A unified framework for bandit multiple testing

Abstract

In bandit multiple hypothesis testing, each arm corresponds to a different null
hypothesis that we wish to test, and the goal is to design adaptive algorithms
that correctly identify large set of interesting arms (true discoveries), while
only mistakenly identifying a few uninteresting ones (false discoveries). One
common metric in non-bandit multiple testing is the false discovery rate (FDR). We
propose a unified, modular framework for bandit FDR control that emphasizes the
decoupling of exploration and summarization of evidence. We utilize the powerful
martingale-based concept of “e-processes” to ensure FDR control for arbitrary
composite nulls, exploration rules and stopping times in generic problem settings.
In particular, valid FDR control holds even if the reward distributions of the arms
could be dependent, multiple arms may be queried simultaneously, and multiple
(cooperating or competing) agents may be querying arms, covering combinatorial
semi-bandit type settings as well. Prior work has considered in great detail the
setting where each arm’s reward distribution is independent and sub-Gaussian, and
a single arm is queried at each step. Our framework recovers matching sample
complexity guarantees in this special case, and performs comparably or better in
practice. For other settings, sample complexities will depend on the finer details of
the problem (composite nulls being tested, exploration algorithm, data dependence
structure, stopping rule) and we do not explore these; our contribution is to show
that the FDR guarantee is clean and entirely agnostic to these details.

1 Introduction to bandit multiple hypothesis testing

Scientific experimentation is often a sequential process. To test a single null hypothesis — with “null”
capturing the setting of no scientific interest, and the alternative being scientifically interesting — scien-
tists often collect an increasing amount of experimental data in order to gather sufficient evidence such
that they can potentially reject the null hypothesis (i.e. make a scientific discovery) with a high degree of
statistical confidence. As long as the collected evidence remains thin, they do not reject the null hypoth-
esis and do not proclaim a discovery. Since executing each additional unit of data (stemming from an
experiment or trial) has an associated cost (in the form of time, money, resources), the scientist would
like to stop as soon as possible. This becomes increasingly prevalent when the scientist is testing multi-
ple hypotheses at the same time, and investing resources into testing one means divesting it from another.

For example, consider the case of a scientist at a pharmaceutical company who wants to discover
which of several drug candidates under consideration are truly effective (i.e. testing a hypothesis of
whether each candidate has greater than baseline effect) through an adaptive sequential assignment
of candidates to participants. Performing follow up studies on each discovery is expensive, so the
scientist does not want to make many “false discoveries” i.e. drugs that did not have an actual effect, but
were proclaimed to have one by the scientist. To achieve these goals, one could imagine the scientist
collecting more data for candidates whose efficacy is unclear but appear promising (e.g. drugs with
nontrivial but inconclusive evidence), and stop sampling candidates that have relatively clear results
already (e.g. drugs that have a clear and large effect, or seemingly no effect).

Past work. This problem combines the challenges of multiple hypothesis testing with multi-arm
bandits (MABs). In a “doubly-sequential” version of the problem studied by|Yang et al.| (2017), one
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encounters a sequence of MAB problems over time. Each MAB was used to test a single special placebo
arm against several treatment arms, and if at least one treatment dominated the placebo, then they
aimed to return the best treatment. Thus each MAB was itself a single adaptive sequential hypothesis
test, and the authors aimed not to make too many false discoveries over the sequence of MAB instances.

This paper instead considers the formulation of Jamieson and Jain|(2018]), henceforth called JJ, but
our techniques apply equally well to the above setup. (Note: our setup is very different from the active
classification work of|Jain and Jamieson|(2019)).) To recap, JJ consider a single MAB instance without
a placebo arm (or rather, leaving it implicit), and try to identify as many treatments that work better
than chance as possible, without too many false identifications. To clarify, we associate each arm with
one null hypothesis, for example being that the corresponding drug has no (significant) effect. A single
observed reward when pulling an arm corresponds to a statistic that summarizes the results of one exper-
iment with the corresponding drug, and the average reward across many experiments could correspond
to an estimate of the average treatment effect (which would be zero for null arms and positive for non-
nulls). Thus, a strategy for for quickly finding the arms with positive means corresponds to a strategy for
allocating trial patients to drug candidates that allows the scientists to rapidly find the effective drugs.

However, the above corresponds to only the simplest problem setting. In more complex settings, it may
be possible to pull multiple arms in each round, and observe correlated rewards. Further, the arms may
have some combinatorial structure that allows only certain subsets of arms to be pulled. There could
be multiple agents (eg: hospitals) pulling the same set of arms and seeing independent rewards (eg:
different patients) or dependent rewards (eg: patient overlap or interference). Further, if some set of ex-
periments by one scientist yielded suggestive but inconclusive evidence, another may want to follow up,
but not start from scratch, instead picking up from where the first left off. Last, the MAB may be stopped
for a variety of reasons that may or may not be in the control of the scientist (eg: a faster usage of funding
than expected, or additional funding is secured). We dive in the details of these scenarios in Appendix[B]

Our contribution. We introduce a modular meta-algorithm for bandit multiple testing that utilizes
“e-values” — or, more appropriately, their sequential analog, e-processes — a recently introduced
alternative to p-values (or p-processes) for various testing problems, and inherently related to
martingales, gambling and betting (Vovk and Wang| [2020; |Shafer, [2020; (Grinwald et al., [2020;
Howard et al.}[2020; Wang and Ramdas|, [2020)). Utilizing e-processes provide our meta-algorithm with
several benefits. (a) For composite nulls, it is typically easier to construct e-processes than p-processes;
the same holds when data from a single source is dependent. When combining evidence from disparate
(independent or dependent) sources, it is also more straightforward to combine e-values than p-values
(see Appendix[B). (b) The same multiple testing step applies in all bandit multiple testing problems,
regardless of all the various details of the problem setup mentioned in the previous paragraph. This
is not true when working for p-values. (c) The exploration step can be — but does not have to be —
decoupled from the multiple testing (combining evidence) step. This results in a modular procedure
that can be easily ported to new problem settings to yield transparent guarantees on FDR control.

By virtue of being a meta-algorithm, we do not (and cannot) provide “generic” sample complexity
guarantees: these will depend on all of the finer problem details mentioned above, on the exploration
algorithm employed, on which e-processes are constructed. Our emphasis is on the flexibility with
which FDR control can be guaranteed in a vast variety of problem setups. Further research can pick
up one problem at a time and design sensible exploration strategies and stopping rules, developing
sampling complexity bounds for each, and these bounds will be inherited by the meta-algorithm.
However, we do formulate some generic exploration algorithms in Appendix [B|based on best arm
identification algorithms (Audibert and Bubeckl |2010;|Kalyanakrishnan et al.| 2012 |Chen et al.,[2014;
Jamieson et al.| 2014} Kaufmann et al.,[2016;|Chen et al., 2017 Jourdan et al., 2021).

When instantiated to the particular problem setup studied by JJ (independent, sub-Gaussian rewards, one
arm in each round, etc.), we get a slightly different algorithm from them — the exploration strategy can
be inherited to stay the same, but the multiple testing part differs. JJ use p-processes for each arm to deter-
mine whether that arm should be added to the rejection set, and correct for testing multiple hypotheses by
using the BH procedure (Benjamini and Hochbergl|1995) to ensure that the false discovery rate (FDR),
i.e. the proportion of rejections that are false discoveries in expectation, is controlled at some fixed level §.
Adaptive sampling induces a peculiar form of dependence amongst the p-values, for which the BH proce-
dure provides error control at an inflated level; in other words, one has to use BH at a more stringent level
of approximately ¢ /log(16/d) to ensure that the FDR is less than §. On the other hand, we use the e-BH
procedure (Wang and Ramdas|2020)), an analogous procedure for e-values, which can ensure the FDR is



less than § without any inflation, regardless of the dependence structure between the e-values of each arm.
Our algorithm has improved sample efficiency in simulations and the same sample complexity in theory.

Formal bandit setting. We define the bandit as having & arms, and v; as the (unknown) reward distri-
bution for arm i € [k] ={1,...,k}. Every arm i is associated with a null hypothesis, which is represented
by a known, prespecified set of distributions P;. If |P;| =1, it is a ‘point null hypothesis’, and otherwise
itis a ‘composite null hypothesis’. Examples of the latter include “all [0,1]-bounded distributions with
mean < (0.5 or “all 1-sub-Gaussian distributions with mean <0 or “all distributions that are symmetric
around 0” or “all distributions with median <0”. If v; € P;, then we say that the i-th null hypothesis
is true and we call ¢ a null arm; else, we say i-th null hypothesis is false and we call it a non-null arm.
Thus, the set of arms are partitioned into two disjoint sets: nulls o C [k] and non-nulls H; = [k]\ H1.

Let K C 2] denote the subsets of arms that can be jointly queried in each round. At each time ¢, the
algorithm chooses a subset of arms Z; C [k] such that Z; € K to sample jointly from. The special choice
of K ={{1},{2},...,{k}} recovers the standard bandit setup, but otherwise this setting is known as
combinatorial bandits with semi-bandit feedback (Chen et al.,2016)). We denote the reward sampled
at time ¢ from arm ¢ € Z; as X; ;. Let T;(¢) denote the number of times arm ¢ has been sampled by
time ¢, and ¢; () be the time of the jth sample from arm i.

We now define a canonical “filtration” for our bandit problem. A filtration (F;);>0 is a series of nested
sigma-algebras that encapsulates what information is known at time ¢. (We drop the subscript and just
write (F) for brevity, and drop the parentheses when just referring to a single sigma-algebra at time ¢.)
Define the canonical filtration as follows for t e N: Fy =0 (UU{(4,5,X; ;) :j <t,i€Z;}) and we let
Fo=0(U) where U is uniformly distributed on [0,1] and its bits capture all private randomness used
by the bandit algorithm that are independent of all observed rewards. Let (\;) be a sequence of random
variables indexed by t € N. (\;) is said to be predictable w.r.t. (F;) if \; is measurable w.r.t. F;_1 i.e. A¢
is fully specified given the information in F;_;. An N-valued random variable 7 is a stopping time (or
stopping rule) w.r.t. to (F3) if {7 =t} € F; — in other words, at each time ¢, we know whether or not stop
collecting data. Let T denote the set of all possible stopping times/rules w.r.t. (F), potentially infinite.

Technically, the algorithm must not just specify a strategy to select Z;, but also specify when sampling
will stop. This is denoted by the stopping rule or stopping time 7* €T .

Once the algorithm halts at some time 7, it produces a rejection set S, C [k]. We consider two
metrics w.r.t. S: the FDR as discussed prior, and true positive rate (TPR), which is the proportion
of non-nulls that are discovered in expectation, which we define as follows:

— [HoNS,| _ |H1NS,|
FDR(S,) = E { ons. } ,  TPR(S,) =E { 10s } :
We consider algorithms that always satisfy FDR/(S; ) < for any number and configuration of nulls
Ho and any choice of null and non-null distributions. In fact, our algorithm will produce a sequence
of candidate rejection sets (S;) that satisfies sup, . FDR/(S-) <. This is a much stronger guarantee
than the typical setting considered in the multiple testing literature.

In hypothesis testing, the set of null distributions P; for each arm ¢ is known, because the user defines the
null hypothesis they are interested in testing. When the null hypothesis is false, the non-null distribution
can be arbitrary. Consequently, we can prove results about FDR, but we cannot prove guarantees about
TPR without several further assumptions on the non-null distributions, dependence across arms, etc.

Finally, note that in bandit multiple testing, one does not care about regret. The problem is more akin to
pure exploration, where we aim to find a S with FDR/(S,« ) <§ and large TPR as quickly as possible.

2 E-processes versus p-processes

A e-variable, F, is a nonnegative random variable where E[E] < 1 when the null hypothesis is true.
In contrast, the more commonly used p-variable, P, is defined to have a support on (0,1) and satisfy
P(P<a) < aforall « € (0,1) when the null hypothesis is true. To clearly delineate when we are
discussing solely the properties of a random variable, we also use the terms “e-value” e and “p-value”
p to refer the realized values of a e-variable F and a p-variable P (their instantiations on a particular
set of data). E-variables and p-variables are connected through Markov’s inequality, which implies
that 1/ F is a p-variable (but 1/ P is not in general an e-variable). Rejecting a null hypothesis is usually
based on observing a small p-value or a large e-value. For example, to control the false positive rate
at 0.05 for a single hypothesis test, we reject the null when p <0.05 or when e > 20.



Since bandit algorithms operate over time, we define sequential versions of p-variables and e-variables.
A p-process, denoted (P;)¢>1, is a sequence of random variables such that sup, ¢ 7 P(Pr <a) <« for
any a € (0,1). In contrast, an e-process (E;);>1 must satisfy sup, . E[E;] <1. These sequentially
valid forms of p-variables and e-variables are crucial since we allow the bandit algorithm to choose in
a data-dependent manner when to stop and output a rejection set. Thus, we must ensure the respective
properties of p-variables and e-variables hold over all stopping times.

These concepts are intimately tied to sequential testing and sequential estimation using confidence
sequences (Ramdas et al. [2020), but most important for is the central role of nonnegative (su-
per)martingales in the construction of efficient e-processes. To summarize, (a) for point nulls, all admis-
sible e-processes are simply nonnegative martingales, and the safety property follows from the optional
stopping theorem, (b) for composite nulls, admissible e-processes are either nonnegative martingales,
or nonnegative supermartingales, or the infimum (over the distributions in the null) of nonnegative
martingales. Associated connections to betting (Waudby-Smith and Ramdas|,[2021)) are also important
for development of sample efficient algorithms and we discuss how we use betting ideas in Appendix[D]

Why use e-processes over p-processes? |Wang and Ramdas|(2020) describe a multitude of advantages
outside of the bandit setting; these advantages also apply to the bandit setting but we do not redescribe
them here for brevity. However, we will describe multiple ways in which using e-variables instead of
p-variables as a measure of evidence in the bandit setting allows for powerful algorithms in both flex-
ibility of usage and sample complexity. While this question has been the focus of a recent line of work
for hypothesis tests in general (Shafer,[2020; Vovk and Wang] 2021} |Griinwald et al.}[2020; Wang and
Ramdas},[2020), we will explore how the properties of e-variables allow us to consider novel bandit se-
tups and algorithms. In particular, e-variables allow us to account for the dependency between statistics
computed for each arm without additional correction. Further, we explore how e-processes and p-
processes can be merged under different conditions in Appendix [BJto facilitate incorporation of existing
evidence and cooperation between multiple agents and present concrete ways to construct e-processes.

Since any non-trivial bandit algorithm will base its sampling choice on the rewards attained so far
for every arm, average rewards of each arm are biased and dependent on each other in complex
ways even if the algorithm is stopped at a fixed time Nie et al.|(2018));Shin et al.[{(2021},2019}2020).
Even under a non-adaptive uniform sampling rule, an adaptive stopping rule can induce complex
dependencies between reward statistics of each arm. When using both adaptive sampling and stopping,
the dependence effects are only compounded. Nevertheless, using e-variable based algorithms for
maintaining a rejection set can allow us to prove FDR guarantees simply without any assumptions
on the sampling method. This is contrast with procedures involving p-variables, such as the ones used
in JJ, which require the test level to be corrected by a factor of at least log(1/«a) when p-variables are
independent in the limit of infinite sampling, and a factor of logk otherwise. We will explain when
and why p-variables require this additional correction in Section/3]

3 Multiple testing procedures with FDR control

We now introduce two multiple testing procedures that output a rejection set with provable FDR control.
We will first describe the guarantees provided by the BH procedure (Benjamini and Hochberg| [1995),
a classic multiple testing procedure that operates on p-variables. Then, we will describe e-BH, the
e-variable analog of BH. Our key message in this section is that classical BH will have looser or tighter
control of the FDR based upon the dependence structure of the p-variables it is operating on. On the
other hand, e-BH provides a consistent guarantee on the FDR even when the e-variables are arbitrarily
dependent. Both procedures take an input parameter « € (0,1) that controls degree of FDR guarantee.

Benjamini-Hochberg (BH). A set S of p-values is called p-compliant (Su,[2018) at level « if:
|S|a
;g <2 1

maxp; < 7, (1
The BH procedure with input py,...,px outputs the largest p-compliant set w.r.t. the input, which
we denote BH[a](p1,...,pr). We must also define a condition on the joint distribution of P;,..., Py,
which is called positive regression dependence on subset (PRDS). We provide a formal definition
in Appendix[E] and it is sufficient to think of this condition as positive dependence between P ..., Py,
with independence being a special case. Now, we describe the FDR control of the BH procedure.
Fact 1 (BH FDR control. [Benjamini and Hochberg||1995] |Benjamini and Yekutieli 2001). Let
S=BH[a|(p1,-...,pk)- If P1,... Py are PRDS, then FDR(S) < o. Otherwise, under arbitrary depen-

dence amongst Py,... Py, the BH procedure ensures FDR(S) < aly, where £, = Zle 1/k=logk.



Thus, in the case of arbitrary dependence, the FDR control of BH is larger by a factor of 5 ~logk.

Fact 2 (P-compliant p-values FDR control. [Su|2018). If S is p-compliant at level o and P, ..., Py,
satisfy PRDS'| then FDR(S) < a1 +1log(1/«)). Otherwise, when there is arbitrary dependence
among Py,....Pi, FDR(S) <a(l+log(1/a))l, ~a(l+log(1/a))logk.

These two facts do not imply each other; the BH procedure outputs the largest compliant set and hence
gets away with a stronger error guarantee in both cases. We can use the compliance property to prove
FDR control when applying the BH procedure to stopped p-values in some bandit problem setups. We
elaborate in Section[5]on how Fact[2]is utilized, and in what settings these dependence structures arise.

e-BH has no correction. The e-BH procedure created by Wang and Ramdas|(2020) uses e-variables
instead of p-variables and proceeds similarly to the BH procedure. In this case, let ey, ...,ex be the
realized e-values for a set of e-variables F1,..., Ey. Define e; to be the ith largest e-value for i € [£].
A set S is e-compliant at level « iff S satisfies the following:
ine:>-—k_

rirélg e; > als] 2)
The e-BH procedure outputs the largest e-compliant set, which we denote as eBH|[a](ey,...,ex ). For
e-variables, the same guarantee applies for all e-compliant sets and under all dependence structures.

Fact 3 (E-variable compliance FDR control. Wang and Ramdas|2020). IfS is e-compliant at level
a, then FDR(S) < a regardless of the dependence structure.

This is a significant advantage for using e-BH and e-variables, since the FDR control does not change
under different types of dependence, unlike the extra factors of approximately log(1/«),logk and
log(1/)logk paid by p-variables in different settings.

In the case where p-variables can only be constructed as P=1/E, where FE is e-variable, the rejection
sets output by BH and e-BH are identical. However, the e-variable compliance guarantee in Fact[3]
provides identical or tighter FDR control than the BH procedure guarantee in Fact[T]or p-variable
compliance guarantee in Fact[2] Thus, e-variables and e-BH offer a degree of robustness against
arbitrary dependence, since any algorithm using e-BH does not have to adjust « to guarantee the same
level of FDR/(S) <¢ for a fixed § under different dependence structures.

4 Decoupling exploration and evidence: a unified framework

We propose a framework for bandit algorithms that separates each algorithm into an exploration
component and an evidence component; Algorithm[I|specifies a meta-algorithm combining the two.

Algorithm 1: A meta-algorithm for bandit multiple testing that decouples exploration and evidence.
The evidence component can track p-processes or e-processes for each arm and use BH or e-BH.

Input: Exploration component (.A; ), stopping rule 7*, desired level of FDR control § € (0,1). Let
¢’ be the correction of § for BH based upon the dependencies of X 4,..., X ;. Set Dy = 0.
fortinl...do
Ty =A:(Di—1) C K]
Obtain rewards for each ¢ € Z;, and update data Dy := D1 U{(4,t,X; +): 1 €I, }.
Update e-process or p-process for each queried arm (summarizing evidence against each null).
BHI[6'](p1,¢,.--,Pk,¢) or arbitrary p-compliant set  if using p-variables
St = ’ ’ . . . . .
eBH[6](eq ¢,-..,ek,¢) Or arbitrary e-compliant set  if using e-variables
if 7* =t then stop and return S;;
end

The exploration component is a sequence of functions (A;), where A; : F,_1 — K specifies the
queried arms Z; := A(Dy_1), and Dy := {(2,5,X; ;) : j < t,i € Z;} is the observed data. A; is
“non-adaptive” if it does not depend on the data, but only on some external randomness U. Regardless
of how the exploration component (.A;) is constructed, our framework guarantees that FDR(S) <46
for a fixed §. Similarly, 7* is adaptive if it depends on the data, and is not determined purely by U.

Evidence component. The FDR control provided by Algorithm[I]is solely due to the procedure for
constructing the rejection set in the evidence component, which is completely agnostic to (.A;). To

ISu[(2018)) technically employs a slightly weaker condition which implies PRDS.



do so, the evidence component outputs S; C [k] at each time step ¢ such that FDR(S,) < ¢ for any
stopping time 7. If we keep track of a p-process (P, ;) for each arm ¢ € [k], then applying the BH
procedure at every time step, including at 7, would yield a S that has FDR control, potentially at some
adjusted level. In contrast, we can apply e-BH to our e-processes (E; ;) at each time, including the
stopping time (since stopped e-processes are e-variables by definition), and inherit the guarantee from
Fact[3|which always gives FDR control at the desired level.

Thus, this framework allows us to guarantee FDR/(S,.) < ¢ for any stopping time 7 € T, agnostic of
the exploration component. We discuss some generic exploration strategies in Appendix [B| In the
next section, we will formalize these guarantees and discuss the benefits afforded by using e-variables
and e-BH in this framework instead of p-variables and BH.

5 Dependence structures

In this section, we discuss the different dependence structures that arise under different bandit settings
and the choice of §’ that ensure FDR control at § in the p-variable and BH case. Table summarizes
the guarantees and choices for each type of dependence. Prior work on hypothesis testing in the
bandit setting by JJ has only considered the non-combinatorial bandit case where X1 4,..., X, ; are
independent. Critically, JJ employ BH and p-variables in their algorithm, and the FDR guarantee
of BH changes based on these dependence structures. On the other hand, choosing aw = § for e-BH
is sufficient to guarantee FDR control at level § for any type of dependence between e-variables, but
only sufficient for BH in the non-adaptive, PRDS X ;,..., X}, ; setting. We show that there is a wide
range of dependence structures that require different degrees of correction for BH. Specifically, we
will set an appropriate choice of ¢’ in each of these situations such that Algorithm[1|with p-variables
can ensure FDR control level §. We include proofs of all results in this section in Appendix[A.T]

Table 1: FDR control guaranteed by BH, and the ¢’ to ensure § control of FDR in Algorithmunder
different dependence structures and adaptivity of (4;). Adaptivity and arbitrary dependence both
require extra correction for BH, but e-BH provides FDR(S) <« in all settings in the table.
Dependence of X ;,..., X}, ;

Adaptivity of (A;) and 7* independent arbitrarily dependent
FDR(S) <«
d=4 FDR(S) <alogn
FDR(S) <a(l+log(l/a))Aalogk | &' =46/logk (Prop.
0" =cs Nologk (Prop.

non-adaptive

adaptive

Adaptive (A;) and independent X ;,..., X}, ;. JJ consider this case in the non-combinatorial bandit
setting, but their insights also techniques also generalize to the combinatorial setting. In the language
of compliance (not explicitly used in JJ), JJ make the key insight that running BH on the p-variables
for each arm produces a rejection set that is actually p-compliant with a different set of independent
p-variables. Define Py ,..., P}, where P} = inf,cn P, ; for each i € [k] i.e. each arm’s p-variable in
the infinite sample limit. Since (P; ;) is an p-process for each arm ¢ € [k], the corresponding P;* is
ap-variable. Further, Py,..., P, are independent because X ;,...,X}, ; are independent. By definition
of P¥,...,P}, p; < p; for any i € [k] and any ¢ € N. Thus, S;~ is p-compliant w.r.t. p},...,p}, and
has its FDR bounded under «(1+log(1/a)) by courtesy of Fact2l At the same time, the arbitrary
dependence guarantee from Fact[I]still applies. This gives us the following guarantee:

Proposition 1. When (A,) is adaptive and X1 ., ... , Xj, are independent, Algorithm (I| with
p-processes and BH guarantees sup, o7+ FDR(S,) <0 if ' < c5 A (6/Ly), where for any § € (0,1),
define cs <9 as the solution to

cs(1+1og(1/cs))=0.

JJ prove a similar bound to Proposition[I] However, they used a larger FDR bound for p-compliant
sets with worse constants (which was subsequently improved by Su|(2018) as presented earlier), and
they only considered the non-combinatorial case. Proposition[TJuses an optimal bound on p-compliant
sets from Fact[2] and is valid in our combinatorial bandit setup.

Adaptive (A;) and arbitrarily dependent X ;, ..., X}, ;. In the general combinatorial bandit
setting, where the algorithm chooses a subset of arms or “superarm” at each time to jointly
sample from, we will have multiple samples from multiple arms in the same time step, and



Xi4,..., Xy, can be arbitrarily dependent. Consequently, the p-variables corresponding to each
arm can also be arbitrarily dependent. For example, a superarm could consist of all arms, and
the sampling rule could be to simplly sample this superarm that encompasses all arms. Then,
the p-variable distribution would directly depend on the reward distribution of the arms. Thus,
we can provide the following guarantee by Fact [T when using p-variables as a result of Fact [3]
() ()
Proposition 2. When (A,) is adaptive and X1 ..., X}, are depen- 9A Ao
dent, Algorithmwith p-variables and BH guarantees FDR(S;) <§ \

Q)
A,

. . . :(((-»);ﬁ

Sor any stopping time 7 €T if §' <§/logk. Ae
Finally, consider a setting structured setting where we cannot output / ((‘ ,) (}534
the rejection set of BH. This often occurs in directed acyclic graph /A 1\

. . . . H (A4
settings where there is a hierarchy among hypotheses that constraints '-. Ai
the allowed rejecion sets (Ramdas et al.|2019;|Lei et al., 2020). Instead, @ Ly s
we would like to output the largest compliant set that respects the 7A ; AZ
structural constraints. By Fact[2] we get the following FDR control. (A)

6

Proposition 3. If (A;) is adaptive and X1 4,..., X}, ; are dependent,

Algorithm[I|with p-variables that outputs an arbitrary p-compliant S; Figure 1: A superarm consists
guarantees FDR/(S;) <6 for any stopping time T € T if 6’ <¢5/10gk-  of a node and all its neighbors.
The dotted line captures Z;, the

We explore the structured setting with greater depth in Appendix B} superarm around node |

Unlike p-variables, e-variables do not need correction in any setting.

Proposition4. When (A;) is adaptive and X, 4,..., X + are dependent, Algorithmwith e-variables,
which runs e-BH at level § or outputs a e-compliant set at level §, guarantees sup, . FDR(S;) <4.

Thus, using e-variables and e-BH (or any e-compliant set) with parameter ¢ is valid for any choice of
(A;) and any dependence. We give an example where X1 ,..., X}, , might be arbitrarily dependent.

Example: sampling nodes on a graph. A scenario where X 4,..., X ; may naturally have depen-
dence is when each arm corresponds to a node on a graph. The superarms in this situation could be
defined w.r.t. to a graph constraint e.g. “two nodes connected by an edge” or “a node and its neighbors”.
Graph bandits has been studied in the regret setting and have many real world applications (Valko}2016).
We could imagine a scenario where low power sensors in a sensor network can only communicate
locally. A centralized algorithm is tasked with querying the sensors to find those with high activity. A
sensor may only provide activity information about itself and nearby sensors, which can be arbitrarily
dependent. Figure[T]illustrates a superarm in this situation. Thus, if Proposition[2]is used to guarantee
FDR(S) < 6 with p-variables, it pays a logk correction, while Propositioncan guarantee e-variables
need no correction. We simulate this setting in Appendix|C] and show these differences empirically.

Other examples. We also discuss some other examples in Appendix |B} such as those involving
multiple cooperating or competing agents, structured rejection sets, scientific meta-analysis, etc.

6 Constructing e-variables for sub-Gaussian rewards

We discuss the sub-Gaussian setting that has been the focus of existing methodology by JJ on bandit
multiple testing. We explicitly define e-variables and an exploration component (A;) that will have
sample complexity bounds that match those of the algorithm derived by JJ, which uses p-variables.
Specifically, we will consider the standard bandit setting where |Z;| =1 and v; is 1-sub-Gaussian for
each ¢ € [k]. Denote the means of each arm i € [k] as p; = E[X; 4] for all t € N. The goal is to find
many arms where p; > 1o, where we set 119 =0 to be the mean of a reward distribution under the null
hypothesis. Thus, we define Ho = {i € [k] : pt; < po } and Hq = {i € [k] : p; > p0}. Our framework
ensures that FDR(S) < 4. Hence, we want algorithms that have TPR(S) > 1 — 4 with small sample
complexity. We include proofs of the results in this section in Appendix[A.2]

We define the predictably-mixed Hoeffding (PM-H) e-process, after the corresponding confidence
sequence defined in|Waudby-Smith and Ramdas|(2021), as follows:
T;(t)
B M (o) = [T expOiea () (Kita () —10) = A7 1,57 /2)s
j=1

where ()\; ;) is any sequence of nonnegative real numbers that is predictable w.r.t. (F;).

Proposition 5. EPMH(,10) is a nonnegative supermartingales, and thus an e-process, if i € H.



Denote A; = p; — po for i € Hq1 and A = min;eqy, A;. Otherwise, let A; = minjey, ps — fo =
A+ (p;— po)- First, we recall a time-uniform bound on the sample mean fi;.

Fact 4 (Jamieson and Jain|2018). Let X1,Xo,... be i.i.d. draws from a 1-sub-Gaussian distribution
with mean . The boundary ¢ (t,6) = \/4log(log, (2t)/8) /t satisfies P(3t € N: |11, — u| > p(¢,6)) < 6.

©(t,0) is a time-uniform boundary, yielding a confidence sequence for the mean; tighter constants can
be used, and such bounds can be derived under several nonparametric conditions (Howard et al.,[2021]).
Thus, denote the sample mean at time ¢ of each

arm € [k] by fi; ;. We formalize algorithm of JJ in Iy =argmax; ¢ fhit—1 +¢(Ti(t),6),  (3a)
terms of Algorithm([I|that utilizes ¢ from Fact[]in 33 .

: : Pi= inf |f;¢—pol > e(t,0). (3b)
(@3). I, is the single arm that the upper confidence bt gejon) ot HO J

bound (UCB) algorithm (3a) samples at time ¢. JJ

prove the following sample complexity guarantee for the algorithm in (3).

Fact 5 (Jamieson and Jain2018). Let (A;) output Z, ={I;} and let P; ; = ngfor allielk]landteN
where I and P;]g are defined in (3). Then, for any stopping time T, Algorithmwill always guarantee

FDR(S;) <6. With 1—6 probability, there will exist T < (ZleAi_zloglogAi_Q+A,L-_210g(n/6)) A
kA~2log(log(A~2)/6) such that TPR(S;) >1—6 forall t >T.

We formulate our e-variable algorithm

in (@), where R € N is a parameter of I — tmod k t<R
the algorithm. We discuss how we de- = argmax; ¢ Hit—1+o(Ti(t—1),6) t>R
rived this choice of ()\; ;) from betting 1 (<R

strategies in Appendix[D} We note that P 9 ;
< 2 it = t— V0, E;, ;= PM-H 4b
EPMAL ) pPM-H t=Hit—1/ it EEM-H t>R. (4b)

(4a)

SR~ Temains a e-process,
since we are simply picking R as a new "
starting time for the e-variable to start
counting samples. Essentially, the algorithm formulated in (@) has a warm start for R rounds where
sample are accumulated on each arm so that fi; , becomes a better estimate of ;. Then, it launches into
a UCB algorithm while using EPM™H a5 its e-variable. We prove the following guarantee.

Theorem 1. Let (A;) be such that Ay outputs Ty ={1,} for allt €N, and I, \; 1, and E; ; are defined
in {@). Let R=c,kA~21log(log(A~2)/6) for some universal constant c, that is agnostic of k, 6, and
Avq,...,Ag. Then, for any stopping time T, Algorithmwill always guarantee FDR(S,) <¢. With1—§
probability, there will exist with T <kA~2log(log(A~2)/6) such that TPR(S;) >1—6 forallt >T.

This matches the sample complexity of Fact[5]in the “similar means” case when the bound depends
solely on A, thatis all y; are similar, e.g. within constant factors of each other so that A is asymptotically
equivalent to A; for all ¢ € 7. This result can likely be generalized to exactly match Fact[3]

7 Numerical Simulations

We perform simulations for the situation discussed in Section [6]to demonstrate that our version
of Algorithm (1| using e-variables is empirically as efficient as the algorithm of JJ, which uses p-
variables. However, unlike JJ, our algorithm does not need to use a corrected level ¢’ that is based
upon the dependence assumptions among X1 4,...,X ; to guarantee FDR is controlled under §. We
explore additional simulations of combinatorial semi-bandit settings with dependent X 4,..., X}, ¢ in
Appendix[Clthat show the benefit of using e-variables over p-variables in our framework.

Simulation setup Let v; =N (u;,1) where p; = po=0if i € Hg and p; =1/2 if i € H1. We consider 3
setups, where we set the number of non-null hypotheses to be |H; | =2,logk, and \/E, SO we may see
the effect of different magnitudes of non-null hypotheses on the sample complexity of each method.
We set § = 0.05 and compare 4 different methods. We compare the same two different exploration
components for both e-variables and p-variables. The first exploration component we consider is
simply uniform sampling across each arm (Uni). The second is the UCB sampling strategy described
in @ When using BH, our choice for p-variables is the same as JJ and is formulated in @), and we

set p(t,0) = \/ 2log(1/ 6)+61°g1°g(1t/ 9)t8loglos(et/2)) i hoth the UCB method and our p-variable. When

2log(2/a)

using e-BH, we set our evariables to EX M with \; , =



of \; ¢ suggested in Waudby-Smith and Ramdas|(2021). Recall that this choice of e-variables remains a
e-process by Proposition[5|and thus maintains provable FDR control.

Results We observe that for uniform sampling, e-BH and e-variables seem to outperform BH and
p-variables, although by a decreasing margin for more arms, especially in the case where |H| = L\/EJ .
For the UCB sampling algorithm, we see that e-variables and p-variables have relatively similar
performance, with the gap narrowing as the number of arms increase as well. Thus, e-variables and
e-BH empirically perform on par or better than p-variables with regards to sample complexity. This
shows that using e-variables does not require any sacrifice in performance in simple cases where
p-variables also work well. Further, e-variables do not require the same logk correction that p-variables
need for situations where X ¢,..., X}, + are arbitrarily dependent to guarantee FDR control at the same
level. Thus, e-variables are preferable to p-variables as they are more flexible w.r.t. assumptions.

—— UCB e-BH -+ Uni e-BH
UCBBH —-— UniBH
- 6 e - 54 . .-
6 o - ) - -
_ e /,/ ________ af
o |7 4] o | e
€ 44 £ E3
= F =
24 21 27
1 1 T T
10! 102 10! 102 10! 102
Arms Arms Arms
(@) |H1|=2 (b) [H1]| = |logk] (©) [Ha]=|VE]

Figure 2: Relative comparison of time ¢ for each method to obtain a rejection set, S;, that has a
TPR(S;) > 1 —§ while maintaining FDR(S;) < §, where we choose § = 0.05. This plot compares
e-BH vs. normal BH methods for evidence when using uniform sampling (Uni) or a UCB strategy
for arm selection over different numbers of arms (choices of k) and different densities of non-null
hypotheses (sizes of H;). Time is reported as a ratio to the time taken by UCB e-BH method. Note that
e-variables perform on par or better than p-variables for both sampling strategies.

8 Conclusion, limitations and broader impact

In this paper, we developed a unified framework for bandit multiple hypothesis testing. We demonstrated
that using the e-BH procedure applied to stopped e-processes can guarantee FDR control without
any assumptions on the the dependency structure of X ;,..., X} ;, the exploration strategy, or the
stopping time of the algorithm, the presence of multiple agents, the ability of query multiple arms, etc.
In contrast, existing algorithms using BH and p-variables have different FDR guarantees vary with the
problem setting and dependence structure among the p-variables. In general, we argued that control of
the FDR by BH can blow up by a factor of logklog(1/«), which means that the BH algorithm has to
increase its threshold for discovery by logklog(1/«) to maintain FDR at the desired level. We provide
more detailed explanations of these observations in the appendices. Despite its generality, we showed
that in the standard sub-Gaussian reward setting, the instantiated algorithm matches sample complexity
bounds with the p-variable algorithm by JJ for bounding the TPR, and has better practical performance
despite improving JJ’s guarantees by invoking the compliance results of |Su/(2018)).

The appendices have additional examples of problem settings and simulations that show the utility of
e-processes and our general framework. In fact, we can address an even more general setting where
the null hypotheses do not have a one-to-one correspondence with the arms; in other words, despite
the queries being at the arm-level, the hypotheses being tested could combine arms (for example,
comparing different arms). We avoided this in the main paper for simplicity of exposition, since there
were enough generalizations to describe in the simpler setup already.

The main limitation of the work is that it does not develop instance optimal sampling algorithms for
multiple testing problem in the described settings with more complicated dependence structures; we
believe this is a difficult open problem, requiring specialized techniques in each example. We do
not foresee any negative societal impact of this work; it is aimed at reducing costs and improving
reproducibility in scientific experimentation by controlling false discoveries in adaptive testing.
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