
Under review as a conference paper at ICLR 2023

UNDERSTANDING THE MODALITY GAP IN CLIP

Anonymous authors
Paper under double-blind review

ABSTRACT

This work examines the phenomenon of the modality gap observed in CLIP-based
multimodal learning methods. The modality gap in this context refers to the
separation of image and text embeddings in the joint latent space. Some previ-
ous research has attributed the gap to cone effect of neural network initialization
and suggested closing may not be necessary. However, this study argues that the
modality gap is associated with local minima in the CLIP loss function. Through
a series of proof-of-concept experiments, we illustrate these local minima and the
difficulty of avoiding them in practice. Overall, this work hopes to provide better
insight into the root cause of the modality gap.

1 INTRODUCTION AND RELATED WORK

Recent years have seen a growing interest in contrastive learning based multimodal learning, with
OpenAI’s CLIP model Radford et al. (2021) being a prime example. CLIP uses a contrastively
trained joint latent space for text and image modalities, which has been shown to encode rich se-
mantics, providing a solid foundation for a wide range of downstream tasks such as text-conditional
generative models Gal et al. (2022), image captioning Fang et al. (2022), and large dataset pairing
Schuhmann et al. (2021). Additionally, the multimodal objective function of CLIP has been ex-
tended beyond text and image to domains such as video Xu et al. (2021) and audio Wu et al. (2022),
indicating a broader potential for the CLIP contrastive framework.

Despite the popularity of CLIP, Zhou et al. (2022) first observed that a modality gap exists within
the joint latent space, indicating that the image embeddings and text embeddings occupy separate
regions of the joint latent space. This phenomenon has also been observed in CLIP models applied
in other domains Zhang et al. (2020) Xu et al. (2021). One recent work by Liang et al. (2022)
attributes this modality gap to the cone effects, where embeddings of two modalities lie on narrow
cone regions of the latent space during neural network initialization. Furthermore, some prior work
has shown improved performance when the modality gap is closed through projection Zhou et al.
(2022), or fine-tuning So et al. (2022).

In this work, we study further what the modality gap observed in CLIP-based multimodal learning
methods may be caused by. Our hypothesis is that the CLIP loss function contains local minima,
directly affecting the structures of the latent space. To illustrate this, we conduct a series of proof
of concept experiments using the CLIP loss to visualize and demonstrate the local minima that are
associated with the modality gap. Our experiments show that certain initialization may avoid such
local minima, but meeting these initialization criteria in practice is challenging.

2 BACKGROUND

Contrastive Learning is a representation learning framework that aims to organize the latent space
in such a way that semantically similar samples, positive samples, are brought closer together, while
samples with little shared semantics, negative samples, are pushed farther apart. One popular method
in recent years is the SimCLR Chen et al. (2020) and its NT-Xent loss function . NT-Xent differs
from previous contrastive methods in two ways: first, it normalizes the representations to lie on
a hypersphere, which confines the latent space, and second, it does not require explicit negative
samples, the denominator of the loss function acts as a soft negative sample by pushing all other
samples within the batch away. This allows for a more efficient and effective way of learning robust
representations. NT-Xent’s effectiveness has been attributedWang & Isola (2020) to two factors in
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Figure 1: Illustrated modality gap. Stage 1 - the two modalities are initialized as disjoint cones
on the hypersphere. Stage 2 - When training with the CLIP loss in eq 2, this stage is characterized
by a strong and difficult-to-escape local minima - the Lalignment term serves to pull two modalities
together while the Luniformity term pushes two modalities apart, resulting in the modality gap. Stage
3 - If the model can ”escape” the modality gap local minima, then the two modalities are aligned
and is uniformly distributed across the latent hypersphere

the latent space: uniformity and alignment. Uniformity refers to the property that representations
of different data points should be distributed uniformly in the latent hypersphere. Alignment refers
to the property that the representations of positive samples should be close to each other. Together,
uniformity and alignment help the model learn a more expressive and robust representation of the
data.

CLIP Radford et al. (2021) is a multimodal contrastive learning method that was trained on a web-
scale dataset of text and images pairs. Based on NT-Xent loss, CLIP extends the contrastive loss to
the multimodal domain:

Lclip = −1
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Intuitively, the Lclip takes matching pairs of text and image embeddings, denoted as (x, y), as pos-
itive samples. Concurrently, the Lclip samples a set of M negative embedding samples, denoted as
{x′
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′
i}. Both the positive pair (x, y) and the negative set x′

i, y
′
i are sampled from the data distri-

bution Pdata ∈ Rn × Rn. Like all NT-Xent loss-based methods, CLIP latent space lies on a unit
hypersphere, such that xTx = yT y = x′

i
Tx′
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T y′i = 1.

3 UNIFORMITY, ALIGNMENT, AND THE MODALITY GAP

In unimodal and self-supervised learning methods such as SimCLR Chen et al. (2020), the unifor-
mity and alignment terms of the NT-Xent loss function work in harmony. However, in multimodal
learning methods, the uniformity and alignment terms may be in conflict with each other. We hypoth-
esize that this tension between the two terms results in the modality gap phenomenon. To illustrate,
we transform Lclip from eq.1 in to separated uniformity and alignment terms:
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The term Lalignment maximizes the similarity between x and y modalities by aligning them onto
the same points on the hypersphere. Meanwhile, the term Luniformity maximizes the dissimilarity
between negative samples in the opposite modalities but does not place any constraints within each
own modality. This results in local minima in which Luniformity and Lalignment push two modalities in
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opposite directions. Thus we hypothesize this eventually results in the modality gap in which the
two modalities are completely disjoint in the latent space.

4 EXPERIMENTAL SETUP

To illustrate that the CLIP loss induces the modality gap, we conduct several proof-of-concept ex-
periments to understand the process better. We compare CLIP loss with unimodal contrastive loss
and investigate the impact of different initialization conditions on the loss function. The proof-of-
concept experiments involve optimizing two sets of random points on a 3D sphere using the CLIP
loss function. We randomly generated 1,000 points on the 3D sphere and trained with a batch size of
10 and a learning rate of 0.01 using the SGD optimization algorithm. The results are then visualized
by randomly subsampling 30 points. More detail on the experiment can be found in Appendix C.

4.1 CLIP LOSS LOCAL MINIMA

Figure 2: Proof-of-concept experiment comparing CLIP (multimodal NT-Xent) vs SimCLR (uni-
modal NT-Xent) losses, t denotes training epoch. We observe that using the CLIP loss, two sym-
metrical rings emerge starting at the 10k training epoch. This two rings phenomenon persisted for
over 1 million epochs until it reached uniformity at 2.5 million. By comparison, the unimodal NT-
Xent loss resulted in uniformity in under 100k steps. We hypothesize that the two rings which CLIP
induces on the 3D sphere is the so-called modality gap.

A proof-of-concept experiment was conducted to examine the existence of local minima in the CLIP
loss compared to its unimodal counterpart. The experiment compared the CLIP NT-Xent loss to a
unimodal NT-Xent loss as depicted in Figure 2. Results showed that CLIP produced two disjoint
rings on the 3D sphere and required significantly more training (100k vs 2.5 million epochs) to
achieve uniformity compared to the unimodal loss. The emergence of the two disjoint rings is
believed to indicate the modality gap phenomenon. Closing this gap is postulated to be a local
minimum that requires a substantial portion of the training time.

4.2 MODALITY GAP

Like the two rings phenomenon observed above, we hypothesize that the text and image embeddings
are also completely disjoint and thus linearly separatable in the full-scale pre-trained CLIP model.
Some previous work Zhou et al. (2022) demonstrated the modality gap qualitatively through 2D
visualization. In this study, a linear classifier was used to assess the linear separatability between
text and image modalities in the CLIP latent space. Using the COCO Captions dataset Lin et al.
(2014), which comprises 50,000 images and 250,000 corresponding text descriptions, we conduct a
linear separatability test. The classifier was trained using only 0.1% of the dataset and tested on the
remaining 99.9%. We report a 100% test accuracy, providing evidence of the complete disjointness
of the two modalities in the CLIP latent space.

Additionally, it has been noted that after a sufficient number of training epochs, the proof-of-concept
CLIP model above demonstrated the ability to close the modality gap and reach uniformity. Despite
this observation, the full-scale CLIP model appears to display a persistent modality gap. We hy-
pothesize in the actual full-scale CLIP model, given its 512-dimensional latent space and various
stochasticity coming from the training data and neural network, the local minima associated with
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the modality gap are more complex than those encountered in the proof-of-concept experiment. This
presents an intriguing query that exceeds the scope of the current study, and thus remains a topic for
future investigation.

4.3 EFFECTS OF INITIALIZATION

Figure 3: Three types of initialization and their impact on the embedding space. A visual comparison
of the convergence characteristics of the three initializations is presented in the left figure, while the
right plot illustrates the inter-modality distances throughout a million training epochs. a) Polar
Opposite Initialization - CLIP loss consistently induces the modality gap in this case, with the
pairwise distance (yellow line) between modalities reducing at a slow rate. b) Nearby Initialization
- The study highlights the sensitivity of initialization to CLIP, as even when the two modalities are
initialized in close proximity, the CLIP loss still induces a modality gap. Despite this, the nearby
initialization (purple line) demonstrates a slightly faster convergence rate compared to the polar
opposite initialization. c) Overlapped Initialization - CLIP loss does not induce a modality gap.
The two modalities rapidly converge to one another within 10k training epochs, as evidenced by the
rapid decline in the pairwise distance (blue line at the bottom).

Previous literature Liang et al. (2022) had attributed the cone effect of neural network initialization as
the root cause of the modality gap, we show experimentally in figure 3 that, unless the initialization
of two modalities overlaps completely, even the slight disjoint will result in the modality gap. The
full-scale CLIP latent space has a 512-dimensional hypersphere, which is much less likely to have
overlapped initialization. Therefore we attribute the gap phenomenon to the inadequate design of
the CLIP loss rather than purely initialization.

5 CONCLUSION AND FUTURE WORK

In summary, our study sheds light on the modality gap issue in CLIP-based multimodal learning
methods. Our findings suggest that the CLIP loss function is susceptible to local minima due to
conflicting alignment and uniformity properties of the contrastive loss. Our proof-of-concept ex-
periments demonstrate the presence of two distinct and separate rings on a 3D sphere, which we
believe is evidence of the modality gap. However, we also observe that the proof-of-concept exper-
iment eventually resulted in the closing the gap, but this was not observed in the full-scale CLIP
model. The underlying reason for the discrepancy is still unclear and requires further investigation.
Moreover, we highlight that the convergence and inter-modality distances of CLIP models are sensi-
tive to initialization, and only overlapping initialization appears to avoid the CLIP loss minima. Our
research aims to advance the understanding of the modality gap and underscores the importance of
ongoing work in this field.
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A APPENDIX: SIMCLR LOSS FUNCTION

SimCLR is primarily a unsupervised image representation learning framework that shows robustness
for downstream tasks. The SimCLR’s NT-Xent loss function is formulated as follows:

LSimCLR = −Exi,x′
i∼Ppos,j∼Pdata

[
log

exp(xT
i x

′
i/τ)∑2N

xi ̸=xj
exp(xT

i xj/τ)

]
(3)

In this formulation, the NT-Xent loss utilizes two augmentations of an image, xi and x′
i, which are

sampled from the set of positive samples Ppos. The negative samples are implicitly defined in the
denominator of the loss function, where the sample xi is compared with all other samples xj within
the same batch.

B APPENDIX:SLIP

SLIP Mu et al. (2022) is an extension of CLIP and has shown significant improvements in zero-shot
classification and downstream tasks over CLIP. SLIP’s method is a simple concept that combines
the power of self-supervised SimCLR contrastive loss 3 to the CLIP multimodal contrastive loss in
eq 1 as follows:

Lslip = Lclip + LSimCLR (4)

C APPENDIX: PROOF OF CONCEPT EXPERIMENT SETUP

Figure 4: Example initialization
of the proof of concept experi-
ment

We devise a proof of concept experiment using a 3D sphere to
illustrate that the CLIP loss function 1 induces a modality gap
even in low dimensional space and without any external factors
coming from the dataset or neural network architecture. To that
end, we generate two sets of points scattered on a 3-dimensional
euclidean space, representing the two modalities. Our parame-
ter space for optimization is the euclidean coordinate space of
the points so we can we optimize directly on the positions of the
points. We randomly generated 1,000 points on the 3D sphere
and trained with a batch size of 10 and a learning rate of 0.01
using the SGD optimization algorithm. The results are then vi-
sualized by randomly subsampling 30 points. More detail on the
experiment can be found in Figure ??

D SLIP AND THE MODALITY GAP

Figure 5: Comparison of SLIP vs
CLIP’s modality gap with identical ini-
tialization (polar opposit), SLIP con-
verges at a significantly faster rate than
CLIP, demonstrating the importance of
good alignment and closing the modal-
ity

In this experiment, we conduct a proof of concept ex-
periment involving the 3D sphere utilizing the SLIP Mu
et al. (2021) loss in equation 4. The results of this exper-
iment are depicted in Figure 5. Our findings indicate that
the SLIP algorithm converges at a significantly faster rate
in comparison to the CLIP algorithm. We postulate that
this accelerated convergence can be attributed to the inclu-
sion of a self-supervised SimCLR loss term for the image
modality within the SLIP framework. This loss term effec-
tively increases pressure on the uniformity of image em-
beddings on the hypersphere, thereby disrupting the equi-
librium of the modality gap. For additional insights on the
SLIP algorithm, we refer the reader to Appendix D.
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