Marksman Backdoor: Backdoor Attacks with
Arbitrary Target Class

Khoa D. Doan*, Yingjie Lao', Ping Li*

*College of Engineering and Computer Science, VinUniversity
Electrical and Computer Engineering, Clemson University, USA
fLinkedIn Corporation, Bellevue, WA 98004, USA
khoa.dd@vinuni.edu.vn, ylao@clemson.edu, pinli@linkedin.com

Abstract

[H[n recent years, machine learning models have been shown to be vulnerable to
backdoor attacks. Under such attacks, an adversary embeds a stealthy backdoor
into the trained model such that the compromised models will behave normally on
clean inputs but will misclassify according to the adversary’s control on maliciously
constructed input with a trigger. While these existing attacks are very effective,
the adversary’s capability is limited: given an input, these attacks can only cause
the model to misclassify toward a single pre-defined or target class. In contrast,
this paper exploits a novel backdoor attack with a much more powerful payload,
denoted as Marksman, where the adversary can arbitrarily choose which target
class the model will misclassify given any input during inference. To achieve this
goal, we propose to represent the trigger function as a class-conditional generative
model and to inject the backdoor in a constrained optimization framework, where
the trigger function learns to generate an optimal trigger pattern to attack any target
class at will while simultaneously embedding this generative backdoor into the
trained model. Given the learned trigger-generation function, during inference, the
adversary can specify an arbitrary backdoor attack target class, and an appropriate
trigger causing the model to classify toward this target class is created accordingly.
We show empirically that the proposed framework achieves high attack performance
(e.g., 100% attack success rates in several experiments) while preserving the clean-
data performance in several benchmark datasets, including MNIST, CIFARI10,
GTSRB, and TinyImageNet. The proposed Marksman backdoor attack can also
easily bypass existing backdoor defenses that were originally designed against
backdoor attacks with a single target class. Our work takes another significant step
toward understanding the extensive risks of backdoor attacks in practice.

1 Introduction

Machine learning, especially deep neural networks (DNN), rapidly advances and transforms our daily
lives in various fields and applications. Such intelligence is becoming prevalent and pervasive, embed-
ded ubiquitously from centralized servers to fully distributed Internet-of-Things (IoT). Unfortunately,
since well-trained models are now viewed as high-value assets that demand extensive computer
resources, annotated data, and machine learning expertise, they are becoming increasingly attractive
targets for cyberattacks [20,51}52]]. Prior research has shown deep learning algorithms are vulnerable
to a wide range of attacks, including adversarial examples [3| 31], poisoning attacks [33} 38} [17]],

'The work was conducted while all three authors worked at Cognitive Computing Lab, Baidu Research,
10900 NE 8th St. Bellevue, WA 98004, USA.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

All-to-One Attacks All-to-All Attacks

' @; E@ THI G ,r 7o)
.Eio’z ﬂ @ lfttum only

backdoor

Marksman
Attacks

C
- —_
don't stop W%,

9(c, z)

Wc

T(c,x)

Figure 1: The payloads of Marksman and the existing backdoor attacks (top row). Marksman can
attack an arbitrary target at will by generating a suitable trigger pattern via the class-conditional
generative trigger function to cause the classifier to predict the chosen target (details in bottom row).

backdoor attacks [30} 28| |15 [11]], and privacy leakages [39}114]. Among these, backdoor attacks ex-
pose the vulnerability in the model building supply chain that seeks to inject a stealthy backdoor into
a model by poisoning the data or manipulating the training process [30} 28} [15]]. Ideally, the model
with injected backdoor should behave normally with clean inputs, but the input will be misclassified
into the target class whenever the trigger is present.

Past years have seen the development of backdoor attacks in various trigger forms, such as the
patch-based in BadNets [[15] and TrojanNN [28]], blended and dynamic triggers [[7} 37]], and recently
input-aware, invisible triggers [I8 134} [10, |9} |35]]. In the fields of malware backdoor [4] and hardware
Trojan [42, 48], these attacks are typically decomposed into two main components: the trigger that
determines the activation mechanism and the payload that is used to control the modified malicious
behavior. However, compared to the trigger mechanism, the payload of backdoor attacks on DNN
is much less studied. The majority of the existing approaches consider either 1) all-to-one attacks
where all the inputs with the trigger are mapped into one specific target class or 2) all-to-all attacks
where the inputs from each true class will have different target labels [[15]. As opposed to what
the name of the all-to-all attacks indicates, such an attack is still only able to manipulate the inputs
within one true class label into one target class. Nevertheless, these prior works are single-trigger and
single-payload backdoor attacks with predefined target backdoor class(es). Even for the input-aware
ones that generate the trigger based on the content of the input image to minimize the perceptual
distinction, the target backdoor class is still predefined.

In this paper, we exploit the design of a backdoor attack with arbitrary target classes after injecting
the backdoor into the model. Since we need to expand the payload capability of the backdoor attack,
efficiently and effectively implementing such backdoor attacks is not trivial. One may argue that an
adversary can repeatedly inject different trigger patterns for all the target classes to achieve such an
adversarial objective. For instance, the adversary can use a specific trigger pattern for each target
class and inject all the classes’ trigger patterns into the model by using the patch-based backdoor
strategy. Obviously, this method will lead to a much larger model perturbation than the single-trigger
and single-payload attack. As the number of target classes increases, both the attack success rate
(ASR) and the clean data accuracy will be significantly degraded.

To tackle these challenges, we follow the similar concept of invisible and input-aware backdoor
attacks [8, 34, [10]] that train a generative model during the backdoor injection, usually called trigger
generator or trigger function, for generating triggers. In order to activate the backdoor, the adversary
will feed the input image to the trigger generator/function, which will embed an input-specific
trigger into the image. In these scenarios, the secret held by the adversary is the trigger function
instead of fixed pixel patterns as in patch-based backdoor attacks. We efficiently incorporate the
malicious functionalities that link to all the output classes into the trigger function to expand the
payload. Consequently, as depicted in Figure[T] the adversary can arbitrarily choose the target class to
misclassify given any input during inference, significantly enhancing the adversarial capability of the

backdoor attack. The only works that we are aware of consider varying the payload are [49,50], which
yield different target classes by controlling the intensities of the same backdoor [49] and embedding
multiple triggers into different channels (i.e., RGB channels) of an image [50], respectively. However,
the possible numbers of target classes in these works are limited by 4 and 3, bounded by the
performance and the number of channels (i.e., 3 in RGB images). The work of DeepPayload [25]]
attempts to directly inject the malicious logic through reverse-engineering instead of training the
backdoor into the model, which does not consider varying the target backdoor class as in this paper.

Our contributions are summarized below:

* We propose a new type of backdoor attack where the adversary can flexibly attack any target label
during inference. This attack maliciously modifies the model by establishing a causal link between
the trigger function and all output classes.

* We propose a class-condition generative trigger function that, given the target label, can generate
an imperceptible trigger pattern to cause the model to predict the target label. We then propose a
constrained optimization objective that can effectively and efficiently learn the trigger function and
poison the model.

* Finally, we empirically demonstrate the effectiveness of the proposed method and its robustness
against several representative defensive mechanisms. We show that the proposed method can
achieve high attack success rates with any arbitrarily chosen target class while preserving the
behavior of the model under normal conditions.

The rest of the paper is organized as follows. We review the background of DNN backdoor attacks
in Section 2] The threat model is defined in Section [3] We present the details of the proposed
methodology in Section] and evaluate the performance and compare to prior works in Section 3]
Finally, Section [6] concludes this paper. We present more details about experimental settings and
additional results in the supplementary material.

2 Background

2.1 Backdoor Attacks

Under image classification tasks, backdoor attacks on DNN seek to inject malicious behavior into the
model that will associate a trigger to a target backdoor class [[15) 28], which can also be interpreted
as the payload as in malware backdoor and hardware Trojan. The injection of the backdoor are
typically achieved by poisoning the training data [[15} [28] or manipulating the training process or
model parameters [19, [12]. An important performance requirement for the backdoor attack is its
stealthiness, such that the existence of the backdoor in a model cannot be easily identified. Hence, a
successful backdoor attack should preserve the normal functionality or inference accuracy for clean
images (i.e., images without the trigger).

The designs of the trigger have been extensively studied in the literature, from the early obvious patch-
based triggers [7, [28]] to more invisible ones with utilization of blended [7], sinusoidal strips (SIG) [2]],
reflection (ReFool) [29], single-pixel [1]], warping (WaNet) [35]], discrete cosine transform (DCT)
steganography [50], and adversarial example generation [41, 22]]. As opposed to a universal trigger,
several recent works have investigated input-aware backdoor attacks that minimize the visibility of
the trigger by generating the trigger pattern based on the content of each input image [8} 134, 10} 9]].
For instance, LIRA [10]] trains a generative model as the trigger function for each image, while
simultaneously injecting the backdoor into the model, which has been shown to be able to generate
completely invisible triggers.

All of these attacks, under either all-to-one or all-to-all scenarios, can only manipulate the prediction
of a given input image to one target class. While the works in [49, [50] considered a less narrow
form for the payload, the number of possible target backdoor classes is still limited, i.e., 3 or 4. In
contrast, this paper exploits a much stronger attack that is able to misclassify a given input image to
any arbitrary target class.

2.2 Backdoor Defenses

Meanwhile, various backdoor defensive solutions have also been developed, aimed at either de-
tecting [15, 44} [13] or mitigating [26} 45! |6, 136l 24] the attacks. Popular methods include Neural

Cleanse [43]] that detects the backdoor by searching for possible trigger patches, fine-pruning [26]
that prunes the model to erase the backdoor, spectral signature [44] that detects outliers based on the
latent representations, and STRIP [13]] that uses perturbations to detect potential backdoor triggers.
Besides, input mitigation methods have also been studied, which seek to filter the images with triggers
to avoid the activation of the backdoor [30, 24].

A successful backdoor attack has to be able to bypass the existing defenses. We evaluate our proposed
Marksman backdoor against representative defensive solutions in our experiments.

3 Threat Model

Consistent with prior works on input-aware backdoor attacks that train a generative model for trigger
generation [8, 34} 10, [11], we also consider the threat model where the adversary has full access to
the model. Note that our setting is different from some backdoor attacks that only target poisoned
data generation [15) [28]]. During the training phase, the adversary attempts to inject the backdoor
into a model. After that, the model will be delivered to victim users, who might employ the existing
backdoor defensive measures to check the model. During the inference phase, the adversary is able
to query the victim model with any inputs.

4 Proposed Methodology: Marksman Backdoor

4.1 Preliminaries

Consider the supervised learning setting where the goal is to learn a classifier fp : X —) that maps
an input x € X to alabel y €). In empirical risk minimization (ERM), the parameters 6 are learned
using a training dataset S = {(z1,y1), ..., (TN, yn)} Where z; € X and y; € V.

In a standard backdoor attack, a subset of M (M < N) examples are first selected from S to create
the poisoned subset S,,. Each sample (z,y) in this subset is transformed into a backdoor sample
(T(x),n(y)), where T : X — X is the trigger function and 7 is the target labeling function. The
trigger function 7' determines how a trigger pattern is placed on the input x to create the backdoor
input T'(z), while the target labeling function specifies how the classifier should predict in the
presence of the backdoor input. The remaining samples in S comprise the clean subset S, i.e.,
S.=8\S,.

Under ERM, we can alter the behavior of the classifier f (i.e., inject the backdoor) by training f with
both the clean samples S, and the backdoor samples S, as follows:

ﬁ*zarg;nin > Llfol@),y).

(z,y)€SUS,

where L is the classification loss, e.g., cross-entropy loss. During inference, for a clean input x and
its true label y, the learned f will behave as follows:

f@) =y, f(T(z))=nly)

4.2 Marksman’s Payload: Arbitrary Attack Target Class

The training process described in the previous section essentially induces the payload, or the causal
association between the trigger and the target label. As we discussed above, there are two common
types of payload in the backdoor domain [[15]]: all-to-one and all-to-all. Under the all-to-one attack,
all input with the trigger are predicted with a constant label, denoted as ¥, regardless of the original
label y:

f(T(x) =3, Y(z,y)

For the all-to-all attack, the input with the trigger is predicted with a label that depends on its true
label y; for example, a commonly studied target function is

f(T(z)) = (y +1) mod [Y[, V(z,y)

Note that, for both the all-to-one and all-to-all attacks, the attacker can only trigger one predefined
target label. During inference, given an input, it is not possible to causally force f to predict an
arbitrary choice of a target label.

The goal of this work is to design a backdoor attack with a more flexible and powerful payload where
the attacker can arbitrarily choose any target label during inference. Formally, we aim to alter the
behavior of f so that:

f@)y=y, f(T(c,x))=c, VceYandV(x,y) (D

Under this setting of Equation (T)), the trigger pattern, devised by the function T, is associated with
the attack target c. This represents a more flexible payload design and a stronger backdoor attack
because the adversary can freely choose to attack any target label during inference.

4.3 Learning the Marksman’s Trigger Function

Modeling and eventually learning the trigger function to achieve the objective (i.e., injecting the
backdoor into f) in Equation (I) face some crucial challenges. First, the design of the trigger
function should be systematic. Each causal association between an image and a specific target label is
embedded in one unique trigger pattern. Thus, a large number of trigger patterns is needed to capture
the multi-trigger and multi-payload requirement. Second, the injection of these trigger patterns into
the model should preserve the clean-data performance while achieving a high attack success rate. On
top of these, we also empirically observe that the straightforward baseline approach, which repeatedly
injects these trigger patterns using the existing backdoor-attack methods such as the patch-based
attack [[15]), fails to achieve this adversarial objective: either the clean-data performance noticeably
drops below an acceptable threshold, or the attack success rate is not satisfactory.

To tackle these challenges, we first propose representing the process of creating the trigger pattern
with a class-conditional generative model. The trigger function T¢ :) x X' — X learns to generate a
trigger pattern that is conditioned on the attack’s target class and imperceptibly blended into the input
image. The input to the generative model is a label ¢ and an image z, and its output is a backdoor
input T'(c, x) with a trigger pattern that can activate the backdoor to attack the target label c¢. Formally,
we can model 7" using a class-conditional noise (or trigger pattern) generator g as follows:

T(C7 JJ) =z +g(cvx)’ HQ(C,«T)HOO <e)

where the co-norm constraint is used to ensure a small perturbation (within an L-ball with radius ¢)
of the clean image for optimal visual stealthiness. The proposed class-conditional generative trigger
gives the adversary a flexible control for systematically creating the trigger for any target class, as
illustrated in Figure[T]

Given the class-conditional generative trigger function T'(c, x), we need to learn its parameters £
and to poison the classifier f. Recall that the objective is to preserve the clean-data performance
while successfully performing the backdoor attack. Inspired by recent works in learning input-aware
attacks [8 34} 10, [11]], we propose to jointly learn 7'(c, «) and poison f via the following constrained
optimization objective:

min 0 Lfo(@)y) ta Y Lfo(Tew(c0)0) 3)
(z,y)ES. (a:7y7)£€Sp
c#y

st & =agmin Y L(fo(Te(e,x)),0) = Bllgle, 2)ll2

(z,y)ESp c#y

In this problem, an optimal generative trigger function T¢~ is associated with an optimally poisoned
classifier. The poisoning process seeks the parameters 6 of the classifier to minimize a linear
combination of the clean accuracy and backdoor objectives. At the same time, the generative trigger
function learns to optimally craft the backdoor images, conditioned on arbitrary target labels. To
avoid trivial solutions (i.e., sparse and small trigger patterns), we also maximize the Ls-norm of the
trigger pattern (the output of g) within the L.,-ball. This allows the generated trigger patterns to
stretch over the entire input image. The hyperparameter « balances the mixing weights of the clean
and backdoor objectives in training f while the hyperparameter 8 controls the effect of the penalty
on sparser and smaller trigger patterns.

4.4 Marksman’s Optimization

To solve the non-convex, constrained optimization in Equation (3, we can alternately update f and
T while fixing the other one. However, since our ultimate goal is to learn the poisoned f, constantly
updating 7" will cause the training process to converge very slowly. Inspired by some commonly
accepted optimization tricks in reinforcement learning [32], we propose to update 7" less frequently.
During training, f is updated at every alternating step, while 7" is only updated once in several steps,
e.g., after every training epoch. The backdoor samples to train f at a step are generated using T’
with parameter £ updated in the previous epoch. We observe that this approach effectively stabilizes
the training process and allows f to reach the optimal clean-data and attack performance in fewer
training epochs. The details are presented in Algorithm [I]

5 Evaluation

5.1 Experimental Setup

We demonstrate the effectiveness of the pro-
posed Marksman backdoor through comprehen-
sive experiments on several widely-used datasets Input:

Algorithm 1 Marksman Optimization Algorithm

for backdoor attack study: MNIST, CIFAR10, (S ={(zi,y:),i=1,...., N}

GTSRB, and TinyImagenet (T-IMNET). We (2) training iterations K

follow the previous works [41} 44, 5| [35] and (3) iterations k to update T’

consider various architectures for the classifier (4) learning rate ¢ and 7

f: a CNN model [35] for MNIST, Pre-activation (5) batch size b, hyperparameters o and /3
Resnet18 (PreActResnet18) [16] for CIFAR10 Qutput:

and GTSRB, and Resnet18 [16] for T-IMNET. learned parameters & for T" and 6 for f

As mentioned in previous sections, to the best of
our knowledge, Marksman is the first work that
studies multi-trigger and multi-payload back-
door with the capability of misclassifying an
input to any target class. For comparison, we Sample S, = {(z,¢) : c # y, (z,y) € S}
design three baseline approaches, PatchMT, Re- : 0 « 0 — v VG(ZSC L(fo(x),y) +
fooIMT and WaNetMT, by injecting different ad s, L(fo(Te(c,2)),c))
trigger patterns repeatedly. for c'hffere.nt. target ¢; £« &— ’YTVg(Z s, L(fe(Té(g,;))7 c) —
classes using recently studied trigger injection

. : £er Bllg(e,z)|l2)
mechanisms. PatchMT is a multi-trigger and S . .
multi-payload extension of BadNets [[15] where 7 f < §if %k = 0,5 ¢ j +1
we use a different patch-based trigger pattern 8 until j = K
for a target class. Similarly, ReFoolMT is a
multi-trigger and multi-payload extension of ReFool [29] where we use different reflection images
for different target classes. Finally, WaNetMT is a multi-trigger and multi-payload extension of
WaNet [35] where we randomly sample different combinations of the control-grid size k (between 4
and 8) and the warping strength s (between 0.5 and 1.0) for different target classes.

1: Initialize f and &, £ < &, j + 0

2: repeat

3: Sample minibatch S, = {(z,y)} C S
4:

5

Hyperparameters: For each method, we train the classifiers using the momentum SGD optimizer
(initial learning rate of 0.01, and after every 100 epochs, the learning rate is decayed by a factor of
0.1). For Marksman, we train f and 7 alternately but update 7" slowly after every epoch. To achieve a
high-degree visual stealthiness of Marksman, we select € as small as 0.05 for all datasets. We perform
grid searches to select the best « and 5 using the CIFAR10 dataset and use these values for all the
experiments. We also observe that a value of « closer to 1.0 (specifically, around 0.8) achieves the
optimal poisoning objective (i.e., highest clean-data accuracy and best ASR). More details of the
experimental setup can be found in the supplementary material.

5.2 Effectiveness of Marksman

This section presents the attack success rates of Marksman and PatchMT. To evaluate the performance
in the multi-trigger multi-payload scenario, for each test sample (x,y), we enumerate all possible
target labels c other than the true label y and use the compared attack method to activate the backdoor
associated with these target labels. For each clean image, our attack only needs to feed it to the

trigger function with a specified target class for generating the image with the trigger. The attack is
considered successful for each input x and a target label ¢ when the f correctly predicts c.

5.2.1 Attack Performance

The clean-data accuracy (Clean) and attack success rates (Attack) of Marksman and the baselines
are presented in Tables[T|and [2] when poisoning 50% and 10% of the clean samples, respectively. As
we can observe from these tables, both PatchMT’s and ReFoolMT’s clean-data performances drop
significantly at a higher poisoning rate (50%), while their attack performances are very low (below
50%) at a lower poisoning rate (10%). As expected, when the number of labels in the classification
task is higher (e.g., 200 for T-IMNET), the attack’s success rates of PatchMT and ReFoolMT also
decrease (e.g., reaching the performance, ~ 0.003, of a random attack on 10% poisoning rate). For
WaNetMT, the clean-data accuracy is better at the 50% poisoning rate, but there is still a non-trivial
performance degradation, compared to Marksman. At the lower poisoning rate of 10%, which is a
more reasonable rate, the attack performance is significantly worse than Marksman.

Table 1: Clean and attack performance with 50% poisoning rate. Red values represent the performance
drop w.r.t the original benign classifier.

PatchMT RefoolMT WaNetMT Marksman
Dataset

Clean Attack Clean Attack Clean Attack Clean Attack

MNIST | 0.967/0.022 | 0.996 | 0.942/0.047 | 0.893 |0.970/0.019 | 0.909 | 0.988/0.001 | 1.000
CIFAR10 | 0.882/0.058 | 0.990 | 0.910/0.030 | 0.984 |0.920/0.020 | 0.999 |0.941/0.007| 1.000
GTSRB | 0.943/0.051 | 0.993 | 0.909/0.085 | 0.977 |0.962/0.032 | 0.999 |0.986/0.001 | 0.999
T-IMNET | 0.527/0.052 | 0.951 | 0.429/0.150 | 0.843 |0.548/0.031 | 0.999 | 0.577/0.002 | 0.999

Table 2: Clean and attack performance with 10% poisoning rate. Red values represent the relative
performance drop w.r.t the original benign classifier.

Dataset

\ PatchMT \ RefoolMT \ WaNetMT \ Marksman
| Clean [Attack| Clean [Attack| Clean [Attack| Clean [Attack

MNIST | 0.975/0.014 | 0.298 | 0.977/0.012 | 0.341 |0.969/0.020 | 0.784 | 0.983/0.006 | 1.000
CIFAR10 | 0.933/0.007 | 0.487 | 0.934/0.006 | 0.730 | 0.894/0.046 | 0.308 | 0.943/0.005| 1.000
GTSRB | 0.958/0.031 | 0.376 |0.951/0.043 | 0.802 |0.953/0.041 | 0.012 | 0.979/0.010 | 0.997
T-IMNET | 0.577/0.002 | 0.003 | 0.575/0.004 | 0.137 |0.562/0.017 | 0.376 | 0.575/0.004 | 0.999

In comparison, Marksman is highly effective: 100% attack success rates on almost all datasets.
Marksman can achieve such high ASRs without sacrificing the clean-data performance (only a trivial
drop in performance). Since the objective of our method is to have the capability of misclassifying a
given input to any target class during inference, we also report the attack success rate for each class
of both Marksman and the baselines in Table[3 It can be seen that the Marksman achieves excellent
performance for any arbitrary target classes. The success of Marksman confirms the threat of such
an attack with a significantly more flexible and powerful payload than the previous studies in the
backdoor domain and encourages future research on the corresponding defensive approaches.

Table 3: Attack success rate for each target class with 10% poisoning rate.

MNIST 1 2 3 4 5 6 7 8 9 10

PatchMT | 0.373 | 0.209 | 0.162 | 0.267 | 0.288 | 0.390 | 0.149 | 0.368 | 0.172 | 0.621
ReFoolMT | 0.720 | 0.230 | 0.954 | 0.006 | 0.050 | 0.131 | 0.420 | 0.882 | 0.031 | 0.009
WaNetMT | 0.726 | 0.853 | 0.820 | 0.760 | 0.721 | 0.799 | 0.649 | 0.874 | 0.791 | 0.817
Marksman | 0.997 | 0.998 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.998 | 0.998

CIFAR10 1 2 3 4 5 6 7 8 9 10

PatchMT | 0.397 | 0.362 | 0.449 | 0.744 | 0.418 | 0.534 | 0.725 | 0.369 | 0.384 | 0.399
ReFoolMT | 0.787 | 0.844 | 0.707 | 0.791 | 0.804 | 0.725 | 0.864 | 0.654 | 0.569 | 0.532
WaNetMT | 0.290 | 0.330 | 0.316 | 0.428 | 0.324 | 0.391 | 0.241 | 0.398 | 0.242 | 0.354
Marksman | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000

5.2.2 Attack Performance with Different Poisoning Rates

We can understand the challenges in adapting the existing backdoor attack methods for the multi-
trigger multi-payload scenario and the effectiveness of Marksman by investigating the clean and
backdoor performance of PatchMT and Marksman, respectively. Figure [2] shows the clean-data
accuracy and ASR for different poisoning rates (i.e., |S,|/(|Sp| + |S¢|)) between 5% and 50%. We
can observe that, for PatchMT, the classifier either performs noticeably worse on clean data with
higher attack performance or preserves the clean-data performance with significantly lower ASR. In
contrast, the performance of Marksman is consistent across different poisoning rates.

MNIST CIFAR10 GTSRB
1.0 Wr———"—"—"—""""" 1.0
A S SO Sy ey « - S y—— ==
g -7 Lol == < P
3,09 - >,0.99 K - 3094 g
8 _-="" =—— Marksman/C 3 h — Marksman/C 4 & 1 —— Marksman/C
5 ,' —— Marksman/B | 5 ,’ —— Marksman/B | 5 ,' —— Marksman/B
§°-8 ! —=- PatchMT/C é(‘io'a' ! —=- PatchMT/C EO 8 ! —=- PatchMT/C
] === PatchMT/B 1 ===~ PatchMT/B] ==+ PatchMT/B
074—1 ; ‘ ‘ 0741 ; ‘ ‘ 0.74—1 ; ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Poisoning Rate Poisoning Rate Poisoning Rate

Figure 2: Clean (/C) and attack (/B) performance with different poisoning rates.

5.2.3 Performance of Trained Trigger Function on Other Models

While Marksman’s threat model assumes that the adversary has full control of the training process, in
this section, we demonstrate that the learned class-conditional trigger function can be used to attack
other classifiers. In other words, Marksman can still be effective when the adversary has only access
to the training data but does not control the training process or knows the internal structure of f. To
perform the experiments, we freeze the parameters of the class-conditional trigger function 7 after it
is jointly learned with a classifier f, then generate poisoned samples to attack another classifier f
whose network can be either similar or different from f’s architecture.

Table] shows the clean and attack performance when 7' is jointly trained with a classifier (f), e.g.,

PreActResnet18, and f is another classifier with the same network architecture, i.e., PreActResnet18,
or with a different network architecture, i.e., Vggl1, either of which is trained from scratch on the
poisoned data created by 7. It can be seen that Marksman is still effective: nearly optimal clean-data
performance and almost 100% ASR. This transferability of 1" after it is learned is very interesting. We
conjecture that the training process of 7 is related to approximating adversarial example generation
of f that shows decent transferability [27,43], while the detailed investigation is beyond the scope of
this paper. Note that the trigger is produced by the trigger generator/function that is the secret held by
the adversary, which is qualitatively different from adversarial examples.

Table 4: Clean and attack performance on other models. Red values represent the relative performance
differences in attacks under the Marksman’s threat model (i.e., full control of the training process).

f : PreActResnet18 f:Vgell

Dataset | f: PreActResnetl8 f:Vggll f:Vggll f : PreActResnet18
Clean Attack Clean Attack Clean Attack Clean Attack

0.935 1.000 0.904 0.999 0.911 0.991 0.939 0.996
0.005 0.01 0.004 0.008 0.007 0.005 0.001 0.006
0.986 0.999 0.973 0.997 0.976 0.995 0.987 0.996
0.008 0.006 0.006 0.004 0.006 0.007 0.007 0.003

CIFAR10

GTSRB

5.3 Performance against Defensive Measures

In this section, we evaluate the backdoor-injected classifiers by the proposed Marksman framework
against popular defensive mechanisms, including Neural Cleanse (model mitigation defense) [43]],
STRIP (detection based defense) [[13], and Spectral Signature (latent-space inspection) [44]]. It is

important to note that these defenses are originally designed for conventional backdoor attacks with a
weaker capability that are only able to misclassify an input to a specific target class.

5.3.1 Model Mitigation: Neural Cleanse

We evaluate the robustness of Marksman against Neural Cleanse, a widely-used defensive method
based on the pattern optimization approach. Specifically, for every possible label, Neural Cleanse
learns the optimal trigger pattern to attack this target label. It then quantifies whether any of the
learned trigger patterns is an outlier via a metric called Anomaly Index. Neural Cleanse determines if
a model has a backdoor if the Anomaly Index is greater than 2; otherwise, the model is benign.

The results of the benign classifier and the backdoor-injected classifier by Marksman are presented in
Figure3] It can be observed that Marksman bypasses the Neural Cleanse on all datasets.

N
wv

4, Benign @@= Marksman

X
N
o

!

=
o
"

Anomaly Inde
SEESEESEESE
NN
FHHFH

EEEN

1

MNIST CIFAR1I0 GTSRB T-IMNET

Figure 3: Performance against Neural Cleanse. The benign model is trained without backdoor attacks.
A model with Anomaly Index > 2 is considered to be backdoor-injected.

5.3.2 Input Perturbation: STRIP

Next, we evaluate the robustness of Marksman against STRIP [13]], a representative inference-phase
detection method, which perturbs the input image and calculates the entropy of the predictions of
these perturbed images. STRIP determines if an image is a backdoor input by relying on the fact that
the entropy of the perturbed backdoor input tends to be lower than that of the clean one.

We plot the entropy of clean and backdoor images computed by STRIP in Figure] As we can
observe from this figure, the entropy distributions of the backdoor and clean samples are similar.
Thus, Marksman can also bypass the STRIP defense.

mm Clean
Backdoor

mm Clean

I1 Backdoor

1 N .
1.0 15 2.0 25 25 3.0 35 4.0 10 12 14 65 70 75 80
Entropy Entropy Entropy Entropy

== Clean | = clean 020
Backdoor 204 Backdoor

it
e
o
&

0.101

Probability
o
=
S
Probability

o
°
&

=4
°
<3

(a) MNIST (b) CIFAR10 (c) GTSRB (d) T-IMNET

Figure 4: Performance against STRIP.

5.3.3 Latent-space Inspection: Spectral Signature

Spectral Signature [44] is another representative defensive approach that inspects the latent space
of the trained classifier. Spectral Signature first finds the top-right singular vector of the covariance
matrix of the latent vectors using a small subset of clean samples. Then it calculates the correlation of
each sample to this singular vector. Those with the outlier scores are identified as backdoor samples.

We follow the same experiments in and select 5,000 clean samples and 500 backdoor samples for
each dataset. Then, we calculate the correlation scores and plot the histograms of the scores for both
sets of samples. As we can observe in Figure[3] there is no clear separation between the correlation
scores of the backdoor samples and the clean samples, validating the stealthiness of the proposed
Marksman backdoor.

w
3
S

3

3

m Clean
W Backdoor

0 5 10 -10 0 10 1 -5 0 5
Right Singular Vector Correlation with Top Right Singular Vector Correlation with Top Right Singular Vector

. Clean

=
S
3

s
S
S

3

5

eoN oW
S 8
s S
- N oW B o»
5 3 8
3 8 8
[
s &
8 3

)

S
S
5

Number of samples
Number of samples
Number of samples
Number of samples

0- 0 0

-10
Correlation with Top Right Singular Vector Correlation with Top

(a) MNIST (b) CIFAR10 (c) GTSRB (d) T-IMNET

Figure 5: Performance against Spectral Signature.

5.3.4 Performance against Fine-Pruning

We evaluate the robustness of Marksman against Fine-Pruning [26], which is a model analysis based
defense. Fine-Pruning finds a learned classifier’s dormant neurons (with very low activations) given a
small clean dataset. Then it gradually prunes these dormant neurons to mitigate the backdoor without
affecting the inference accuracy.

We evaluate Marksman against Fine-Pruning by plotting the clean-data accuracy and ASR when
different numbers of the dormant neurons are pruned in Figure[6] We can observe that the ASR drops
considerably less than the drop in clean-data performance at all pruning ratios. This suggests that the
Fine-Pruning is ineffective against Marksman.

MNIST CIFAR10 GTSRB T-IMNET

90 \ 80
80
60

— Clean —— Clean 20| — Clean

=
S
S
=
=)
3
o
3
=
o
3

@

3
®
3

Y
3

Accuracy
Accuracy
o
g
Accuracy
Accuracy

IS
S

50| —— Clean

IS
S

N
S

40 | — Backdoor —— Backdoor —— Backdoor —— Backdoor
0 20 40 60 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Filters Pruned Filters Pruned Filters Pruned Filters Pruned

Figure 6: Performance against Fine-Pruning.

5.4 Visualization of Backdoor Attack Samples from Marksman

This section presents the backdoor samples with different attack target classes that are different from
the true labels (class ‘2’ for MNIST, class ‘0’-plane for CIFAR10), as shown in Figure[7] We can
generate a different trigger for each target class to activate the corresponding payload. We can observe
that Marksman’s attack images are visually indistinguishable from the original images for all target
classes, even with such an enhanced adversarial capability.

oo
5 ol o A Vil

SRPS R R e P Rp R e

0 1 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) MNIST (b) CIFAR10

Figure 7: Sample attack images: Clean (Original), Residual (Amplified 50), and Backdoor samples
in 1st, 2nd and, 3rd rows, respectively. The target attack labels are in the last rows.

6 Conclusion

In this paper, we proposed a novel backdoor attack, Marksman, with a much more powerful payload
where the adversary can arbitrarily choose the target class given any input during inference. This
framework is able to effectively and efficiently learn the trigger function and inject the backdoor
into a DNN model. Our experimental results over popular datasets demonstrate the effectiveness of
Marksman and the stealthiness against the existing representative defenses.

10

References

[1] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In
Michael Bailey and Rachel Greenstadt, editors, Proceedings of the 30th USENIX Security
Symposium (USENIX Security), 2021.

[2] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in CNNs by
training set corruption without label poisoning. In Proceedings of the 2019 IEEE International
Conference on Image Processing (ICIP), pages 101-105, Taipei, 2019.

[3] Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In Bhavani M. Thuraisingham, Battista Biggio, David Mandell Freeman,
Brad Miller, and Arunesh Sinha, editors, Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security (AlSec@CCS), pages 3—14, Dallas, TX, 2017.

[4] S Sibi Chakkaravarthy, D Sangeetha, and V Vaidehi. A survey on malware analysis and
mitigation techniques. Computer Science Review, 32:1-23, 2019.

[5] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian M. Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks
by activation clustering. In Proceedings of the Workshop on Artificial Intelligence Safety,
Honolulu, HI, 2019.

[6] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI), pages 4658-4664,
Macao, China, 2019.

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[8] Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack of
neural networks by controlled detoxification. In Proceedings of the thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI), pages 1148—1156, Virtual Event, 2021.

[9] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent
modification. In Advances in Neural Information Processing Systems (NeurIPS), pages 18944—
18957, virtual, 2021.

[10] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. LIRA: learnable, imperceptible and robust
backdoor attacks. In Proceedings of the 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 11946-11956, Montreal, Canada, 2021.

[11] Khoa D Doan, Yingjie Lao, Peng Yang, and Ping Li. Defending backdoor attacks on vision
transformer via patch processing. arXiv preprint arXiv:2206.12381, 2022.

[12] Jacob Dumford and Walter J. Scheirer. Backdooring convolutional neural networks via targeted
weight perturbations. In Proceedings of the 2020 IEEE International Joint Conference on
Biometrics (IJCB), pages 1-9, Houston, TX, 2020.

[13] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranasinghe, and
Surya Nepal. STRIP: a defence against trojan attacks on deep neural networks. In Proceedings
of the 35th Annual Computer Security Applications Conference (ACSAC), pages 113—-125, San
Juan, PR, 2019.

[14] Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients
- how easy is it to break privacy in federated learning? In Advances in Neural Information
Processing Systems (NeurIPS), virtual, 2020.

[15] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230-47244, 2019.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, Las Vegas, NV, 2016.

11

[17] W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. MetaPoison:
Practical general-purpose clean-label data poisoning. In Advances in Neural Information
Processing Systems (NeurlPS), virtual, 2020.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto. 2009, 2009.

[19] Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models.
arXiv preprint arXiv:2004.06660, 2020.

[20] Yingjie Lao, Weijie Zhao, Peng Yang, and Ping Li. DeepAuth: A DNN authentication framework
by model-unique and fragile signature embedding. In Proceedings of the Thirty-Sixth AAAI
Conference on Artificial Intelligence (AAAI), Virtual, 2022.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[22] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. Invisible
backdoor attacks on deep neural networks via steganography and regularization. /[EEE Trans.
Dependable Secur. Comput., 18(5):2088-2105, 2021.

[23] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference
on Learning Representations, 2020.

[24] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shutao Xia. Rethinking
the trigger of backdoor attack. arXiv preprint arXiv:2004.04692, 2020.

[25] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. DeepPayload: Black-
box backdoor attack on deep learning models through neural payload injection. In Proceedings
of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE), pages 263—
274, Madrid, Spain, 2021.

[26] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against back-
dooring attacks on deep neural networks. In Proceedings of the 21st International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID), pages 273-294, Heraklion, Crete,
Greece, 2018.

[27] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[28] Yingqi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2018.

[29] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In Proceedings of the 16th European Conference on Computer
Vision (ECCV), Part X, pages 182-199, Glasgow, UK, 2020.

[30] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In Proceedings of the 2017 IEEE
International Conference on Computer Design (ICCD), pages 45-48, Boston, MA, 2017.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proceedings of the 6th
International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-
level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[33] Luis Mufioz-Gonzélez, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with
back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security (AlSec@CCS), pages 27-38, Dallas, TX, 2017.

12

[34] Tuan Anh Nguyen and Anh Tuan Tran. Input-aware dynamic backdoor attack. In Advances in
Neural Information Processing Systems (NeurIPS), virtual, 2020.

[35] Tuan Anh Nguyen and Anh Tuan Tran. WaNet - imperceptible warping-based backdoor attack.
In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual
Event, Austria, 2021.

[36] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. In Advances in Neural Information Processing Systems (NeurIPS), pages 14004—
14013, Vancouver, Canada, 2019.

[37] Ahmed Salem, Rui Wen, Michael Backes, Shiging Ma, and Yang Zhang. Dynamic backdoor
attacks against machine learning models. arXiv preprint arXiv:2003.03675, 2020.

[38] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor
Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural

networks. In Advances in Neural Information Processing Systems (NeurIPS), pages 6106-6116,
Montréal, Canada, 2018.

[39] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 3—18. IEEE, 2017.

[40] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
32:323-332,2012.

[41] Te Juin Lester Tan and Reza Shokri. Bypassing backdoor detection algorithms in deep learning.
In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P), pages
175-183, Genoa, Italy, 2020.

[42] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan taxonomy and
detection. IEEE Design & Test of Computers, 27(1), 2010.

[43] Florian Tramer, Nicolas Papernot, lan Goodfellow, Dan Boneh, and Patrick McDaniel. The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[44] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
Advances in Neural Information Processing Systems (NeurIPS), pages 8011-8021, Montréal,
Canada, 2018.

[45] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), pages 707-723, San
Francisco, CA, 2019.

[46] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
Advances in Neural Information Processing Systems, 34:16913—16925, 2021.

[47] Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny Imagenet challenge, 2017.

[48] Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and Mark M. Tehranipoor.
Hardware trojans: Lessons learned after one decade of research. ACM Trans. Design Autom.
Electr. Syst., 22(1):6:1-6:23, 2016.

[49] Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu. One-to-n & n-to-one: Two advanced
backdoor attacks against deep learning models. IEEE Trans. Dependable Secur. Comput.,
19(3):1562-1578, 2022.

[50] Mingfu Xue, Shifeng Ni, Yinghao Wu, Yushu Zhang, Jian Wang, and Weiqiang Liu. Im-

perceptible and multi-channel backdoor attack against deep neural networks. arXiv preprint
arXiv:2201.13164, 2022.

13

[51] Peng Yang, Yingjie Lao, and Ping Li. Robust watermarking for deep neural networks via
bi-level optimization. In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 14821-14830, Montreal, Canada, 2021.

[52] Weijie Zhao, Yingjie Lao, and Ping Li. Integrity authentication in tree models. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages
2585-2593, Washington, DC, 2022.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the supplementary material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 9 of the supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report these stats in the supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the supplementary material.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] All sources are cited.
(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Codes are submitted as supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

This document provides additional details, analysis, and experimental results. We begin by discussing
the detailed experimental setup and implementation of the methods in Section|/| Then, we provide
additional empirical experiments in Section [§] Finally, we discuss the limitation of our work in
Section [0l

7 Detailed Experimental Setup

To evaluate our method, we use four datasets, MNIST, CIFAR10, GTSRB (German Traffic Sign
Recognition Benchmark), and T-IMNET, to evaluate our method. Note that MNIST, CIFARI10,
and GTSRB have been widely used in the literature of backdoor attacks on DNN. On the other
hand, the use of a more complex dataset with more classes, T-IMNET, enables better evaluation
for the scalability of multiple-trigger and multi-payload backdoor. We present the details of the our
experiments on these datasets below:

* MNIST [21]: We applied random cropping and random rotation as data augmentation for
the training process. During the evaluation stage, no augmentation is applied. The dataset
can be found in: http://yann.lecun.com/exdb/mnist

* CIFARI10 [18]]: We applied random cropping, random rotation, and random horizon-
tal flilp as data augmentation for the training process. The dataset can be found in:
https://www.cs.toronto.edu/ ~kriz/cifar.html

* GTSRB [40]: In our experiments, GTSRB input images are all resized into 32 x
32 pixels, then applied a similar data augmentation as that of CIFARIO in train-
ing. In the evaluation stage, no augmentation is used. The dataset can be found in:
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

o T-IMNET [47]. Input images are all resized into 64 x 64 resolution. A similar data
augmentation as that of CIFAR10 is applied in the training stage. No augmentation is
used in the evaluation stage. The dataset can be found in: http://cs23 1n.stanford.edu/tiny-
1magenet-200.zip

Our experiments are conducted in multiple Linux machines, each of which has 128 cores, 1536GiB
of RAM, 8 A100-PCIE-40GB GPUs. The CUDA version is 11.2.

7.1 Class-Conditional Trigger Generator

For all experiments of Marksman, we model the class-conditional noise generator (trigger-pattern
generator) g as an autoencoder, whose input is an image and a learnable embedding of a target class.
The architecture of the autoencoder is presented in Table 3}

Table 5: Autoencoder-based class-conditional trigger-pattern generator network. The size of the class
embedding vector equals the number of possible labels (i.e., 10 for MNIST and CIFAR10, 43 for
GTSRB, and 200 for T-IMNET).

Layer Filters Filter Size Stride Padding Activation

Conv2D 16 3x3 3 1 BatchNorm2D+ReLLU

MaxPool2d - 2 x2 2 0 -
Conv2D 64 3x3 2 1 BatchNorm2D+ReLLU

MaxPool2d - 2 x2 2 0 -
ConvTranspose2D 128 3x3 2 - BatchNorm2D+ReLU
ConvTranspose2D 64 5X%X5 3 1 BatchNorm2D+ReLLU
ConvTranspose2D 1 2x2 2 1 BatchNorm2D+Tanh

7.2 Classification Models
For MNIST, we use the same simple CNN classifier as in WaNet [35]] (detailed in Table [6). As

mentioned in the main paper, we use PreActResnet18 [16]] for CIFAR10 and GTSRB datasets, and
Resnet18 [[16]] for T-IMNET.

15

http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/ ~kriz/cifar.html
http://benchmark.ini.rub.de/?section= gtsrb&subsection=dataset
http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip

Table 6: CNN architecture for MNIST.
Padding Activation

Layer Filters Filter Size Stride
Conv2D 32 3x3 2 1 ReLU
Conv2D 64 3x3 2 0 ReLU
Conv2D 64 3x3 2 0 ReLU
Linear 512 - - - ReLU
Conv2D 10 - - - Softmax

7.3 Training Hyperparameters

Table 7] provides additional details to Section 5.1 in the main paper.

Table 7: Experimental setup and parameters for the datasets we used in this paper.

MNIST CIFAR10 GTSRB T-IMNET
Optimizer SGD SGD SGD SGD
Batch Size 128 128 128 128
Learning Rate 0.01 0.01 0.01 0.01
Learning Rate Schedule | 10,20,30,40 | 100,200,300,400 | 100,200,300,400 | 100,200,300,400
Learning Rate Decay 0.1 0.1 0.1 0.1
Training Epochs 50 epochs 500 epochs 500 epochs 500 epochs
Clean Accuracy 0.99 0.94 0.99 0.58

As indicated in Section 5.1 of the main paper, we perform grid searches to select the best « and /3
values using the CIFAR10 dataset. The selected values are 0.8 for o and 1.0 for 5. We use these

values for all the experiments

8 Additional Experimental Results

We first provide, in Section additional attack performance when varying the poisoning rate
for ReFoolMT and WaNetMT, as well as for PatchMT on T-IMNET. In Section[8.2] we provide a

qualitative analysis of the hyperparameters a and 3 on the CIFAR10 dataset. Finally, we present the
statistical errors for the main experiments of the paper in Section [8.3]

8.1 Additional Clean & Attack Performance Results with Different Poisoning Rates

We present the attack performance while varying the poisoning rates for PatchMT on T-IMNET in
Figure[8] and the other baselines (ReFoolMT and WaNetMT) in Figure[9] We can observe a similar
phenomenon (i.e., either performs noticeably worse on clean data with higher attack performance or
preserves the clean-data performance with significantly lower ASR) for PatchMT on T-IMNET in
Figure §]and for ReFoolMT on all the datasets in Figure[0] For WaNetMT, its clean-data performance
is consistently sub-optimal, suggesting that it is more difficult to perform the multi-trigger and

multi-payload attacks using the warping mechanism.

MNIST CIFAR10 GTSRB T-IMNET
L0 == — O 1.0 10
== o meanmmmmm—— T -l - .
09| __-==" 0.9 ,F _____________ 0.9 o~ 0.9 ,,/
% % / % : g -
’ 1
Los8 H <08 Los / <08|— Marksmanic <7
5 1 o ! z ! 3 |—— Marksman/B -
©0.7 ! go7| [/ Go7 ! ©0.7|=--- ;atcmgg I
=1 =1 7 S —=—- Patc 7
Soe| Sos|/ Sos / Sos ’
< ! — Marksman/C | < |/ — Marksman/C | < I — Marksman/C | <" =z —————F———
! —— Marksman/B 0.5 —— Marksman/B ! —— Marksman/B| __| TTT==< 7T
05 1 —=—- PatchMT/C —=- PatchMT/C 0.5 1 —=—- PatchMT/C 0.5 /
/ —=- PatchMT/B —=- PatchMT/B / —=- PatchMT/B ’
0.4 0.4 0.4 L
0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Poisoning Rate

o
=

0.1 0.2 0.3 0.4 0.5
Poisoning Rate

Poisoning Rate

Figure 8: Clean (/C) and attack (/B) performance with different poisoning rates for Marksman and
PatchMT.

Poisoning Rate

16

MNIST CIFAR10 T-IMNET

—— Marksman/C -
—— Marksman/B —
- ReFoolMT/C Ve
- ReFoolMT/B e

- WaNetMT/C *
- WaNetMT/B

T

o

®

AY
o
@

e
<

Marksman/C
Marksman/B

Accuracy/ASR
\,

o
3
\,
Accuracy/ASR
°
3
Accuracy/ASR

—— Marksman/C

°
S
\

—— Marksman/B
ReFoolMT/C

T

Accuracy/ASR

ReFoolMT/C
ReFoolMT/B ReFoolMT/B
e H WaNetMT/C 0.5 : WaNetMT/C : .
----- WaNetMT/B =---- WaNetMT/B H =---- WaNetMT/B J 4

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 : 0.1 0.2 0.3 0.4 0.5
Poisoning Rate Poisoning Rate Poisoning Rate Poisoning Rate

o
0

L4
/

o
o

o
IS
o
=
<
=
o
S

Figure 9: Clean (/C) and attack (/B) performance with different poisoning rates for Marksman,
ReFoolMT, and WaNetMT.

8.2 Hyperparameter Analysis

As indicated in Section 5.1 of the main paper, we perform grid searches to select the best « and 3
using the CIFAR10 dataset and use these values for all the experiments. However, we additionally
present the qualitative analysis of the hyperparameters « and 3 in Figure[T0] As we can observe,
lower values of « result in lower clean-data accuracy, while an optimal value is closer to 1.0 (around
0.8). Note that when o = 1.0, the classifier is not poisoned. Thus, the ASR drops to 0. On the other

hand, clean and attack performances are not very sensitive to the values of 3. In our experiments, we
set 5 = 1.0.

1.0 - - 1.0 1.0 1.0
0.9 0.9 0.9 0.9
> 0.8 0.8 > 0.8 0.8
% o % o
—_ —_
8 0.7 0.7 2 8 0.7 0.7 2
Q Q
< 0.6 0.6 < 0.6 0.6
0.5 0.5 0.5 0.5
0.4 —L0.4 0.4 0.4
0.2 04 06 08 1.0 0.0 25 50 7.5 10.0
(a) Varying o (8 = 1.0) (b) Varying S8 (o = 0.8)

Figure 10: Clean and attack performance when varying a and /3 (while keeping the other fixed) on
CIFARI1O0 dataset.

8.3 Statistical Importance

We present the statistical errors in our experiments in Figure[IT] As we can observe, most methods,
except for ReFoolMT on MNIST, have very narrow (99%) confidence intervals in all experiments.

We also verify that the superior performance of Marksman is statistically significant with a p-value
less than 0.01.

MNIST CIFAR10 GTSRB T-IMNET
: 1.0

o 1.00 «l o« 1.001 o« I
%) %)) %)
< 0.954 < < 0.954 < 08
g g g . g mmm Clean
5 0.909 5 0. - 5 0.90-] . Soe mmm Backdoor
S S S S
< .g5-| . Clean <0385 mm Clean < g5 . Clean <

mmm Backdoor mmm Backdoor mmm Backdoor 0.4

0.80-

o
@
3

< < N
e
& g

AN
R
NS A
W N

NS « «
’&‘b«\'a o N\ w,Xoo\\'\ " ‘\exV“
W

& R
\l\’b“ﬁ«\ & o o©

« «
W o ‘\Q\V“

Y N
@ o
A& X
Wt A

< <
< o @ \\@@“
<

Figure 11: Performance and the error bars (confidence intervals).

8.4 Perfformance against NAD and ANP

We evaluate the robustness of Marksman against two representative post-training defenses, Neural
Attention Distillation (NAD) and Adversarial Neuron Pruning (ANP) [46]]. We follow the

17

same experimental settings of NAD and ANP, which assumes a small subset of clean data (5%).
Table [8] show the clean-data Accuracy and ASR of the poisoned models undergo the backdoor
erasing processes of NAD and ANP. As we can observe, for NAD, while ASR decreases, ACC
performance degrades even more significantly. This demonstrates that NAD’s defense is ineffective
against Marksman’s attack. For ANP, the defensive process does not significantly degrade the ASRs
of Marksman, while the ACCs also drop more significantly. Again, ANP is not effective against
Marksman’s attack.

Table 8: Performance against NAD and ANP.

NAD | ANP
Clean | Attack | Clean [Attack
CIFARI10 | 0.365 0.069 | 0.938 0.647
GTSRB ‘ 0.114 ‘ 0.022 ‘ 0.890 ‘ 0.651

Dataset ‘l

9 Limitations

To the best of our knowledge, Marksman is the first work that studies multi-trigger and multi-payload
backdoor with the capability of misclassifying an input to any target class. However, this assumes
that the adversary has the ability to embed digitally generated triggers into the images before feeding
them to the classifier. An interesting future direction is to extend the multi-trigger and multi-payload
scenario into physical attacks. Such evaluations can further assess whether Marksman is only a
hypothetical phenomenon or indeed a real-world threat.

Since this is the first work in this direction, there is no existing defense that targets the scenario
of Marksman, which can also be observed from our experiments that the existing representative
defensive methods are not effective against Marksman. On the other hand, these experiments do
not reasonably or effectively evaluate the performance of our approach. To this end, we encourage
future research on developing more powerful defenses to combat our stealthy backdoor attack with
significantly enhanced adversarial capabilities.

Societal Impacts: Our work on the backdoor attack is likely to increase the awareness and under-
standing of such vulnerability on neural networks. The proposed attack, if not appropriately used,
may bring security threats to the existing DNN applications. We believe our study is an important
step towards understanding the full capability of backdoor attacks. This knowledge will, in turn,
facilitate the further development of secure and trustworthy DNN models and powerful defensive
solutions.

18

	Introduction
	Background
	Backdoor Attacks
	Backdoor Defenses

	Threat Model
	Proposed Methodology: Marksman Backdoor
	Preliminaries
	Marksman's Payload: Arbitrary Attack Target Class
	Learning the Marksman's Trigger Function
	Marksman's Optimization

	Evaluation
	Experimental Setup
	Effectiveness of Marksman
	Attack Performance
	Attack Performance with Different Poisoning Rates
	Performance of Trained Trigger Function on Other Models

	Performance against Defensive Measures
	Model Mitigation: Neural Cleanse
	Input Perturbation: STRIP
	Latent-space Inspection: Spectral Signature
	Performance against Fine-Pruning

	Visualization of Backdoor Attack Samples from Marksman

	Conclusion
	Detailed Experimental Setup
	Class-Conditional Trigger Generator
	Classification Models
	Training Hyperparameters

	Additional Experimental Results
	Additional Clean & Attack Performance Results with Different Poisoning Rates
	Hyperparameter Analysis
	Statistical Importance
	Perfformance against NAD and ANP

	Limitations

