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ABSTRACT

Time-series learning is the bread and butter of data-driven clinical decision support,
and the recent explosion in ML research has demonstrated great potential in various
healthcare settings. At the same time, medical time-series problems in the wild are
challenging due to their highly composite nature: They entail design choices and
interactions among components that preprocess data, impute missing values, select
features, issue predictions, estimate uncertainty, and interpret models. Despite
exponential growth in electronic patient data, there is a remarkable gap between the
potential and realized utilization of ML for clinical research and decision support.
In particular, orchestrating a real-world project lifecycle poses challenges in engi-
neering (i.e. hard to build), evaluation (i.e. hard to assess), and efficiency (i.e. hard
to optimize). Designed to address these issues simultaneously, Clairvoyance pro-
poses a unified, end-to-end, autoML-friendly pipeline that serves as a (i) software
toolkit, (ii) empirical standard, and (iii) interface for optimization. Our ultimate goal
lies in facilitating transparent and reproducible experimentation with complex infer-
ence workflows, providing integrated pathways for (1) personalized prediction, (2)
treatment-effect estimation, and (3) information acquisition. Through illustrative ex-
amples on real-world data in outpatient, general wards, and intensive-care settings,
we illustrate the applicability of the pipeline paradigm on core tasks in the health-
care journey. To the best of our knowledge, Clairvoyance is the first to demonstrate
viability of a comprehensive and automatable pipeline for clinical time-series ML.

1 INTRODUCTION

Inference over time series is ubiquitous in medical problems [1–7]. With the increasing availability
and accessibility of electronic patient records, machine learning for clinical decision support has made
great strides in offering actionable predictive models for real-world questions [8, 9]. In particular,
a plethora of methods-based research has focused on addressing specific problems along different
stages of the clinical data science pipeline, including preprocessing patient data [10, 11], imputing
missing measurements [12–16], issuing diagnoses and prognoses of diseases and biomarkers [17–25],
estimating the effects of different treatments [26–31], optimizing measurements [32–36], capturing
uncertainty [37–41], and interpreting learned models [42–46]. On the other hand, these component
tasks are often formulated, solved, and implemented as mathematical problems (on their own), result-
ing in a stylized range of methods that may not acknowledge the complexities and interdependencies
within the real-world clinical ML project lifecycle (as a composite). This leads to an often punishing
translational barrier between state-of-the-art ML techniques and any actual patient benefit that could
be realized from their intended application towards clinical research and decision support [47–51].

Three Challenges To bridge this gap, we argue for a more comprehensive, systematic approach to de-
velopment, validation, and clinical utilization. Specifically, due to the number of moving pieces, man-
aging real-world clinical time-series inference workflows is challenging due the following concerns:
• First and foremost, the engineering problem is that building complex inference procedures involves

significant investment: Over 95% of work in a typical mature project is consumed by software tech-
nicals, and <5% addressing real scientific questions [52]. As a clinician or healthcare practitioner,
however, few resources are available for easily developing and validating complete workflows.
What is desired is a simple, consistent development and validation workflow that encapsulates all
major aspects of clinical time-series ML—from initial data preprocessing all the way to the end.

• Second, the evaluation problem is that the performance of any component depends on its context; for
instance, the accuracy of a prediction model is intimately tied to the data imputation method that pre-
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cedes it [13, 14]. As an ML researcher, however, current empirical practices typically examine the
merits of each component individually, with surrounding steps configured as convenient for ensuring
“all else equal” conditions for assessing performance. What is desired is a structured, realistic, and
reproducible method of comparing techniques that honestly reflects interdependencies in the gestalt.

• Lastly, the efficiency problem is that sophisticated designs tend to be resource-intensive to optimize,
and state-of-the-art deep learning approaches require many knobs to be tuned. As a clinical or ML
practitioner alike, this computational difficulty may be compounded by pipeline combinations and
the potential presence of temporal distribution shifts in time-series datasets [53]. What is desired is
a platform on which the process of pipeline configuration and hyperparameter optimization can be
automated—and through which new optimization algorithms to that effect may be built and tested.

Contributions We tackle all three issues simultaneously. The Clairvoyance package is a unified,
end-to-end, autoML-friendly pipeline for medical time series. (i) As a software toolkit, it enables
development through a single unified interface: Modular and composable structures facilitate rapid
experimentation and deployment by clinical practitioners, as well as simplifying collaboration and
code-sharing. (ii) As an empirical standard, it serves as a complete experimental benchmarking envi-
ronment: Standardized, end-to-end pipelines provide realistic and systematic context for evaluating
novelties within individual component designs, ensuring that comparisons are fair, transparent, and
reproducible. (iii) Finally, as an interface for optimization over the pipeline abstraction, Clairvoyance
enables leveraging and developing algorithms for automatic pipeline configuration and stepwise
selection, accounting for interdependencies among components, hyperparameters, and time steps.
Through illustrative examples on real-world medical datasets, we highlight the applicability of the
proposed paradigm within personalized prediction, personalized treatment planning, and personalized
monitoring. To the best of our knowledge, Clairvoyance is the first coherent effort to demonstrate
viability of a comprehensive, structured, and automatable pipeline for clinical time-series learning.

2 THE CLAIRVOYANCE PIPELINE

The Patient Journey Consider the typical patient’s interactions with the healthcare system. Their
healthcare lifecycle revolves tightly around (1) forecasting outcomes of interest (i.e. the prediction
problem), (2) selecting appropriate interventions (i.e. the treatment effects problem), and (3) arranging
followup monitoring (i.e. the active sensing problem). Each of these undertakings involve the full
complexity of preparing, modeling, optimizing, and drawing conclusions from clinical time series.
Clairvoyance provides model pathways for these core tasks in the patient journey (see Figure 1)
—integrated into a single pipeline from start to finish (see Figure 2). Formally, these pathways include:

• Predictions Path. Let {(sn,x1:Tn
)}Nn=1 denote any medical time-series dataset, where sn is the

vector of static features for the n-th patient, and x1:Tn

.
= {xn,t}Tn

t=1 is the vector sequence of
temporal features. One-shot problems seek to predict a vector of labels yn from (sn,xn,1:Tn

): e.g.
prediction of mortality or discharge, where yn ∈ {0, 1}. Online problems predict some target vector
yn,t from (sn,xn,1:t) at every time step: e.g. τ -step-ahead prediction of biomarkers yn,t ⊆ xn,t+τ .

• Treatment Effects Path. For individualized treatment-effect estimation [26–31], we additionally
identify interventional actions an,t ⊆ xn,t at each time step (e.g. the choices and dosages of pre-
scribed medication), as well as corresponding measurable outcomes yn,t ⊆ xn,t+τ . The learning
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Figure 1: Clairvoyance and the Patient Journey. The healthcare lifecycle revolves around asking (1) what out-
comes are most likely, (2) which treatments may best improve them, and (3) when taking additional measurements
is most informative. Utilizing both static and temporal data, Clairvoyance provides corresponding pathways for
personalized prediction of outcomes, personalized estimation of treatment-effects, and personalized monitoring.
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problem now consists in quantifying the (factual or counterfactual) potential outcomes yn,t+τ that
would result from any specific sequence of interventions and patient covariates (sn,xn,1:t,an,1:t).

• Active Sensing Path. In addition to mapping (already-measured) covariates to targets, the very
decision of what (and when) to measure is also important under resource constraints. In medical
settings, active sensing deals with balancing this trade-off between information gain and acquisition
costs [32–36]. With reference to some downstream task (e.g. predicting yn,t+1), the aim is to select
a subset of covariates Kn,t at each t to maximize the (net) benefit of observing {xn,t,k}k∈Kn,t

.

As a Software Toolkit Engineering complete medical time-series workflows is hard. The primary
barrier to collaborative research between ML and medicine seldom lies in any particular algorithm.
Instead, the difficulty is operational [6, 48, 54]—i.e. in coordinating the entire data science process,
from handling missing/irregularly sampled patient data all the way to validation on different popu-
lations [4, 55–60]. Clairvoyance gives a single unified roof under which clinicians and researchers
alike can readily address such common issues—with the only requirement that the data conform to
the standard EAV open schema for clinical records (i.e. patient key, timestamp, parameter, and value).

Under a simple, consistent API, Clairvoyance encapsulates all major steps of time-series modeling,
including (a.) loading and (b.) preprocessing patient records, (c.) defining the learning problem,
handling missing or irregular samples in both (d.) static and (e.) temporal contexts, (f.) conducting
feature selection, (g.) fitting prediction models, performing (h.) calibration and (i.) uncertainty
estimation of model outputs, (j.) applying global or instance-wise methods for interpreting learned
models, (k.) computing evaluation metrics, and (l.) visualizing results. Figure 2 shows a high-level
overview of major components in the pipeline, and Figure 3 shows an illustrative example of usage.
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Figure 2: Clairvoyance Pipeline Overview. (Dashed) purple cells denote pipeline inputs/outputs, and (solid) gray
cells denote pipeline components. Orange options give main pathway models, and blue options give surrounding
components. (Solid) gray arrows indicates pipeline workflow, and (dashed) orange the optimization interface.

All component modules are designed around the established fit-transform-predict paradigms, and
the modeling workflow is based around a single chain of API calls. In this manner, each stage in the
pipeline is extensible with little effort: Novel techniques developed for specific purposes (e.g. a new
state-of-the-art imputation method) can be seamlessly integrated via simple wrappers (see Appendix
B for an example of how this can be done for any existing method, e.g. from sklearn). This stepwise
composability aims to facilitate rapid experimentation and deployment for research, as well as simpli-
fying collaboration and code-sharing. Package documentation/tutorials give further software details.

As an Empirical Standard Evaluating any algorithm depends on its context. For instance, how well
a proposed classifier ultimately performs is invariably coupled with the upstream feature-selection
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""Configure Data Preprocessing""
preprocessing = PipelineComposer(
FilterNegative(...), OneHotEncoder(...),
Normalizer(...), ...)

""Configure Problem Specification""
specification = ProblemMaker(
problem_class=‘online’, max_seq_len=24,
label=[‘ventilator’], treatment=None, window=4, ...)

""Configure Data Imputation""
imputation = PipelineComposer(
Imputation(type=‘static’, model_name=‘...’, ...),
Imputation(type=‘temporal’, model_name=‘...’, ...))

""Configure Feature Selection""
feature_selection = PipelineComposer(
FeatureSelection(type=‘static’, model_name=‘...’, ...),
FeatureSelection(type=‘temporal’, model_name=‘...’, ...))

""Configure Pathway Model""
prediction_model = Prediction(model_name=‘...’,
parameter_dict={...}, ...)

""Load Datasets""
data_train, data_test = DataLoader.load(
static_dir=‘...’, temporal_dir=‘...’, ...),
DataLoader.load(static_dir=‘...’, temporal_dir=‘...’)

""Execute Pipeline""
for component in [preprocessing,

specification,
imputation,
feature_selection]:

data_train = component.fit_transform(data_train)
data_test = component.transform(data_test)

prediction_model.fit(data_train, ...)
test_output = prediction_model.predict(data_test, ...)

Figure 3: Illustrative Usage. A prototypical structure of API calls for constructing a prediction pathway model.
Clairvoyance is modularized to abide by established fit/transform/predict design patterns. (Green) ellipses de-
note additional configuration; further modules (treatments, sensing, uncertainty, etc.) expose similar interfaces.

method it is paired with [44]. Likewise, the accuracy of a state-of-the-art imputation method cannot
be assessed on its own: With respect to different downstream prediction models, more sophisticated
imputation may actually yield inferior performance relative to simpler techniques [13, 14]—especially
if components are not jointly optimized [15]. While current research practices typically seek to isolate
individual gains through “all-else-equal” configurations in benchmarking experiments, the degree of
actual overlap in pipeline configurations across studies is lacking: There is often little commonality in
the datasets used, preprocessing done, problem types, model classes, and prediction endpoints. This
dearth of empirical standardization may not optimally promote practical assessment/reproducibility,
and may obscure/entangle true progress. (Tables 6–7 in Appendix A give a more detailed illustration).

Clairvoyance aims to serve as a structured evaluation framework to provide such an empirical standard.
After all, in order to be relevant from a real-world medical standpoint, assessment of any single
proposed component (e.g. a novel ICU mortality predictor) can—and should—be contextualized in
the entire end-to-end workflow as a whole. Together, the ‘problem-maker’, ‘pipeline-composer’, and
all the pipeline component modules aim to simplify the process of specifying, benchmarking, and
(self-)documenting full-fledged experimental setups for each use case. At the end of the day, while
results from external validation of is often heterogeneous [2, 59, 61], improving transparency and
reproducibility greatly facilitates code re-use and independent verification [54, 56, 57]. Just as the
“environment” abstraction in OpenAI Gym does for reinforcement learning, the “pipeline” abstraction
in Clairvoyance seeks to promote accessibility and fair comparison as pertains medical time-series.
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Figure 4: Degrees of Optimizations.
Clairvoyance allows optimizing over
algorithms, pipelines, and time steps.

As an Optimization Interface Especially in cross-disciplinary
clinical research—and during initial stages of experimentation—
automated optimization may alleviate potential scarcity of exper-
tise in the specifics of design and tuning. The Clairvoyance pipe-
line abstraction serves as a software interface for optimization
algorithms—through which new/existing techniques can be ap-
plied, developed, and tested in a more systematic, realistic setting.
In particular, by focusing on the temporal aspect of medical time
series, this adds a new dimension to classes of autoML problems.

Briefly (see Figure 4), consider the standard task of hyperparam-
eter optimization (for a given model) [62]. By optimizing over
classes of algorithms, the combined algorithm selection and hyperparameter optimization (“CASH”)
problem [63–65] has been approached in healthcare settings by methods such as progressive sampling,
filtering, and fine-tuning [50, 66]. By further optimizing over combinations of pipeline components,
the pipeline selection and configuration (“PSC”) problem [67] has also been tackled in clinical model-
ing via such techniques as fast linear search (“FLASH”) [68] and structured kernel learning (“SKL”)
[67, 69]. Now, what bears further emphasis is that for clinical time series, the temporal dimension
is critical due to the potential for temporal distribution shifts within time-series data—a common
phenomenon in the medical setting (we refer to [53, 70, 71] for additional background). Precisely to
account for such temporal settings, the stepwise model selection (“SMS”) problem [71] has recently
been approached by such methods as relaxed parameter sharing (“RPS”) [53] as well as deep ker-
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(a) Example: SASH ‘decomposed’ as SMS (fulfilled he-
re by DKL) followed by combiner (stacking ensemble):

stepwise_pathway_models = []

"Optimize Each Class"
for klass in list_of_pathway_classes:
sms_agent = Stepwise(method=‘dkl’,
klass, data_train, metric)

models, scores = sms_agent.optimize(num_iters=300)

sms_model = StepwiseEnsemble(models, scores)
stepwise_pathway_models.append(sms_model)

"Ensemble Over Classes"
for model in stepwise_pathway_models:
for step in stepwise_model:
step.load_model(step.get_path(step.model_id))

pathway_model = StackingEnsemble(stepwise_pathway_models)
pathway_model.fit(data_train, ...)
test_output = pathway_model.predict(data_test, ...)

(b) Example: SPSC ‘decomposed’ as PSC (fulfilled he-
re by SKL) followed by SMS (fulfilled here by DKL):

pipeline_classes = [list_of_static_imputation_classes,
..., ..., ..., list_of_pathway_classes]

"PSC Optimization"
psc_agent = Componentwise(method=‘skl’,
pipeline_classes, data_train, data_test, metric)

components, score = psc_agent.optimize(num_iters=300)

pathway_class, data_train, data_test = \
psc_agent.get_pathway_class_and_data()

"SMS Optimization"
sms_agent = Stepwise(method=‘dkl’,
pathway_class, data_train, metric)

models, scores = sms_agent.optimize(num_iters=300)

pathway_model = StepwiseEnsemble(models, scores)
pathway_model.load_model(...)
test_output = pathway_model.predict(data_test, ...)

Figure 5: Optimization Interface. Example code using the optimization interface to conduct stepwise (i.e. across
time steps) and componentwise (i.e. across the pipeline) configuration. Each interface is implementable by any
choice of new/existing algorithms. The DKL implementation of SMS is provided for use the Section 4 examples.

nel learning (“DKL”) [71, 72]. Further, what the pipeline interface also does is to naturally allow
extending this to define the stepwise algorithm selection and hyperparameter optimization (“SASH”)
problem, or even—in the most general case—the stepwise pipeline selection and configuration
(“SPSC”) problem. Although these latter two are new—and clearly hard—problems (with no existing
solutions), Figure 5 shows simple examples of how the interface allows minimally adapting the SMS
and PSC sub-problems (which do have existing solutions) to form feasible (approximate) solutions.

Two distinctions are due: First, Clairvoyance is a pipeline toolkit, not an autoML toolkit. It is not our
goal to (re-)implement new/existing optimization algorithms—which abound in literature. Rather, the
standardized interface is precisely what enables existing implementations to be plugged in, as well as
allowing new autoML techniques to be developed and validated within a realistic medical pipeline. All
that is required, is for the optimizing agent to expose an appropriate ‘optimize’ method given candidate
components, and for such candidates to expose a ‘get-hyperparameter-space’ method. Second—but
no less importantly—we must emphasize that we are not advocating removing human oversight from
the healthcare loop. Rather, the pipeline simply encourages systematizing the initial development
stages in clinical ML, which stands to benefit from existing literature on efficient autoML techniques.

3 RELATED WORK

Clairvoyance is a pipeline toolkit for medical time-series machine learning research and clinical
decision support. As such, this broad undertaking lies at the intersection of three concurrent domains
of work: Time-series software development, healthcare journey modeling, and automated learning.

Time-series Software First and foremost, Clairvoyance is a software toolkit. Focusing on challenges
common to clinical time-series modeling, it is primarily differentiated by the breadth and flexibility of
the pipeline. While there exists a variety of sophisticated time-series packages for different purposes,
they typically concentrate on implementing collections of algorithms and estimators for specific types
of problems, such as classification [79], forecasting [77], feature extraction [76], reductions between
tasks [78], or integrating segmentation and transforms with estimators [75]. By contrast, our focus
is orthogonal: Clairvoyance aims at end-to-end development along the entire inference workflow,
including pathways and pipeline components important to medical problems (see Table 1). Again
indeed—if so desired, and as mentioned above—specific algorithms from [73–79] can be integrated
into Clairvoyance workflows through the usual ‘fit-transform-predict’ interface, with little hassle.

Healthcare Lifecycle For specific use cases, clearly a plethora of research exists in support of issuing
diagnoses [22–24], prognostic modeling [17–21], treatment-effect estimation [26–31], optimizing
measurements [32–36], among much more. The key proposition that Clairvoyance advances is the
underlying commonality across these seemingly disparate problems: It abstracts and integrates along
the time-series inference workflow, across outpatient, general wards, and intensive-care environments,
and—above all—amongst a patient’s journey of interactions through the healthcare system that call
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Table 1: Clairvoyance and Comparable Software.∗Note that vernacularly, “pipelining” simply refers to the proce-
dural workflow (i.e. from inputs to training, cross-validation, outputs, and evaluation); existing packages focus on
implementing algorithms for prediction models alone, with minimal preprocessing. In contrast, Clairvoyance pro-
vides support along the data science pipeline, and across different healthcare pathways requiring decision support.

cesium
[73]

tslearn
[74]

seglearn
[75]

tsfresh
[76]

pysf
[77]

sktime
[78]

pyts
[79] Clairvoyance

Preprocessing 3 3 3 3 7 3 3 3
Temporal Imputation 3 3 3 3 3 7 3 3
Feature Selection 7 7 7 3 7 7 7 3

Pr
ed

ic
tio

ns Static Features 3 7 3 7 7 7 7 3
Online Targets 7 7 3 7 3 7 3 3
Predictions 3 3 3 3 3 3 3 3
Treatment Effects 7 7 7 7 7 7 7 3
Active Sensing 7 7 7 7 7 7 7 3

In
te

rp
. Feat. Importance 7 7 7 7 7 7 7 3

Feat. Additivity 7 7 7 7 7 7 7 3
Instance-wise 7 7 7 7 7 7 7 3

Uncertainty 7 7 7 7 7 7 7 3
Calibration 7 7 7 7 7 7 7 3

End-to-End Pipelining∗ 7 7 7 7 7 7 7 3
Optimization Interface 7 7 7 7 7 7 7 3

for decision support in predictions, treatments, and monitoring (Figure 1). Now, it also important
to state what Clairvoyance is not: It is not an exhaustive list of algorithms; the pipeline includes a
collection of popular components, and provides a standardized interface for extension. It is also not a
solution to preference-/application-specific considerations: While issues such as data cleaning, algor-
ithmic fairness, and privacy and heterogeneity have import, they are beyond the scope of our software.

Automated Learning Finally, tangentially related is the rich body of work on autoML for hyper-
parameter optimization [62], algorithm/pipeline configuration [63–65, 67], and stepwise selection
[71], as well as specific work for healthcare data [50, 53, 66–68, 70, 71]. In complement to these
threads of research, the Clairvoyance pipeline interface enables—if so desired—leveraging existing
implementations, or validating novel ones—esp. in efficiently accounting for the temporal dimension.

4 ILLUSTRATIVE EXAMPLES

Recall the patient’s journey of interactions within the healthcare system (Figure 1). In this section, our
goal is to illustrate key usage scenarios for Clairvoyance in this journey—for personalized (1) predic-
tion, (2) treatment, and (3) monitoring—in outpatient, general wards, and intensive-care environments.

Specifically, implicit in all examples is our proposition that: (i) as a software toolkit, constructing an
end-to-end solution to each problem is easy, systematic, and self-documenting; (ii) as an empirical
standard, evaluating collections of models by varying a single component ensures that comparisons
are standardized, explicit, and reproducible; and (iii) as an optimization interface, the flexibility of
selecting over the temporal dimension—in and of itself—abstracts out an interesting research avenue.

Medical Environments Our choices of time-series environments are made to reflect the heteroge-
neity of realistic use cases envisioned for Clairvoyance. For the outpatient setting, we consider
a cohort of patients enrolled in the UK Cystic Fibrosis Registry (CYSTIC) [80], which records
longitudinal follow-up data for ∼5,800 individuals with the disease. On the registry, individuals
are chronic patients monitored over infrequent visits, and for which long-term decline is generally
expected. For the general wards setting, we consider a cohort of ∼6,300 patients hospitalized in the
general medicine floor in the Ronald Reagan Medical Center (WARDS) [81]. In contrast, here the
population of patients presents with a wide variety of conditions and diagnoses (1,600+ ICD-9 codes),
and patients are monitored more frequently. The data is highly non-stationary: on the hospital floor,
deterioration is an unexpected event. For the intensive-care setting, we consider ∼23,100 individuals
from the Medical Information Mart for Intensive Care (MIMIC) [82]. Here, the setting is virtually
that more or less “anything-can-happen”, and physiological data streams for each patient are recorded
extremely frequently. Varying across the set of environments are such characteristics as the average
durations of patient trajectories, the types of static and longitudinal features recorded, their frequencies
of measurement, and their patterns and rates of missingness (Table 2 presents some brief statistics).
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Table 2: Medical Environments. We consider the range of settings, incl. outpatient, general wards, and ICU data.

Medical Environment Outpatient General Wards Intensive Care

Dataset UKCF [80] WARDS [81] MIMIC [82]

Duration of Trajectories Avg. ∼5.3 years Avg. ∼9.1 days Avg. ∼85.4 hours
Variance (25%–50%–75%) (4–6–7 years) (6–9–15 days) (27–47–91 hours)
Frequency of Measurements Per 6 months Per 4 hours Per 1 hour

Different Types of Static
and Temporal Features

Demo., Comorbidities,
Infections, Treatments

Admiss. Stats, Vital
Signs, Lab Tests

Demo., Vital Signs,
Lab Tests, Medications

Dimensionality of Features 11 static, 79 temporal 8 static, 37 temporal 11 static, 40 temporal

Number of Samples ∼5,800 patients ∼6,300 patients ∼23,100 patients
Endpoints (cf. Predictions) FEV1 Result Admission to ICU Mechanical Ventilation
Class-label Imbalance (Continuous-valued) ∼5.0%-to-95.0% ∼36.8%-to-63.2%

Example 1 (Lung Function in Cystic Fibrosis Patients) The most common genetic disease in Cau-
casian populations is cystic fibrosis [83], which entails various forms of dysfunction in respiratory
and gastrointestinal systems, chiefly resulting in progressive lung damage and recurrent respiratory
infections requiring antibiotics—and in severe cases may require hospitalization and even mechanical
ventilation in an ICU (see Example 2) [84, 85]. While classical risk scores and survival models utilize
only a fraction of up-to-date measurements, recent work has leveraged deep learning to incorporate
greater extents of longitudinal biomarkers, comorbidities, and other risk factors [86]. An essential
barometer for anticipating the occurrence of respiratory failures is the gauge of lung function by
forced expiratory volume (FEV1): Accurate prediction yields an important tool for assessing severity
of a patient’s disease, describing its onset/progression, and as an input to treatment decisions [85, 87].

This is an archetypical rolling-window time-series problem for Clairvoyance’s predictions pathway.
Consider the models in Table 3: (i) As a clinical professional, it goes without saying that building the
pipeline for each—or extending additional models through wrappers—has a low barrier to entry (see
Figure 3/tutorials/documentation). (ii) As an ML researcher, one can rest assured that such compar-
isons are expressly standardized: Here, all results are explicitly from same pipeline using min-max
normalized features, GAIN for static missing values, M-RNN for temporal imputation, no feature
selection, and each model class shown. (iii) Lastly, to highlight the utility of the interface for selection
over time, the final row presents results of approaching SASH using the example method of Figure
5(a), and—for fair comparison—with the pipeline kept constant. This simple approach already yields
some gains in performance, laying a precedent—and the pipeline infrastructure—for further research.

Dataset (Label) UKCF (FEV1 Result) WARDS (Admission to ICU) MIMIC (Mech. Ventilation)

Evaluation RMSE MAE AUC APR AUC APR

Attention (N/A) (N/A) 0.888 ± 0.016 0.551 ± 0.024 (N/A) (N/A)
RNN-GRU 0.064 ± 0.001 0.035 ± 0.001 0.865 ± 0.010 0.487 ± 0.048 0.898 ± 0.001 0.774 ± 0.002
RNN-LSTM 0.062 ± 0.001 0.033 ± 0.001 0.841 ± 0.014 0.412 ± 0.032 0.901 ± 0.001 0.776 ± 0.002
Temporal CNN 0.120 ± 0.004 0.096 ± 0.003 0.826 ± 0.020 0.319 ± 0.048 0.884 ± 0.004 0.749 ± 0.007
Transformer 0.081 ± 0.002 0.050 ± 0.002 0.846 ± 0.006 0.472 ± 0.045 0.889 ± 0.002 0.761 ± 0.004
Vanilla RNN 0.070 ± 0.001 0.043 ± 0.001 0.794 ± 0.018 0.277 ± 0.063 0.898 ± 0.001 0.771 ± 0.002

SASH 0.059 ± 0.001 0.030 ± 0.001 0.891 ± 0.011 0.557 ± 0.031 0.917 ± 0.006 0.809 ± 0.013

Table 3: Predictions Pathway Example. In addition to (online) 6-month ahead predictions of FEV1 in UKCF, we
also test (one-shot) predictions of admission to ICU after 48 hours on the floor in WARDS, and (online) 4-hours
ahead predictions of the need for mechanical ventilation in MIMIC (these are extended to treatment and sensing
problems below). As the WARDS prediction is one-shot, what is denoted ‘SASH’ for that excludes the SMS en-
sembling step. Note that the canonical attention mechanism does not permit (variable-length) online predictions.

Example 2 (Mechanical Ventilation on Intensive Care) Mechanical ventilation is an invasive, pa-
inful, and extremely unpleasant therapy that requires induction of artificial coma, and carries a high
risk of mortality [88]. It is also expensive, with a typical ICU ventilator admission >$30,000 [89]. To
the patient, the need for mechanical ventilation—due to evidence of respiratory/ventilatory failure—is
by itself an adverse outcome, and is unacceptable to some, even if it means they will not survive. It is
possible that alternative strategies employed earlier may alleviate the need for ventilation, such as
high flow oxygen, non-invasive ventilation, or—in this example—appropriate use of antibiotics [88].
Now, little is known about optimal timing of courses of antibiotics; in most cases a routine number

7



Under review as a conference paper at ICLR 2021

of days is simply chosen when blood is typically sterile after first dose. On the one hand, there is a
clear biologically plausible mechanism for incompletely treated infection to lead to longer periods of
critical care, esp. requiring ventilation. On the other hand, antibiotic stewardship is crucial: Over-
use of broad spectrum antibiotics leads to resistance, and is by itself a global health emergency [90].

This is an archetypical problem for the treatment effects pathway. Table 4 shows the performance of
the two state-of-the-art models for estimating effects of treatment decisions over time while adjusting
for time-dependent confounding—that is, since actions taken in the data may depend on time-varying
variables related to the outcome of interest [30, 31]. We refrain from belaboring points (i), (ii), (iii)
above but their merits should be clear. From the patient’s perspective, accurate estimation of the effect
of treatment decisions on the risk of ventilation may assist them and their carers in achieving optimal
shared decision-making about the care that they would like to receive. From the hospital’s perspective,
many ICUs around the world operate at∼100% bed occupancy, and delayed admission is typically an
independent predictor of mortality [91–94]; therefore accurate estimation of the need for escalation or
continued ICU ventilation is logistically important for resource planning and minimization of delays.

Time Horizon Estimating 1 Day Ahead Estimating 2 Days Ahead Estimating 3 Days Ahead

Evaluation AUC APR AUC APR AUC APR

RMSN 0.860 ± 0.005 0.889 ± 0.007 0.790 ± 0.004 0.883 ± 0.003 0.726 ± 0.015 0.852 ± 0.009
CRN 0.865 ± 0.003 0.892 ± 0.004 0.783 ± 0.009 0.872 ± 0.013 0.767 ± 0.010 0.869 ± 0.007

SASH 0.871 ± 0.007 0.902 ± 0.005 0.792 ± 0.003 0.885 ± 0.009 0.771 ± 0.005 0.873 ± 0.003

Table 4: Treatment Effects Pathway Example. Results for estimation over different horizon lengths. Note that
this uses a ∼6,000-patient subset (from those in Table 2) who received antibiotics at any point, based on daily
decisions on antibiotic treatment, over spans of up to 20 days, with labels distributed 58.9%-to-41.1% overall.

Example 3 (Clinical Deterioration of Ward Patients) Given the delay-critical nature of ICU ad-
mission w.r.t. morbidity/mortality, what is often desired is an automated prognostic decision support
system to monitor ward patients and raise (early) alarms for impending admission to ICU (as a result
of clinical deterioration) [25, 94, 95]. However, observations are costly, and the question of what (and
when) to measure is by itself an active choice under resource constraints [32–36]: For instance, there
is less reason to measure a feature whose value can already be confidently estimated on the basis of
known quantities, or if its value is not expected to contribute greatly to the prognostic task at hand.

This is an archetypical problem for Clairvoyance’s active sensing pathway. Table 5 indicates the
performance of different models for balancing this trade-off between information gain and acquisition
rate with respect to admissions to ICU of ward patients. At various budget constraints (i.e. amounts
of measurements permitted), each active sensing model learns from the training data to identify the
most informative features to measure at test-time, so as to maximize the performance of admission
predictions. (To allow some measurements to be costlier than others, they can simply be up-weighted
when computing the budget constraint). As before, our propositions (i), (ii), and (iii) are implicit here.

Measure Rate With 50% Measurements With 70% Measurements With 90% Measurements

Evaluation AUC APR AUC APR AUC APR

ASAC 0.714 ± 0.018 0.235 ± 0.034 0.781 ± 0.015 0.262 ± 0.037 0.841 ± 0.016 0.414 ± 0.033
DeepSensing 0.707 ± 0.020 0.230 ± 0.036 0.772 ± 0.016 0.255 ± 0.033 0.829 ± 0.017 0.409 ± 0.038
Randomize 0.677 ± 0.021 0.217 ± 0.033 0.729 ± 0.019 0.249 ± 0.032 0.788 ± 0.017 0.269 ± 0.039

SASH 0.725 ± 0.015 0.248 ± 0.032 0.793 ± 0.013 0.278 ± 0.043 0.849 ± 0.014 0.420 ± 0.037

Table 5: Active Sensing Pathway Example. Results at different acquisition rates (using GRUs as base predictors).

5 CONCLUSION

Machines will never replace a doctor’s medical judgment, nor an ML researcher’s technical innovation.
But as a matter of data-driven clinical decision support, Clairvoyance enables rapid prototyping,
benchmarking, and validation of complex time-series pipelines—so doctors can spend more time on
the real scientific problems, and ML researchers can focus on the real technical questions. Moreover,
collaborative research between medical practitioners and ML researchers is increasingly common [48].
To help grease the wheels, we developed and presented Clairvoyance, and illustrated its flexibility
and capability in answering important and interesting medical questions in real-world environments.
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A NEED FOR EMPIRICAL STANDARDIZATION

‘All else’ is seldom ‘equal’. As examples, a review of recent, state-of-the-art research on medical
time-series imputation and prediction models demonstrates the following: While the benchmarking
performed within each individual study strives to isolate sources of gain through “all-else-equal”
experiments, the degree of overlap in pipeline settings across studies is lacking. Such a dearth of
empirical standardization may not optimally promote effective assessment of true research progress:

Proposed Imputation Method Downstream Prediction Component Dataset(s)
UsedTechnique Evaluation Problem Type Endpoint Model(s) Evaluation

med.impute [12] Imputation MSE One-shot
Classification

10-year Risk of
Stroke LogR Prediction ROC Framingham

Heart St. (FHS)

BRITS [13] Imputation
MAE, MRE

One-shot
Classification

In-Hospital
Death NN Prediction ROC PhysioNet ICU

(MIMIC)

GRUI-GAN [14] None One-shot
Classification

In-Hospital
Death

LogR, SVM, RF,
RNN Prediction ROC PhysioNet ICU

(MIMIC)

GP-based [16] Imputation MSE None N/A N/A N/A UF Shands
Hospital Data

M-RNN [15] Imputation MSE Online
Classification

Various
Endpoints1

NN, RF, LogR,
XGB Prediction ROC Various Medical

Datasets2

Table 6: Research on Medical Time-series Data Imputation. Typically, proposed imputation methods rely on
some downstream dummy prediction task for evaluating utility. However, the datasets, problem types, prediction
endpoints, and time-series models themselves do not often coincide. Depending on specific use cases, this dearth
of standardized benchmarking does not promote accessible comparison across different proposed techniques.

Proposed Prediction Method Upstream Imputation Component Dataset(s)
UsedTechnique Endpoint Evaluation Imputation Model(s) Evaluation

LSTM-DO-TR [22] Multi-label
Diagnosis

ROC, F1, preci-
sion at 10 Yes Forw-, Back-,

Mean-fill None Ch. Hospital LA
PICU

T-LSTM [23] Regression;
Subtyping

MSC; tests for
group effects

Data Pre-
imputed N/A None Parkinson’s

(PPMI)

MGP-RNN [37] Sepsis Onset
Prediction

ROC, PRC,
precision Yes Multitask

GPs None Duke UHS
Inpatient

D-Atlas [19] Survival;
Forecasting ROC, PRC, MSE Yes Median-,

Mean-fill None Cystic Fibrosis
(UKCF)

SAND [24] Regression;
Classification

ROC, PRC, MSE,
MAPE

Masking
as Input N/A None PhysioNet ICU

(MIMIC)

Table 7: Research on Medical Time-series Prediction Models. Typically, proposals of prediction models pay
short attention to the choices regarding upstream imputation of missing and/or irregularly sampled data. In
comparative experiments, a single imputation method is usually fixed w.r.t. all prediction models for evaluation.
The datasets, imputation methods, and even prediction endpoints themselves have little overlap across studies.
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B ADDITIONAL DETAIL ON EXPERIMENTS

In our experiments for UKCF (used in Example 1), out of the total of 10,995 entries in the registry
data, we focused on the 5,883 adult patients with followup data available from January 2009 through
December 2015, which excludes pediatric patients and patients with no follow-up data from January
2009. This includes a total of 90 features, with 11 static covariates and 79 time-varying covariates,
which includes basic demographic features, genetic mutations, lung function scores, hospitalizations,
bacterial lung infections, comorbidities, and therapeutic management. Within the 5,883 patients,
605 were followed until death (the most common causes of which were complications due to
transplantation and CF-associated liver disease); the remaining 5,278 patients were right-censored.

In our experiments for WARDS (used in Examples 1 and 3), the data comes from 6,321 patients who
were hospitalized in the general medicine floor during the period March 2013 through February 2016,
and excludes patients who were reverse transfers from the ICU (i.e. initially admitted from the ICU,
and then returned to the ward subsequent to stabilization in condition). The heterogeneity in patient
conditions mentioned in the main text include such conditions as shortness of breath, hypertension,
septicemia, sepsis, fever, pneumonia, and renal failure. Many patients had diagnoses of leukemia
or lymphoma, and had received chemotherapy, allogeneic or autologous stem cell transplantation,
and treatments that cause severe immunosuppression places them at risk at developing further
complications that may require ICU admission. Here, the recorded features include 8 static variables
(admission-time statistics) and 37 temporal physiological data streams (vital signs and laboratory
tests); vital signs were taken approximately every 4 hours, and lab tests approximately every 24 hours.

In our experiments for MIMIC (used in Example 1 for predictions, and Example 2 for estimating
treatment effects), for the predictions example we focus on 22,803 patients who were admitted to
ICU after 2008, and consider 11 static variables (demographics information) and 40 physiological
data streams in total, which includes 20 vital signs which were most frequently measured and for
which missing rates were lowest (e.g. heart rate, respiratory rate), as well as 20 laboratory tests
(e.g. creatinine, chloride); vital signs were taken approximately every 1 hour, and laboratory tests
approximately every 24 hours. For the treatment effects pathway (used in Example 2), we focus on
the 6,033 patients who had received antibiotics at any point in time, based on daily decisions on
antibiotic treatment, with a maximum sequence length of 20 days. Note that the class-label imbalance
between the pure prediction task (Example 1) and treatment effects task (Example 2) is slightly
different per the different populations included, and the numerical results should not be compared
directly. The code for extracting this data is included under ‘mimic_data_extraction’ in the repository.

In all experiments, the entire dataset is first randomly partitioned into training sets (64%), validation
sets (16%), and testing sets (20%). The training set is used for model training, the validation set is
used for hyperparameter tuning, and the testing set is used for the final evaluation—which generates
the performance metrics. This process itself is then repeated randomly for a total of 10 times, with the
means and spreads of each result used in generating results Tables 3–5. As usual, the entire pipeline
(with the exception of the pathway model corresponding to each row) is fixed across all rows, which
in this case uses min-max normalized features, GAIN for static missing values, M-RNN for temporal
imputation, and no prior feature selection; where hyperparameters for such pipeline components are
involved (i.e. GAIN and M-RNN here), these are also—as they should be—constant across all rows.

In order to highlight our emphasis on the temporal dimension of autoML in Clairvoyance, the results
for SASH isolate precisely this effect alone: Each result for SASH is generated using the simple
approach of Figure 5(a)—that is, by ‘naively’ decomposing SASH into a collection of SMS problems
(for each model class considered), subsequent to which the stepwise models for each class are further
ensembled through stacking. Note that the point here is not to argue for this specific technique, but
merely to show that even this (simplistic) approach already yields some gains, thereby illustrating the
potential for further autoML research (which can be conveniently performed over Clairvoyance’s
pipeline abstraction) to investigate perhaps more efficient solutions with respect to this temporal
dimension. Briefly, in DKL the validation performance for each time step is treated as a noisy version
of a black box function, which leads to a multiple black-box function optimization problem (which
DKL solves jointly and efficiently); we refer to [71] for their original exposition. In our experiments
we complete 100 iterations of Bayesian optimization in DKL for each model class. For reproduc-
ibility, the code for our implementation of DKL used for experiments is included in the repository.
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C SOME FREQUENTLY ASKED QUESTIONS

Q1. Does Clairvoyance include every time-series model under the sun?

A1. That is not our purpose in providing the pipeline abstraction (see Section 2: “As a Software
Toolkit”), not to mention generally impossible. We do include standard classes of models (e.g. pop-
ular deep learning models for prediction), and an important contribution is in unifying all three key
tasks involved in a patient’s healthcare lifecycle under a single roof, including the treatment effects
pathway and active sensing pathway (both for which we provide state-of-the-art time-series models)
in addition to the predictions pathway (see Section 2: “The Patient Journey”, Figures 1–2, as well
as Table 1). Moreover, as noted throughout, modules are easily extensible: For instance, if more
traditional time-series baselines from classical literature are desired for comparison purposes, existing
algorithms from [73–79] can be integrated into Clairvoyance by using wrappers, with little hassle.

Q2. Isn’t preprocessing, imputation, selection, etc. already always performed?

A2. Yes, and we are not claiming that there is anything wrong with individual studies per se. However
(per Section 2: “As an Empirical Standard”, and Appendix A: Tables 6–7), while current research
practices typically seek to isolate individual gains, the degree of clarity and/or overlap in pipeline
configurations across studies is lacking. This dearth of empirical standardization may not optimally
promote practical assessment/reproducibility, and may obscure/entangle true progress. By providing
a software toolkit and empirical standard, constructing an end-to-end solution to each problem is
easy, systematic, and self-documenting (see Figures 2–3), and evaluating collections of models by
varying a single component ensures that comparisons are standardized, explicit, and reproducible.

Q3. How about other issues like regulations, privacy, and federated learning?

A3. Per the discussion in Section 3, Clairvoyance is not a solution for preference-/application-speci-
fic considerations such as cohort construction, data cleaning and heterogeneity, patient privacy, algor-
ithmic fairness, federated learning, or compliance with government regulations. While such issues are
real/important concerns (with plenty of research), they are firmly beyond the scope of our software; it
is designed to operate in service to clinical decision support—not at all to replace humans in the loop.

Q4. What are these interdependencies among components and time steps?

A4. Componentwise interdependencies occur for any number of reasons. We have discussed several
examples (see Section 2: “As an Empirical Standard”), but it is not our mission to convince the reader
from scratch: For that, there exists a plethora of existing autoML/medical literature (see e.g. Section 3).
However, the pipeline abstraction serves as a succinct and standardized interface to anyone’s favorite
autoML algorithm (see Section 2: “As an Optimization Interface”). Moreover, here we do specifically
highlight the temporal dimension of model selection opened up by the time-series nature of the
pipeline (see Figure 4). In particular, each example in Section 4 specifically illustrates the gains in
performance that already occur—ceteris paribus—using a simple approach to SASH as in Figure 5(a).

Q5. Where is all the background and theory on each module?

A5. The scope of the software toolkit is purposefully broad, but it is not our intention to provide a
technical introduction to each of the topics involved (which would—in any case—be impossible in the
scope of a paper). While Clairvoyance lowers the barrier to entry in terms of engineering/evaluation,
it is not intended to be used as a black-box solution. For instance, we expect that a user desiring to
conduct treatment effects estimation using the CRN component to be familiar with its basic theory
and limitations. That said, in addition to the various references provided throughout the description
of each aspect of Clairvoyance, the following may serve as more concise background information
on original problem formulations and solutions: For treatment effects estimation over time we refer
to [31]; for active sensing we refer to [34]; for time-series data imputation we refer to [15]; for
interpretation by individualized variable selection we refer to [44]; for autoML in general we refer to
[63]; for the pipeline configuration and selection (PSC) problem we refer to Section 3.1 in [67]; and
for the stepwise model selection (SMS) problem we refer to Sections 2–3 in [71]; moreover, Figure 4
shows how new problems (e.g. SASH) directly result from combining their optimization domains.

Q6. How do you know what clinicians want?

A6. With clinicians as developers/authors, it is our central goal to understand realistic usage scenarios.
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