AMG is constructed by augmenting the original MDP. As both have the132

transition probability, we use game transition and system transition to differentiate them.133

3

For the primary player, its state space S, action space A and reward function r(s, a) are same with134

those in the original MDP. After the primary player acts, the game emits a N -size set of system135

transition candidates T sa. Formally, the set is generated according to136

G (s̄ = T sa|s, a) =
∏

τsa∈T sa
PsaT (τsa), (3)

where PsaT is a given belief distribution of system transition τ(·|s, a) under state-action pair (s, a), and137

we use τsa(·) to re-denote τ(·|s, a) for short. According to (3), the elements in T sa are independent138

and identically distributed samples following PsaT . The major difference to uncertainty set in robust139

MDP is that the set introduced here is unfixed and stochastic for each step. To differentiate with140

uncertainty set we call it candidate set, but to avoid redundancy we reuse the notation of T . The belief141

distribution PsaT can be chosen arbitrarily to incorporate knowledge of system transition. Particularly,142

when the prior distribution of system transition is accessible, PsaT can be obtained as the posterior by143

integrating the prior and the evidence D through Bayes’ rule.144

For the secondary player, it receives the candidate set T sa as state. Thus, we can denote its state145

space by S̄ = ∆N (S), i.e., an n-fold Cartesian product of probability simplex over S . Note that this146

state T sa also takes the role of action space, i.e., Ā = T sa, meaning that the action of secondary147

player is to choose a system transition from the candidate set. Given the chosen τsa ∈ T sa, the game148

evolves by sampling τsa, i.e.,149

G (s′|s̄ = T sa, ā = τsa) = τsa(s′), (4)

and the primary player receives s′ to make the game continue. In the following, we omit the150

superscript sa in τsa, T sa and PsaT when it is clear from the context. We also use PNT (T sa) to151

compactly denote the game transition G (s̄ = T sa|s, a) in (3).152

For the above AMG, we consider a specific policy (explained below) for the secondary player, such153

that the cumulative discounted reward of the primary player with policy π can be written as:154

J(π) := E
ρ0,π,PNT

bminckτ0∈T0

[
E

τ0,π,PNT
bminckτ1∈T1 · · ·

[
E

τ∞,π

[∞∑
t=0

γtr(st, at)

]]]
, (5)

where the subscripts of τ and T denote time step, the expectation is over st ∼ ρ0 or155

τt−1(·|st−1, at−1), at ∼ π(·|st) and Tt ∼ PNT , and the operator bminckx∈X f(x) denotes finding156

kth minimum of f(x) over x ∈ X . The policy of secondary player is implicitly defined by the157

operator bminckx∈X f(x). When changing k ∈ {1, 2, · · · , N}, the secondary player exhibits various158

degree of adversarial or aggressive disturbance to the future reward. From the view of original MDP,159

this behavior raises flexible tendency ranging from pessimism to optimism when evaluating policy π.160

The distinctions between the above AMG and robust MDP can be highlighted in the two aspects:161

1) With a belief distribution over transitions, robust MDP will select only part of its supports with162

non-zero probability into uncertainty set, and the set elements are treated indiscriminatingly. It163

means that both the possibility of transitions out of the uncertainty set and the relative likelihood of164

transitions within the uncertainty set are discarded. However, in the AMG, the candidate set simply165

contains samples drawn from the belief distribution, implying no information drop in an average166

sense. Intuitively, by keeping richer knowledge of the system, the performance evaluation is more167

exact and away from excessive conservatism; 2) In robust MDP, the level of conservatism is expected168

to be controlled by its hyperparameter δ. However, as illustrated in Section 2, a smaller δ does not169

necessarily corresponds to a more conservative performance evaluation, because of the extra impact170

from uncertainty set construction. In contrast, for the AMG, the degree of conservatism is adjusted171

by the size of candidate size N and the order of minimum k. When changing k or N , the impact to172

performance evaluation is known for certain, as formalized in Theorem 3.173

To evaluate J(π), we define the following Bellman backup operator:174

BπN,kQ(s, a) = r(s, a) + γEPNT

[
bminckτ∈T Eτ,π [Q(s′, a′)]

]
. (6)

As the operator depends on N , k and we emphasize pessimism in offline RL, we call it (N, k)-175

pessimistic Bellman backup operator. Compared to the standard Bellman backup operator in Q-176

learning, BπN,k additionally includes the expectation over T ∼ PNT and the k-minimum operator over177

τ ∈ T . Despite these differences, we prove that BπN,k is still a contraction mapping, based on which178

J(π) can be easily evaluated.179

4

Theorem 1 (Policy Evaluation). The (N, k)-pessimistic Bellman backup operator BπN,k is a contrac-180

tion mapping. By starting from any function Q : S × A → R and repeatedly applying BπN,k, the181

sequence converges to QπN,k, with which we have J(π) = Eρ0,πQπN,k(s0, a0).182

3.2 Pessimism-Modulated Dynamics Belief183

With the converged Q-value, we are ready to establish a more direct connection between the AMG184

and the original MDP. The connection appears as the answer to a natural question: the calculation of185

(6) encompasses biased samples from the dynamics belief distribution, can we treat these samples186

as the unbiased ones sampling from another belief distribution? We give positive answer in the187

following theorem.188

Theorem 2 (Equivalent MDP with Pessimism-Modulated Dynamics Belief). The alternating Markov189

game in (5) is equivalent to the MDP with tuple (S,A, T̃ , r, ρ0, γ), where the transition probability190

T̃ (s′|s, a) = EP̃saT
[τsa(s′)] is defined with the reweighted belief distribution P̃saT :191

P̃saT (τsa) ∝ w
(
Eτsa,π

[
QπN,k(s′, a′)

]
; k,N

)
PsaT (τsa), (7)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (8)

and F (·) is cumulative density function. Furthermore, the value of w(x; k,N) first increases and192

then decreases with x, and its maximum is obtained at the k−1
N−1 quantile, i.e., x∗ = F−1

(
k−1
N−1

)
.193

In right-hand side of (18), τsa itself is random following the belief distribution, thus194

Eτsa,π
[
QπN,k(s′, a′)

]
, as a functional of τsa, is also a random variable, and its cumulative density195

function is determined by the belief distribution PsaT . Intuitively, we can treat Eτsa,π
[
QπN,k(s′, a′)

]
196

as a pessimism indicator for transition τsa, with larger value indicating less pessimism.197

From Theorem 2, the maximum of w is obtained at τ∗: F
(
Eτ∗,π

[
QπN,k(s′, a′)

])
= k−1

N−1 , i.e., the198

transition with k−1
N−1 -quantile pessimism indicator. Besides, when Eτsa,π

[
QπN,k(s′, a′)

]
departs the199

k−1
N−1 quantile, the reweighting coefficient for its τsa decreases. Considering the effect of w to200

P̃saT and the equivalence between the AMG and the refined MDP, we can say that J(π) is a soft201

percentile performance. Compared to the standard percentile criteria, J(π) is derived by reshaping202

belief distribution towards concentrating around a certain percentile, rather than fixating on a single203

percentile point. Due to this feature, we term P̃saT Pessimism-Modulated Dynamics Belief (PMDB).204

Lastly, recall that all the above derivations are with hyperparameters k and N , we present the205

monotonicity ofQπN,k over them in Theorem 3. Furthermore, by combining Theorem 1 with Theorem206

3, we conclude that J(π) decreases with N and increases with k.207

Theorem 3 (Monotonicity). The converged Q-function QπN,k are with the following properties:208

• Given any k, the Q-function QπN,k element-wisely decreases with N ∈ {k, k + 1, · · · }.209

• Given any N , the Q-function QπN,k element-wisely increases with k ∈ {1, 2, · · · , N}.210

• The Q-function QπN,N element-wisely increases with N .211

k

1 2 3 4 5 6 7 8 N

Robust
MDP

.MBRL

 N=k

Figure 1: Monotonicity of Q-values. The
arrows indicate the directions along which
Q-values increase.

Remark 1 (Special Cases). For N = k = 1, we have212

P̃saT = PsaT . Then, the performance is evaluated through sam-213

pling the initial belief distribution. This resembles the com-214

mon methodology in model-based RL (MBRL), with dynam-215

ics belief defined by the uniform distribution over dynamics216

model ensembles. For k = δ(N − 1) + 1 and N →∞, P̃saT217

asymptotically collapses to be a delta function. Then, J(π)218

degrades to fixate on a single transition instance. It is equiv-219

alent to the robust MDP with the uncertainty set constructed220

as
{
τsa : PsaT (τsa) > 0,Eτsa,π

[
QπN,k(s′, a′)

]
≥ F−1(δ)

}
.221

In this sense, the AMG is a successive interpolation between222

model-based RL and robust MDP.223

5

4 Policy Optimization with Pessimism-Modulated Dynamics Belief224

In this section, we optimize policy by maximizing J(π). The major consideration is that the225

methodology should adapt well for both discrete and continuous action spaces. In continuous setting226

of MDP, the policy can be updated by following stochastic/deterministic policy gradient [32, 33].227

However, for the AMG, evaluating J(π) itself involves an inner dynamic programming procedure228

as in Theorem 1. As each evaluation of J(π) can only produce one exact gradient, it is inefficient229

to maximize J(π) via gradient-based method. Instead, in this section we consider a series of sub-230

problems with Kullback–Leibler (KL) regularization. Solving each sub-problem makes prominent231

update to the policy, and the sequence of solutions for sub-problems converges to the optimal policy232

regarding J(π). Based on this idea, we further derive offline RL algorithm to approximately find the233

solution.234

4.1 Iterative Regularized Policy Optimization235

Define the KL-regularized return for the AMG by236

J̄(π;µ) := E
ρ0,π,PNT

bminckτ0∈T0

[
E

τ0,π,PNT
bminckτ1∈T1 · · ·

[
E

τ∞,π

[∞∑
t=0

γt
(
r(st, at)

−αDKL

(
π(·|st)

∣∣∣∣ µ(·|st)
))]]]

, (9)

where α ≥ 0 is the strength of regularization, and µ is a reference policy to keep close with.237

KL-regularized MDP is considered in previous works to enhance exploration, improve robustness238

to noise or insert expert knowledge [34–38]. Here, the idea is to constrain the optimized policy in239

neighbour of a reference policy so that the inner problem is adequately evaluated for such a small240

policy region.241

To optimize J̄(π;µ), we introduce the soft (N, k)-pessimistic Bellman backup operator:242

B̄∗N,kQ(s, a) = r(s, a) + γEPNT

[
bminckτ∈T Eτ

[
α logEµ exp

(
1

α
Q(s′, a′)

)]]
. (10)

Theorem 4 (Regularized Policy Optimization). The soft (N, k)-pessimistic Bellman backup operator243

B̄∗N,k is a contraction mapping. By starting from any function Q : S × A → R and repeatedly244

applying B̄∗N,k, the sequence converges to Q̄∗N,k, with which the optimal policy for J̄(π;µ) is obtained245

as π̄∗(a|s) ∝ µ(a|s) exp
(

1
α Q̄
∗
N,k(s, a)

)
.246

Apparently, the solved policy π̄∗ depends on the reference policy µ, and setting µ arbitrarily aforehand247

can result in suboptimal policy for J(π). In fact, we can construct a sequence of sub-problems with the248

objective J̄(π;µ), where µ is chosen as an improved policy from last sub-problem. By successively249

solving them, the optimal policy that maximizes J(π) is attained.250

Theorem 5 (Iterative Regularized Policy Optimization). By starting from any stochastic policy251

π0 : s → ∆(A) and repeatedly finding πi+1 : J̄(πi+1;πi) > J̄(πi;πi) , the sequence of {πi}252

converges to the optimal policy π∗ for J(π). Besides, policies in the sequence are monotonically253

improved regarding J(π), i.e., J(πi+1) ≥ J(πi).254

Ideally, by combining Theorems 4 and 5, the optimal solution for J(π) can be obtained by infinitely255

applying soft pessimistic Bellman backup operator for each of the sequential sub-problems.256

Remark 2 (Iterative Regularized Policy Optimization as Expectation–Maximization with Structured257

Variational Posterior). According to Theorem 2, PMDB can be recovered with the converged Q-258

function Qπ
∗

N,k. From an end-to-end view, we have an initial dynamics belief PsaT , then via the259

calculation based on the belief samples and the reward function, we obtain the updated dynamics260

belief P̃saT . It is likely that we are doing some form of posterior inference, where the evidence comes261

from the reward function. In fact, the iterative regularized policy optimization can be formally recast262

as an Expectation-Maximization algorithm for offline policy optimization, where the Expectation step263

correponds to a structured variational inference procedure for dynamics. We elaborate it in Appendix264

C.265

6

4.2 Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief266

While solving each sub-problem makes prominent update to policy compared with the policy gradient267

method, we may need to construct several sub-problems before optimally maximizing J(π), then268

exactly solving each of the sub-problem can incur unnecessary computation. For practical consid-269

eration, next we introduce a smooth-evolving reference policy, with which the explicit boundary270

between sub-problems is blurred. Based on this reference policy, and by further adopting function271

approximator, we devise an offline RL algorithm to approximately maximize J(π).272

The idea of smooth-evolving reference policy is inspired by the soft-updated target network in273

deep RL literature [39, 40]. That is setting the reference policy as a slowly tracked copy of the274

policy being optimized. Formally, consider a parameterized policy πφ with the parameter φ. In the275

process of optimizing πφ, the reference policy is set as µ = πφ′ , where φ′ is the moving average of276

φ : φ′ ← ω1φ+ (1− ω1)φ′. With small enough ω1, the Q-value of the state-action pairs induced by277

πφ′ (or its slight variant) can be sufficiently evaluated, before being used to update the policy. Next,278

we detail the loss functions to learn Q-value and policy with neural network approximators.279

Denote the parameterized Q-function by Qθ with the parameter θ. It is trained by minimizing the280

Bellman residual of both the AMG and the empirical MDP:281

LQ(θ) =E(s,a,T)∼D′

[(
Qθ(s, a)−Q̂AMG(s, a)

)2
]

+E(s,a,s′)∼D

[(
Qθ(s, a)−Q̂MDP(s, a)

)2
]
, (11)

with282
Q̂AMG(s, a) = r(s, a) + γbminckτ∈T Eτ

[
α logEπφ′ exp

(
1

α
Qθ′(s

′, a′)

)]
, (12)

Q̂MDP(s, a) = r(s, a) + γ · α logEπφ′ exp

(
1

α
Qθ′(s

′, a′)

)
, (13)

where Qθ′ represent the target Q-value softly updated for stability [40], i.e., θ′ ← ω2θ + (1− ω2)θ′,283

and D′ is the on-policy data buffer for the AMG. Since the game transition is known, the game can be284

executed with multiple counterparts in parallel, and the buffer only collects the latest sample for each285

of them. To promote direct learning from D, we also include the Bellman residual of the empirical286

MDP in (11).287

As with policy update, Theorem 4 states that the optimal policy for J̄(π;µ) is propotional to288

µ(a|s) exp
(

1
α Q̄
∗
N,k(s, a)

)
. Then, we update πφ by supervisedly learning this policy, with µ and289

Q̄∗N,k replaced by the smooth-evolving reference policy and the learned Q-value:290

LP (φ) = Es∼D∪D′
[
DKL

(
πφ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπφ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πφ(·|s)

)]

= A · Es∼D∪D′
a∼πφ′

[
exp

(
1

α
Qθ(s, a)

)
log πφ(a|s)

]
+B, (14)

where A and B are constant terms. In general, (14) can be replaced by any tractable function that291

measures the similarity of distributions. For example, when πφ is Gaussian, we can apply the recent292

proposed β-NLL [41], in which each data point’s contribution to the negative log-likelihood loss is293

weighted by the β-exponentiated variance to improve learning heteroscedastic behavior.294

To summarize, the algorithm alternates between collecting on-policy data samples and updating295

the function approximators. In detail, the latter procedure includes updating the policy with (11),296

updating the Q-value with (14), and updating reference policy as well as target Q-value with the297

moving-average rule. The complete algorithm is listed in Appendix D.298

5 Experiments299

Through the experiments, we aim to answer the following questions: 1) How does the proposed300

approach compared to the previous SoTA offline RL algorithms on standard benchmark? 2) How301

does the learning process in the AMG connect with the performance change in the original MDP? 3)302

Section 3 presents the monotonicity of J(π) over N and k for any specified π, and it is easy to verify303

that this statement also holds when considering optimal policy for each setting of (N, k). However,304

with neural network approximator, our proposed offline RL algorithm approximately solves the AMG.305

Then, how is the monotonicity satisfied in this case?306

7

We consider the Gym domains in the D4RL benchmark [42] to answer these questions. As PMDB307

relies on the initial dynamics belief, inserting additional knowledge into the initial dynamics belief308

will result in unfair comparison. To avoid that, we consider an uniform distribution over dynamics309

model ensembles as the initial belief. The dynamics model ensembles are trained in supervised310

manner with the offline dataset. This is similar to previous model-based works [6, 21], where311

the dynamics model ensembles are considered for dynamics uncertainty quantification. Since312

hyperparameter tuning for offline RL algorithms requires extra online test for each task, we purposely313

keep the same hyperparameters for all tasks, except when answering the last question. Especially,314

the hyperparameters in sampling procedure are N = 10 and k = 2. The more detailed setup for315

experiments and hyperparameters can be found in Appendix E.316

5.1 Performance Comparison317

We compare the proposed offline RL algorithm with the baselines including: BEAR [5] and BRAC318

[7], the model-free approaches based on policy constraint, CQL [9], the model-free approach by319

penalizing Q-value, EDAC [13], the previous SoTA on the D4RL benchmark, MOReL [6], the320

model-based approach which terminates the trajectory if the dynamics uncertainty exceeds a certain321

degree, and BC, the behavior cloning method. These approaches are evaluated on a total of eighteen322

domains involving three environments (hopper, walker2d, halfcheetah) and six dataset types (random,323

medium, expert, medium-expert, medium-replay, full-replay) per environment.324

The results are summarized in Table 1. Our approach PMDB obviously improves over the previous325

SoTA on 9 tasks and performs competitively in the rest. Although EDAC achieves better performance326

in walker2d with several dataset types, its hyperparameters are tuned individually for each task.327

As presented later, the experiments on the impact of hyperparameters indicate that larger k or328

smaller N could generate better results for walker2d and halfcheetah. We also find that PMDB329

significantly outperforms MOReL, another model-based approach. It is encouraging that our model-330

based approach achieves competitive or better performance compared with the SoTA model-free331

approach, as model-based approach naturally has better support for multi-task learning and transfer332

learning, where the offline data from relevant tasks can be further leveraged.333

Task Name BC BEAR BRAC CQL MOReL EDAC PMDB

hopper-random 3.7±0.6 3.6±3.6 8.1±0.6 5.3±0.6 38.1±10.1 25.3±10.4 32.7±0.1
hopper-medium 54.1±3.8 55.3±3.2 77.8±6.1 61.9±6.4 84.0±17.0 101.6±0.6 106.8±0.2
hopper-expert 107.7±9.7 39.4±20.5 78.1±52.6 106.5±9.1 80.4±34.9 110.1±0.1 111.7±0.3
hopper-medium-expert 53.9±4.7 66.2±8.5 81.3±8.0 96.9±15.1 105.6±8.2 110.7±0.1 111.8±0.6
hopper-medium-replay 16.6±4.8 57.7±16.5 62.7±30.4 86.3±7.3 81.8±17.0 101.0±0.5 106.2±0.6
hopper-full-replay 19.9±12.9 54.0±24.0 107.4±0.5 101.9±0.6 94.4±20.5 105.4±0.7 109.1±0.2

walker2d-random 1.3±0.1 4.3±1.2 1.3±1.4 5.4±1.7 16.0±7.7 16.6±7.0 21.8±0.1
walker2d-medium 70.9±11.0 59.8±40.0 59.7±39.9 79.5±3.2 72.8±11.9 92.5±0.8 94.2±1.1
walker2d-expert 108.7±0.2 110.1±0.6 55.2±62.2 109.3±0.1 62.6±29.9 115.1±1.9 115.9±1.9
walker2d-medium-expert 90.1±13.2 107.0±2.9 9.3±18.9 109.1±0.2 107.5±5.6 114.7±0.9 111.9±0.2
walker2d-medium-replay 20.3±9.8 12.2±4.7 40.1±47.9 76.8±10.0 40.8±20.4 87.1±2.3 79.9±0.2
walker2d-full-replay 68.8±17.7 79.6±15.6 96.9±2.2 94.2±1.9 84.8±13.1 99.8±0.7 95.4±0.7

halfcheetah-random 2.2±0.0 12.6±1.0 24.3±0.7 31.3±3.5 38.9±1.8 28.4±1.0 37.8± 0.2
halfcheetah-medium 43.2±0.6 42.8±0.1 51.9±0.3 46.9±0.4 60.7±4.4 65.9±0.6 75.6± 1.3
halfcheetah-expert 91.8±1.5 92.6±0.6 39.0±13.8 97.3±1.1 8.4±11.8 106.8±3.4 105.7± 1.0
halfcheetah-medium-expert 44.0±1.6 45.7±4.2 52.3±0.1 95.0±1.4 80.4±11.7 106.3±1.9 108.5±0.5
halfcheetah-medium-replay 37.6±2.1 39.4±0.8 48.6±0.4 45.3±0.3 44.5±5.6 61.3±1.9 71.7±1.1
halfcheetah-full-replay 62.9±0.8 60.1±3.2 78.0±0.7 76.9±0.9 70.1±5.1 84.6±0.9 90.0±0.8

Average 49.9 52.4 54.0 73.7 65.1 85.2 88.2

Table 1: Results for D4RL datasets. Each result is the normalized score computed as (score − random policy
score) / (expert policy score − random policy score), ± standard deviation. The score of our proposed approach
is averaged over 4 random seeds, and the results of the baselines are taken from [13].

5.2 Learning in Alternating Markov Game334

Figure 2 presents the learning curves in the AMG, as well as the received return when deploying335

the policy being learned in true MDP. We observe that the performance in the AMG closely tracks336

the true performance from the lower side, implying that it can act as a reasonable surrogate to337

evaluate/optimize performance for the true MDP. Besides, the performance in the AMG improves338

nearly monotonously, verifying the effectiveness of the proposed algorithm to approximately solve339

the game.340

Recall that PMDB does not explicitly quantify dynamics uncertainty to penalize return, Figure 3341

checks how the dynamics uncertainty and the Q-value of visited state-action pairs change during the342

8

0.00 0.25 0.50 0.75 1.00
Training Steps 1e6

0

1

2

3

R
et

ur
n

1e3 hopper-medium

MDP
AMG

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

0

1

2

3

4

1e3 walker2d-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
1e4 halfcheetah-medium

Figure 2: Learning and test curves for medium datasets.

learning process. The uncertainty is measured by the logarithm of standard deviation of the predicted343

means from the N dynamics samples, i.e., log (std (Eτ [s′]; τ ∈ T)). The policy being learned is344

periodically tested in the AMG for ten trails, and we collect the whole ten trajectories of state-action345

pairs. The solid curves in Figure 3 denote the mean uncertainty and Q-value over the collected pairs,346

and shaded regions denote the standard deviation. From the results, the dynamics uncertainty first347

sharply decreases and then keeps a slowly increasing trend. Besides, in the long-term view, the348

Q-value is correlated with the degree of uncertainty negatively in the first phase and positively in the349

second phase. This indicates that the policy first moves to the in-distribution region and then tries to350

get away by resorting to the generalization of dynamics model.351

0.00 0.25 0.50 0.75 1.00
Training Steps 1e6

5.20

3.65

2.10

0.55

1.00

Lo
gs

td
 o

f p
re

di
ct

ed
 m

ea
ns

Uncertainty
Q-value

0

15

30

45

60hopper-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

3.6

2.2

0.8

0.6

2.0

0

17

34

51

68walker2d-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

1.80

1.05

0.30

0.45

1.20

0

27

54

81

108

Av
er

ag
e

Q
-v

al
ue

halfcheetah-medium

Figure 3: Change on the dynamics uncertainty and Q-value of the encountered state-action pairs during learning
process. The dynamics uncertainty of state-action pair (s, a) is measured by log

(
std

(
Eτ(·|s,a)[s′]; τ ∈ T

))
.

5.3 Practical Impact of Hyperparameters in Sampling Procedure352

Table 4 lists the impact of k. In each setting, we evaluate the learned policy in both the true MDP and353

the AMG where the policy is learned. The performance in the AMGs improve when increasing k.354

This is consistent with the theoretical part, even that we approximately solve the game. Regarding the355

performance in true MDPs, we notice that k = 2 corresponds to the best performance for hopper, but356

for the others k = 3 is better. This indicates that tuning hyperparameter online can further improve357

the performance. The impact of N is presented in Appendix F, suggesting the opposite monotonicity.358

hopper-medium walker2d-medium halfcheetah-medium

k MDP AMG MDP AMG MDP AMG

1 106.2±0.2 91.6±2.2 82.6±0.5 33.3±2.6 70.7±0.8 63.1±0.2
2 106.8±0.2 105.2±1.6 94.2±1.1 77.2±3.7 75.6±1.3 67.3±1.1
3 90.8±17.5 106.6±2.1 105.1±0.2 82.5±0.5 77.3±0.5 70.1±0.2

Table 2: Impact of k, with N = 10.

6 Discussion359

We proposed model-based offline RL with Pessimism-Modulated Dynamics Belief (PMDB), a360

framework to reliably learn policy from offline dataset, with the ability of leveraging dynamics prior361

knowledge. Empirically, the proposed approach outperforms the previous SoTA in a wide range362

of D4RL tasks. Compared to the previous model-based approaches, we characterize the impact of363

dynamics uncertainty through biased sampling from the dynamics belief, which implicitly induces364

PMDB. As PMDB is with the form of reweighting an initial dynamics belief, it provides a principled365

way to insert prior knowledge via the belief to boost policy learning. However, posing a valuable366

dynamics belief for arbitrary task is challenging, as the expert knowledge is not always available.367

Besides, an over-aggressive belief may still incur high-risk behavior in reality. Encouragingly, recent368

works have done active research to learn data-driven prior from relevant tasks. We believe that369

integrating them as well as developing safe criterion to design/learn dynamics belief would further370

promote practical deployment of offline RL.371

9

References372

[1] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning373

for robotic manipulation with asynchronous off-policy updates. In IEEE ICRA, 2017.374

[2] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil375

Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.376

IEEE TITS, 2021.377

[3] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:378

A survey. ACM Computing Surveys, 2021.379

[4] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning380

without exploration. In ICML, 2019.381

[5] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy382

Q-learning via bootstrapping error reduction. In NeurIPS, 2019.383

[6] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL:384

Model-based offline reinforcement learning. In NeurIPS, 2020.385

[7] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement386

learning. arXiv preprint arXiv:1911.11361, 2019.387

[8] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMaQ:388

Expected-max Q-learning operator for simple yet effective offline and online RL. In ICML,389

2021.390

[9] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for391

offline reinforcement learning. In NeurIPS, 2020.392

[10] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement393

learning with fisher divergence critic regularization. In ICML, 2021.394

[11] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-395

gaeDICE: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.396

[12] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon397

Wilson. A simple baseline for Bayesian uncertainty in deep learning. In NeurIPS, 2019.398

[13] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline399

reinforcement learning with diversified Q-ensemble. In NeurIPS, 2021.400

[14] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and401

Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.402

arXiv preprint arXiv:2202.11566, 2022.403

[15] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective404

of generalization. In NeurIPS, 2020.405

[16] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon406

Wilson. A simple baseline for bayesian uncertainty in deep learning. In NeurIPS, 2019.407

[17] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:408

Learning to throw arbitrary objects with residual physics. IEEE T-RO, 2020.409

[18] Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau,410

Yarin Gal, and Doina Precup. Invariant causal prediction for block MDPs. In ICML, 2020.411

[19] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning412

invariant representations for reinforcement learning without reconstruction. In ICLR, 2021.413

[20] Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models414

facilitate zero-shot dynamics generalization from a single offline environment. In ICML, 2021.415

10

[21] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea416

Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In NeurIPS, 2020.417

[22] Cong Lu, Philip J. Ball, Jack Parker-Holder, Michael A. Osborne, and Stephen J. Roberts.418

Revisiting design choices in model-based offline reinforcement learning. In ICLR, 2022.419

[23] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with420

uncertain transition matrices. Operations Research, 2005.421

[24] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.422

Mathematics of Operations Research, 2013.423

[25] Elita A. Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch424

reinforcement learning. arXiv preprint arXiv:2011.14495, 2020.425

[26] Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Soft-robust actor-426

critic policy-gradient. In UAI, 2018.427

[27] Marek Petrik and Reazul Hasan Russel. Beyond confidence regions: Tight bayesian ambiguity428

sets for robust MDPs. In NeurIPS, 2019.429

[28] Bahram Behzadian, Reazul Hasan Russel, Marek Petrik, and Chin Pang Ho. Optimizing430

percentile criterion using robust MDPs. In AISTATS, 2021.431

[29] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with432

baseline bootstrapping. In ICML, 2019.433

[30] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence434

off-policy evaluation. In AAAI, 2015.435

[31] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast Bellman updates for robust MDPs.436

In ICML, 2018.437

[32] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient438

methods for reinforcement learning with function approximation. In NeurIPS, 1999.439

[33] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.440

Deterministic policy gradient algorithms. In ICML, 2014.441

[34] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning442

with deep energy-based policies. In ICML, 2017.443

[35] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy444

maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.445

[36] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision446

processes. In ICML, 2019.447

[37] Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan448

Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye Teh, Razvan Pascanu, and449

Nicolas Heess. Information asymmetry in KL-regularized RL. In ICLR, 2019.450

[38] Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael451

Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin A. Riedmiller. Keep doing452

what worked: Behavioral modelling priors for offline reinforcement learning. In ICLR, 2020.453

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G454

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.455

Human-level control through deep reinforcement learning. Nature, 2015.456

[40] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval457

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.458

In ICLR, 2016.459

11

[41] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls460

of heteroscedastic uncertainty estimation with probabilistic neural networks. arXiv preprint461

arXiv:2203.09168, 2022.462

[42] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for463

deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.464

[43] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:465

Model-based policy optimization. In NeurIPS, 2019.466

[44] Byung-Jun Lee, Jongmin Lee, and Kim Kee-Eung. Representation balancing offline model-467

based reinforcement learning. In ICLR, 2020.468

[45] Toru Hishinuma and Kei Senda. Weighted model estimation for offline model-based reinforce-469

ment learning. In NeurIPS, 2021.470

[46] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In ICLR, 2021.471

[47] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.472

Deployment-efficient reinforcement learning via model-based offline optimization. In ICLR,473

2021.474

[48] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea475

Finn. COMBO: Conservative offline model-based policy optimization. In NeurIPS, 2021.476

[49] Aviv Tamar, Huan Xu, and Shie Mannor. Scaling up robust MDPs by reinforcement learning.477

arXiv preprint arXiv:1306.6189, 2013.478

[50] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with479

baseline bootstrapping. In ICML, 2019.480

[51] Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg,481

Timothy A. Mann, Todd Hester, and Martin A. Riedmiller. Robust reinforcement learning for482

continuous control with model misspecification. In ICLR, 2020.483

[52] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial484

reinforcement learning. In ICML, 2017.485

[53] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and486

applications in continuous control. In ICML, 2019.487

[54] Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement488

learning. In ICML Workshop, 2019.489

[55] H.A. David and H.N. Nagaraja. Order Statistics. Wiley, 2004.490

[56] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and491

review. arXiv preprint arXiv:1805.00909, 2018.492

12

Checklist493

The checklist follows the references. Please read the checklist guidelines carefully for information on494

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or495

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing496

the appropriate section of your paper or providing a brief inline description. For example:497

• Did you include the license to the code and datasets? [Yes] See Section ??.498

• Did you include the license to the code and datasets? [No] The code and the data are499

proprietary.500

• Did you include the license to the code and datasets? [N/A]501

Please do not modify the questions and only use the provided macros for your answers. Note that the502

Checklist section does not count towards the page limit. In your paper, please delete this instructions503

block and only keep the Checklist section heading above along with the questions/answers below.504

1. For all authors...505

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s506

contributions and scope? [Yes]507

(b) Did you describe the limitations of your work? [Yes] See Section 6 and Appendix D,508

we also point out the possible future directions to improve.509

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See510

Section 6.511

(d) Have you read the ethics review guidelines and ensured that your paper conforms to512

them? [Yes]513

2. If you are including theoretical results...514

(a) Did you state the full set of assumptions of all theoretical results? [Yes]515

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.516

3. If you ran experiments...517

(a) Did you include the code, data, and instructions needed to reproduce the main exper-518

imental results (either in the supplemental material or as a URL)? [No] The code is519

proprietary for now, but we are processing to make publicly accessible.520

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they521

were chosen)? [Yes] See Appendix E.522

(c) Did you report error bars (e.g., with respect to the random seed after running experi-523

ments multiple times)? [Yes]524

(d) Did you include the total amount of compute and the type of resources used (e.g., type525

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.526

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...527

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.528

(b) Did you mention the license of the assets? [Yes]529

(c) Did you include any new assets either in the supplemental material or as a URL? [No]530

(d) Did you discuss whether and how consent was obtained from people whose data you’re531

using/curating? [N/A]532

(e) Did you discuss whether the data you are using/curating contains personally identifiable533

information or offensive content? [N/A]534

5. If you used crowdsourcing or conducted research with human subjects...535

(a) Did you include the full text of instructions given to participants and screenshots, if536

applicable? [N/A]537

(b) Did you describe any potential participant risks, with links to Institutional Review538

Board (IRB) approvals, if applicable? [N/A]539

(c) Did you include the estimated hourly wage paid to participants and the total amount540

spent on participant compensation? [N/A]541

13

	Introduction
	Preliminaries
	Pessimism-Modulated Dynamics Belief
	Formulation
	Pessimism-Modulated Dynamics Belief

	Policy Optimization with Pessimism-Modulated Dynamics Belief
	Iterative Regularized Policy Optimization
	Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief

	Experiments
	Performance Comparison
	Learning in Alternating Markov Game
	Practical Impact of Hyperparameters in Sampling Procedure

	Discussion
	Related Works
	Theorem Proof
	Preliminaries
	Proofs for Section 3
	Proofs for Section 4

	Iterative Regularized Policy Optimization as Expectation–Maximization with Structured Variational Posterior
	Review of RL as Probabilistic Inference
	Pessimism-Modulated Dynamics Belief as Structured Variational Posterior
	Full Expectation-Maximization Algorithm

	Algorithm for Model-Based Offline RL with PMDB
	Additional Experimental Setup and Implementation Details
	Practical Impact of N

