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ABSTRACT

Recent studies have demonstrated the overwhelming advantage of cross-lingual
pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-
lingual NLP tasks. However, existing approaches essentially capture the co-
occurrence among tokens through involving the masked language model (MLM)
objective with token-level cross entropy. In this work, we extend these ap-
proaches to learn sentence-level representations, and show the effectiveness on
cross-lingual understanding and generation. We propose Hierarchical Contrastive
Learning (HICTL) to (1) learn universal representations for parallel sentences dis-
tributed in one or multiple languages and (2) distinguish the semantically-related
words from a shared cross-lingual vocabulary for each sentence. We conduct eval-
uations on two challenging cross-lingual tasks, XTREME and machine transla-
tion. Experimental results show that the HICTL outperforms the state of the art
XLM-R by an absolute gain of 1.3% accuracy on XTREME as well as achieves
substantial improvements of +1.7∼+3.6 BLEU on both the high-resource and low-
resource English→X translation tasks over strong baselines.

1 INTRODUCTION

Pre-trained models (PTMs) like ELMo (Peters et al., 2018), GPT (Radford et al., 2018) and
BERT (Devlin et al., 2019) have shown remarkable success of effectively transferring knowledge
learned from large-scale unlabeled data to downstream NLP tasks, such as text classification (Socher
et al., 2013) and natural language inference (Bowman et al., 2015; Williams et al., 2018), with lim-
ited or no training data. To extend such pretraining-finetuning paradigm to multiple languages, some
endeavors such as multilingual BERT (Devlin et al., 2019) and XLM (Conneau & Lample, 2019)
have been made for learning cross-lingual representation. More recently, Conneau et al. (2020)
present XLM-R to study the effects of training unsupervised cross-lingual representations at a huge
scale and demonstrate promising progresses on cross-lingual tasks.

However, all of these studies only perform masked language model (MLM) with token-level (i.e.,
subword) cross entropy, which limits PTMs to capture the co-occurrence among tokens and conse-
quently fail to understand the whole sentence. It leads to two major shortcomings for current cross-
lingual PTMs, i.e., the acquisition of sentence-level representations and semantic alignments among
parallel sentences in different languages. Considering the former, Devlin et al. (2019) introduced
the next sentence prediction (NSP) task to distinguish whether two input sentences are continuous
segments from training corpus. However, this simple binary classification task is not enough to
model sentence-level representations (Joshi et al., 2020; Yang et al., 2019; Liu et al., 2019; Lan
et al., 2020; Conneau et al., 2020). For the latter, (Huang et al., 2019) defined the cross-lingual
paraphrase classification task, which concatenates two sentences from different languages as input
and classifies whether they are with the same meaning. This task learns patterns of sentence-pairs
well, but fails to distinguish the exact meaning of each sentence.

In response to these problems, we propose to strengthen PTMs through learning universal represen-
tations among semantically-equivalent sentences distributed in different languages. We introduce a
novel Hierarchical Contrastive Learning (HICTL) framework to learn language invariant sentence
representations via self-supervised non-parametric instance discrimination. Specifically, we use a
BERT-style model to encode two sentences separately, and the representation of the first token (e.g.,
[CLS] in BERT) will be treated as the sentence representation. Then, we conduct instance-wise
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comparison at both sentence-level and word-level, which are complementary to each other. For the
former, we maximize the similarity between two parallel sentences while minimize which among
non-parallel ones. For the latter, we maintain a bag-of-words for each sentence-pair, each word
in which is considered as a positive sample while the rest words in vocabulary are negative ones.
To reduce the space of negative samples, we conduct negative sampling for word-level contrastive
learning. With the HICTL framework, the PTMs are encouraged to learn language agnostic repre-
sentation, thereby bridging the semantic discrepancy among cross-lingual sentences.

The HICTL is conducted on the basis of XLM-R (Conneau et al., 2020) and experiments are
performed on several challenging cross-lingual tasks: language understanding tasks (e.g., XNLI,
XQuAD and MLQA) in the XTREME (Hu et al., 2020) benchmark, and machine translation in
the IWSLT and WMT benchmarks. Extensive empirical evidences demonstrate that our approach
can achieve consistent improvements over baselines on various tasks of both cross-lingual language
understanding and generation. In more detail, our HICTL obtains absolute gains of 1.3% accuracy
on XTREME over XLM-R. For machine translation, our HICTL achieves substantial improvements
over baselines on both low-resource (IWSLT English→X) and high-resource (WMT English→X)
translation tasks.

2 RELATED WORK

Pre-trained Language Models. Recently, substantial work has shown that pre-trained models
(PTMs) (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019) on the large corpus are ben-
eficial for downstream NLP tasks, like in GLUE (Wang et al., 2018) and XNLI (Conneau et al.,
2018). The application scheme is to fine-tune the pre-trained model using the limited labeled data
of specific target tasks. For cross-lingual pre-training, both Devlin et al. (2019) and Conneau &
Lample (2019) trained a transformer-based model on multilingual Wikipedia which covers various
languages, while XLM-R (Conneau et al., 2020) studied the effects of training unsupervised cross-
lingual representations at a very large scale.

For sequence-to-sequence pre-training, UniLM (Dong et al., 2019) fine-tuned BERT with an ensem-
ble of masks, which employs a shared Transformer network and utilizing specific self-attention mask
to control what context the prediction conditions on. Song et al. (2019) extended BERT-style models
by jointly training the encoder-decoder framework. XLNet (Yang et al., 2019) trained by predicting
masked tokens auto-regressively in a permuted order, which allows predictions to condition on both
left and right context. Raffel et al. (2019) unified every NLP problem as a text-to-text problem and
pre-trained a denoising sequence-to-sequence model at scale. Concurrently, BART (Lewis et al.,
2020) pre-trained a denoising sequence-to-sequence model, in which spans are masked from the
input but the complete output is auto-regressively predicted.

Previous work have explored using pre-trained models to improve text generation, such as pre-
training both the encoder and decoder on several languages (Song et al., 2019; Conneau & Lample,
2019; Raffel et al., 2019) or using pre-trained models to initialize encoders (Edunov et al., 2019;
Zhang et al., 2019a). Zhu et al. (2020) proposed a BERT-fused NMT model, in which the represen-
tations from BERT are treated as context and fed it into all layers of both the encoder and decoder,
rather than served as input embeddings only. Zhong et al. (2020) formulated the extractive sum-
marization task as a semantic text matching problem and proposed a Siamese-BERT architecture to
compute the similarity between the source document and the candidate summary, which leverages
the pre-trained BERT in a Siamese network structure. Our approach also belongs to the contextual
pre-training so it could been applied to various downstream NLU and NLG tasks.

Contrastive Learning. Contrastive learning (CTL) (Saunshi et al., 2019) aims at maximizing the
similarity between the encoded query q and its matched key k+ while keeping randomly sampled
keys {k−0 , k

−
1 , k

−
2 , ...} faraway from it. With similarity measured by a score function s(q, k), a form

of a contrastive loss function, called InfoNCE (Oord et al., 2018), is considered in this paper:

Lctl = − log
exp(s(q, k+))

exp(s(q, k+)) +
∑

i exp(s(q, k
−
i ))

, (1)

where the score function s(q, k) is essentially implemented as the cosine similarity qT k
‖q‖·‖k‖ . q and k

are often encoded by a learnable neural encoder, such as BERT (Devlin et al., 2019) or ResNet (He
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Figure 1: Illustration of Hierarchical Contrastive Learning (HICTL).

et al., 2016). k+ and k− are typically called positive and negative samples. In addition to the form
illustrated in Eq. (1), contrastive losses can also be based on other forms, such as margin-based
loses (Hadsell et al., 2006) and variants of NCE losses (Mnih & Kavukcuoglu, 2013).

Contrastive learning is at the core of several recent work on unsupervised or self-supervised learning
from computer vision (Wu et al., 2018; Oord et al., 2018; Ye et al., 2019; He et al., 2019; Chen et al.,
2020) to natural language processing (Mikolov et al., 2013; Mnih & Kavukcuoglu, 2013; Devlin
et al., 2019; Clark et al., 2020b). Kong et al. (2020) improved language representation learning
by maximizing the mutual information between a masked sentence representation and local n-gram
spans. Clark et al. (2020b) utilized a discriminator to predict whether a token is replaced by a
generator given its surrounding context. Iter et al. (2020) proposed to pre-train language models with
contrastive sentence objectives that predicts the surrounding sentences given an anchor sentence. In
this paper, we propose HICTL to encourage parallel cross-lingual sentences to have the identical
semantic representation and distinguish whether a word is contained in them as well, which can
naturally improve the capability of cross-lingual understanding and generation for PTMs.1

3 METHODOLOGY

3.1 HIERARCHICAL CONTRASTIVE LEARNING

We propose hierarchical contrastive learning (HICTL), a novel comparison learning framework that
unifies cross-lingual sentences as well as related words. HICTL can learn from both non-parallel and
parallel multilingual data, and the overall architecture of HICTL is illustrated in Figure 1. We rep-
resent a training batch of the original sentences as x = {x1, x2, ..., xn} and its aligned counterpart
is denoted as y = {y1, y2, ..., yn}, where n is the batch size. For each pair 〈xi, yi〉, yi is either the
translation in the other language of xi when using parallel data or the perturbation through reorder-
ing tokens in xi when only monolingual data is available2. x\i is denoted as a modified version of
x where the i-th instance is removed.

Sentence-Level CTL. As illustrated in Figure 1a, we apply the XLM-R as the encoder to represent
sentences into hidden representations. The first token of every sequence is always a special token
(e.g., [CLS]), and the final hidden state corresponding to this token is used as the aggregate sen-
tence representation for pre-training, that is, rx = f ◦ g(M(x)) where g(·) is the aggregate function
and f(·) is a linear projection, ◦ denotes the composition of operations. To obtain universal repre-
sentation among semantically-equivalent sentences, we encourage rxi

(the query, denoted as q) to be

1The concurrent work (Feng et al., 2020; Chi et al., 2020) also conduct contrastive learning to produce
similar representations across languages, but they only consider the sentence-level contrast. HICTL differs in
learning to predict semantically-related words for each sentence additionally, which is particularly beneficial
for cross-lingual text generation.

2For the latter, we have explored using machine translation engine to synthesize an identical sentence yi in
the other language for xi, which has little effect on performance.
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as similar as possible to ryi
(the positive sample, denoted as k+) but dissimilar to all other instances

(i.e., y\i ∪ x\i, considered as a series of negative samples3, denoted as {k−1 , k
−
2 , ..., k

−
2n−2}) in a

training batch. Formally, the sentence-level contrastive loss for xi is defined as

Lsctl(xi) = − log
exp ◦s(q, k+)

exp ◦s(q, k+) +
∑|y\i∪x\i|

j=1 exp ◦s(q, k−j )
. (2)

Symmetrically, we also expect ryi
(the query, denoted as q̂) to be as similar as possible to rxi

(the
positive sample, denoted as k̂+) but dissimilar to all other instances in the same training batch, thus,

Lsctl(yi) = − log
exp ◦s(q̂, k̂+)

exp ◦s(q̂, k̂+) +
∑|y\i∪x\i|

j=1 exp ◦s(q̂, k̂−j )
. (3)

The sentence-level contrastive loss over the training batch can be formulated as

LS =
1

n

n∑
i=1

{
Lsctl(xi) + Lsctl(yi)

}
. (4)

Word-Level CTL. The motivations of introducing the word-level contrastive learning are in two
folds. First, a sentence can be in several correct literals expressions and most of them share the
similar bag-of-words (Ma et al., 2018). Thus, it is beneficial for sentence understanding by distin-
guishing its bag-of-words from the vocabulary. Second, there is a natural gap between the word
embeddings of different languages. Intuitively, predicting the related words in other languages for
each sentence can bridge the representations of words in different languages. As shown in Figure 1b,
we concatenate the sentence pair 〈xi, yi〉 as xi ◦ yi: [CLS] xi [SEP] yi [SEP] and the bag-of-
words of which is denoted as B. For word-level contrastive learning, the final state of the first token
is treated as the query (q̃), each word wt ∈ B is considered as the positive sample and all the other
words (V\B, i.e., the words in V that are not in B where V indicates the overall vocabulary of all
languages) are negative samples. As the vocabulary usually with large space, we propose to only
use a subset S ⊂ V\B sampled according to the normalized similarities between q̃ and the embed-
dings of the words. As a result, the subset S naturally contains the hard negative samples which
are beneficial for learning high quality representations (Ye et al., 2019). Specifically, the word-level
contrastive loss for 〈xi, yi〉 is defined as

Lwctl(xi, yi) = −
1

|B|

|B|∑
t=1

log
exp ◦s(q̃, e(wt))

exp ◦s(q̃, e(wt)) +
∑

wj∈S exp ◦s(q̃, e(wj))
. (5)

where e(·) is the embedding lookup function and |B| is the number of unique words in the concate-
nated sequence xi ◦ yi. The overall word-level conrastive loss can be formulated as:

LW =
1

n

n∑
i=1

Lwctl(xi, yi). (6)

Multi-Task Pre-training. Both MLM and translation language model (TLM) are combined with
HICTL by default, as the prior work (Conneau & Lample, 2019) have verified the effectiveness of
them in XLM. In summary, the model can be optimized by minimizing the entire training loss:

L = LLM + LS + LW , (7)
where LLM is implemented as either the TLM when using parallel data or the MLM when only
monolingual data is available to recover the original words of masked positions given the contexts.

3.2 CROSS-LINGUAL FINE-TUNING

Language Understanding. The representations produced by HICTL can be used in several ways
for language understanding tasks whether they involve single text or text pairs. Concretely, (i)
the [CLS] representation of single-sentence in sentiment analysis or sentence pairs in paraphrasing
and entailment is fed into an extra output-layer for classification. (ii) The pre-trained encoder can be
used to assign POS tags to each word or to locate and classify all the named entities in the sentence
for structured prediction, as well as (iii) to extract answer spans for question answering.

3Following (Chen et al., 2020), we treat other instances contained in the training batch as negative examples
for current instance. However, mining hard negative samples plays an important role in contrastive learning (Ye
et al., 2019), we leave this for future work.
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Table 1: Statistics (#millions) of the training data used in pre-training.

LANG. ar bg de el en es fr hi ru sw th tr ur vi zh

MONO. 3.8 1.5 17.4 1.3 43.2 11.3 15.5 0.6 12.6 0.2 0.8 1.8 0.5 3.8 5.5
PARA. 9.8 0.6 9.3 4.0 - 11.4 13.2 1.6 11.7 0.2 3.3 0.5 0.7 3.5 9.6

𝑥1

Pre-trained

Encoder

Randomly Initialized

Decoder

𝑐𝑙𝑠 𝑥0 𝑥2 𝑠𝑒𝑝 𝑦1𝑏𝑜𝑠 𝑦0 𝑦2 𝑦3

𝑦1𝑦0 𝑦2 𝑦3 𝑒𝑜𝑠

𝑐𝑙𝑠

Figure 2: Fine-tuning on NMT task.

Language Generation. We also explore using HICTL
to improve machine translation. In the previous work,
Conneau & Lample (2019) has shown that the pre-trained
encoders can provide a better initialization of supervised
and unsupervised neural machine translation (NMT) sys-
tems. Liu et al. (2020) has shown that NMT models can
be improved by incorporating pre-trained sequence-to-
sequence models on various language pairs but highest-
resource settings. As illustrated in Figure 2, we use the
model pre-trained by HICTL as the encoder, and add
a new set of decoder parameters that are learned from
scratch. To prevent pre-trained weights from being washed out by supervised training, we train
the encoder-decoder model in two steps. At the first step, we freeze the pre-trained encoder and only
update the decoder. At the second step, we train all model parameters for a relatively small number
of iterations. In both cases, we compute the similarities between the [CLS] representation of the
encoder and all target words in advance. Then we aggregate them with the logits before softmax
of each decoder step through an element-wise additive operation. The encoder-decoder model is
optimized by maximizing the log-likelihood of bitext at both steps.

4 EXPERIMENTS

We consider two evaluation benchmarks: cross-lingual language understanding tasks in XTREME
and machine translation tasks (IWSLT’14 English↔{German}, IWSLT’17 English→{French, Chi-
nese}, WMT’14 English→{German, French} and WMT’18 English→{Chinese, Russian}). In this
section, we describe the data and training details, and provide detailed evaluation results.

4.1 DATA AND MODEL

Our model is pre-trained on 15 languages, including English (en), French (fr), Spanish (es), German
(de), Greek (el), Bulgarian (bg), Russian (ru), Turkish (tr), Arabic (ar), Vietnamese (vi), Thai (th),
Chinese (zh), Hindi (hi), Swahili (sw) and Urdu (ur). For monolingual data, we use the Wikipedia
from these languages. For bilingual data, we use the same (English-to-X) MT dataset as (Conneau &
Lample, 2019), which are collected from MultiUN (Eisele & Yu, 2010) for French, Spanish, Arabic
and Chinese, the IIT Bombay corpus (Kunchukuttan et al., 2018) for Hindi, the OpenSubtitles 2018
for Turkish, Vietnamese and Thai, the EUbookshop corpus for German, Greek and Bulgarian, Tanzil
for both Urdu and Swahili, and GlobalVoices for Swahili. Table 1 lists the statistics.

We adopt the TRANSFORMER-ENCODER (Vaswani et al., 2017) as the backbone with 12 layers and
768 hidden units for HICTLBase, and 24 layers and 1024 hidden units for HICTL. We initialize the
parameters of HICTL with XLM-R (Conneau et al., 2020). During pre-training, a training batch for
HICTL covers 15 languages with equal probability, each instance with two sentences as input and
the max sequence length is set to 128. We use Adam optimizer to train the model, and learning rate
starts from 2.5e− 5 with invert linear decay. We run the pre-training experiments on 8 V100 GPUs,
batch size 32. The number of negative samples m = 512 for word-level contrastive learning.

4.2 EXPERIMENTAL EVALUATION

Cross-lingual Language Understanding (XTREME) There are nine tasks in XTREME that can
be grouped into four categories: (i) sentence classification consists of Cross-lingual Natural Lan-
guage Inference (XNLI) (Conneau et al., 2018) and Cross-lingual Paraphrase Adversaries from
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Table 2: Overall test results on XTREME benchmark of cross-lingual language understanding tasks.
Results of mBERT (Devlin et al., 2019), XLM (Conneau & Lample, 2019) and XLM-R (Conneau
et al., 2020) are from XTREME (Hu et al., 2020). Results of ‡ are from our in-house replication.

Model Pair sentence Structured prediction Question answering Sentence retrieval
XNLI PAWS-X POS NER XQuAD MLQA TyDiQA-GoldP BUCC Tatoeba

Metrics Acc. Acc. F1 F1 F1 / EM F1 / EM F1 / EM F1 Acc.

Cross-lingual zero-shot transfer (models are trained on English data)

mBERT 65.4 81.9 70.3 62.2 64.5 / 49.4 61.4 / 44.2 59.7 / 43.9 56.7 38.7
XLM 69.1 80.9 70.1 61.2 59.8 / 44.3 48.5 / 32.6 43.6 / 29.1 56.8 32.6
XLM-RBase 76.2 - - - - 63.7 / 46.3 - - -
HICTLBase 77.3 84.5 71.4 64.1 73.5 / 58.7 65.8 / 47.6 61.9 / 42.8 - -

XLM-R 79.2 86.4 73.8 65.4 76.6 / 60.8 71.6 / 53.2 65.1 / 45.0 66.0 57.3
HICTL 81.0 87.5 74.8 66.2 77.9 / 61.7 72.8 / 54.5 66.0 / 45.7 68.4 59.7

Translate-train (models are trained on English training data and its translated data on the target language)

mBERT 75.1 88.9 - - 72.4 / 58.3 67.6 / 49.8 64.2 / 49.3 - -
XLM-R‡ 82.9 90.1 74.6 66.8 80.4 / 65.6 72.4 / 54.7 66.2 / 48.2 67.9 59.1
HICTL 83.7 91.2 75.5 67.3 81.8 / 66.2 73.6 / 56.1 67.4 / 50.5 70.5 61.3

Word Scrambling (PAWS-X) (Zhang et al., 2019b). (ii) Structured prediction includes POS tag-
ging and NER. We use POS tagging data from the Universal Dependencies v2.5 (Nivre et al., 2018)
treebanks. Each word is assigned one of 17 universal POS tags. For NER, we use the Wikiann
dataset (Pan et al., 2017). (iii) Question answering includes three tasks: Cross-lingual Question An-
swering (XQuAD) (Artetxe et al., 2019), Multilingual Question Answering (MLQA) (Lewis et al.,
2019), and (iii) the gold passage version of the Typologically Diverse Question Answering dataset
(TyDiQA-GoldP) (Clark et al., 2020a). (iv) Sentence retrieval includes two tasks: BUCC (Zweigen-
baum et al., 2017) and Tatoeba (Artetxe & Schwenk, 2019), which aims to extract parallel sentences
between the English corpus and target languages. As XTREME provides no training data, thus we
directly evaluate pre-trained models on test sets.

Table 2 provides detailed results on four categories in XTREME. First, compared to the state of the
art XLM-R baseline, HICTL further achieves significant gains of 1.43% and 1.30% on average on
nine tasks with cross-lingual zero-shot transfer and translate-train settings, respectively. Second,
HICTL outperforms XLM-R by a significant margin of 2.6% and 2.2% on two sentence retrieval
tasks even with on training data, which fully depends on the learnt representations by HICTL from
pre-training stage.

Table 3 shows XNLI results on each language. We evaluate our model on cross-lingual transfer
from English to other languages (denoted as CROSS-LINGUAL TEST). It means that the pre-trained
model is fine-tuned on English MultiNLI, and then evaluated on the foreign language XNLI test. In
addition, we also consider two machine translation4 baselines: (1) TRANSLATE-TRAIN: we fine-
tune a multiligual model using the training set machine-translated from English for each language
(2) TRANSLATE-TRAIN-ALL: we fine-tune a multilingual model on the concatenation of all training
sets from TRANSLATE-TRAIN.

HICTL achieves remarkable results in all fine-tuning settings. On cross-lingual transfer (CROSS-
LINGUAL TEST), HICTLBase obtains 77.3% accuracy, outperforming the state-of-the-art XLM-
RBase, Unicoder and XLM models by 1.1%, 1.9% and 2.2% average accuracy. Compared to
mBERT, HICTLBase obtains substantial gains of 11.4%, 12.7% and 13.8% on Urdu, Arabic and
Chinese respectively. Using the multilingual pre-training of TRANSLATE-TRAIN-ALL, HICTL fur-
ther improves performance and reaches 83.8% accuracy, outperforming XLM-R and Unicoder by
0.9% and 5.3% average accuracy respectively.

Machine Translation The main idea of HICTL is to summarize cross-lingual parallel sentences
into a shared representation that we term as semantic embedding, using which semantically re-
lated words can be distinguished from others. Thus it is natural to apply this global embed-
ding to text generation. To that end, we fine-tune the pre-trained HICTL on machine trans-

4https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip
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Table 3: Results on Cross-lingual Natural Language Inference (XNLI) for each language. We report
the accuracy on each of the 15 XNLI languages and the average accuracy of our HICTL as well as
five baselines: BiLSTM (Conneau et al., 2018), mBERT (Devlin et al., 2019), XLM (Conneau &
Lample, 2019), Unicoder (Huang et al., 2019) and XLM-R (Conneau et al., 2020). Results of ‡ are
from our in-house replication.

MODEL en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Evaluation of cross-lingual sentence encoders (CROSS-LINGUAL TEST)

BiLSTM 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT 81.4 - 74.3 70.5 - - - - 62.1 - - 63.8 - - 58.3 -
XLM 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Unicoder 85.1 79.0 79.4 77.8 77.2 77.2 76.3 72.8 73.5 76.4 73.6 76.2 69.4 69.7 66.7 75.4
XLM-RBase 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
HICTLBase 86.3 80.5 81.3 79.5 78.9 80.6 79.0 75.4 74.8 77.4 75.7 77.6 73.1 69.9 69.7 77.3

Machine translate at training (TRANSLATE-TRAIN)

BiLSTM 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6 65.4
mBERT 81.9 - 77.8 75.9 - - - - 70.7 - - 76.6 - - 61.6 -
XLM 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7
Unicoder 85.1 80.0 81.1 79.9 77.7 80.2 77.9 75.3 76.7 76.4 75.2 79.4 71.8 71.8 64.5 76.9
HICTLBase 85.7 81.3 82.1 80.2 81.4 81.0 80.5 79.7 77.4 78.2 77.5 80.2 75.4 73.5 72.9 79.1

Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

XLM 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
Unicoder 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
XLM-RBase 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
HICTLBase 86.5 82.3 83.2 80.8 81.6 82.2 81.3 80.5 78.1 80.4 78.6 80.7 76.7 73.8 73.9 80.0

XLM-R 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6
XLM-R‡ 88.9 84.7 86.2 84.8 85.0 85.3 82.4 82.7 82.4 82.8 80.9 83.0 80.2 77.3 77.2 82.9
HICTL 89.3 85.5 86.9 86.1 85.7 86.1 83.7 83.9 83.3 83.5 81.8 84.2 81.0 78.4 77.9 83.8

lation tasks with both low-resource and high-resource settings. For the low-resource scenario,
we choose IWSLT’14 English↔German (En↔De)5, IWSLT’17 English→French (En→Fr) and
English→Chinese (En→Zh) translation6. There are 160k, 183k, 236k, 235k bilingual sentence
pairs for En↔De, En→Fr and En→Zh tasks. For the rich-resource scenario, we work on WMT’14
En→{De, Fr} and WMT’18 En→{Zh, Ru}. For WMT’14 En→{De, Fr}, the corpus sizes are 4.5M
and 36M respectively, and we concatenate newstest 2012 and newstest 2013 as the validation set and
use newstest 2014 as the test set. For WMT’18 En→{Zh, Ru}, there are 24M and 8M sentence pairs
respectively, we select the best models on newstest 2017 and report results on newstest 2018.

During fine-tuning, we use the pre-trained model to initialize the encoder and introduce a randomly
initialized decoder. Previous work have verified the use of deep encoders and shallow decoders to
improve translation speed (Kim et al., 2019; Kasai et al., 2020) and accuracy (Miceli Barone et al.,
2017; Wang et al., 2019). Thus we develop a shallower decoder with 4 (768 hidden units, 12 heads)
identical layers to reduce the computation overhead. The number of hidden units and heads are
same as the encoder, i.e. 768 and 12 respectively. At the first fine-tune step, we concatenate the
datasets of all language pairs in either low-resource or high-resource setting to optimize the decoder
only until convergence. Then we tune the whole encoder-decoder model using per-language corpus
at the second step. The initial learning rate is 2e − 5 and inverse sqrt learning rate (Vaswani
et al., 2017) scheduler is also adopted. For WMT’14 En→De, we use beam search with width 4
and length penalty 0.6 for inference. For other tasks, we use width 5 and length penalty 1.0. We
use multi-bleu.perl to evaluate IWSLT’14 En↔De and WMT tasks, but sacreBLEU for the
remaining tasks, for fair comparison with previous work.

Results are reported in Table 4. We implemented standard Transformer (apply the base and big
setting for IWSLT and WMT tasks respectively) as baseline. The proposed HICTL can improve
the BLEU scores of the eight tasks by 1.93, 1.76, 2.7, 2.2, 1.43, 1.25, 1.87 and 1.67. As the task-
adaptive pre-training (TAPT) (Gururangan et al., 2020) can be applied to our HICTL with minimal
modifications, thus we introduce a second phase of pre-training for HICTL on IWSLT or WMT
parallel corpora (denoted as HICTL∗), which can obtain additional gains of 0.7 BLEU on average.

5We split 7k sentence pairs from the training dataset for validation and concatenate dev2010, dev2012,
tst2010, tst2011, tst2012 as the test set.

6https://wit3.fbk.eu/mt.php?release=2017-01-ted-test
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Table 4: BLEU scores [%]. We conduct experiments with both low-resource and high-resource
settings. Two bert-fused NMT models (Yang et al., 2020; Zhu et al., 2020) are considered as our
baselines. Following (Gururangan et al., 2020), we also adopt pre-trained language models to down-
stream tasks by introducing a second phase of pre-training for HICTL on IWSLT or WMT parallel
corpora, which denoted as HICTL∗. Results with ‡ are from our in-house implementation.

MODEL
IWSLT’14 IWSLT’17 WMT’14 WMT’18

En→De De→En En→Fr En→Zh En→De En→Fr En→Zh En→Ru

Vaswani et al. (2017) - - - - 28.4 41.0 - -
Yang et al. (2020) - - - - 30.1 42.3 - -
Zhu et al. (2020) 30.45 36.11 38.7 28.2 30.75 43.78 - -

TRANSFORMER‡ 28.64 34.51 35.8 26.5 28.86 41.62 34.22 30.26
HICTL 30.57 36.27 38.5 28.7 30.29 42.87 36.09 31.93
HICTL∗ 31.36 37.12 39.4 29.5 30.86 43.31 36.64 32.57

Our approach also outperforms the BERT-fused model (Yang et al., 2020), a method treats BERT as
an extra context and fuses the representations extracted from BERT with each encoder and decoder
layer. Note we achieve new state-of-the-art results on IWSLT’14 En→De, IWSLT’17 En→{Fr,
Zh} translations. These improvements show that mapping different languages into an universal
representation space is beneficial for both low-resource and high-resource translations.

Table 5: Ablation study on two En→De translation tasks.

MODEL IWSLT’14 WMT’14
full model 31.36 30.86
w/o [CLS] aggregation 30.91 30.22
w/o two-step training 31.08 30.14
replace HICTL with XLM-R 30.72 30.04

Table 5 provides results of abla-
tion study on IWSLT’14 En→De and
WMT’14 En→De tasks. (i) We re-
move the [CLS] aggregation opera-
tion, which leads to consistent drops
of 0.45 and 0.64 BLEU on both tasks.
(ii) We also try to directly finetune
the whole NMT until convergence.
We find that the BLEU of IWSLT’14
En→De slightly decreases, while the
one of WMT’14 En→De signifi-
cantly decreases. Thus pre-trained
weights can be washed out by supervised training with rich resources. (iii) Instead of HICTL,
we use XLM-R that is further pre-trained on IWSLT and WMT parallel corpora to initialize the
encoder. The BLEU scores are 30.72 and 30.04, which are better than the vanilla TRANSFORMER
but significantly worse than leveraging HICTL.

5 CONCLUSION

We have demonstrated that pre-trained language models (PTMs) trained to learn commonsense
knowledge from large-scale unlabeled data highly benefit from hierarchical contrastive learning
(HICTL), both in terms of cross-lingual language understanding and generation. Learning univer-
sal representations at both word-level and sentence-level bridges the semantic discrepancy across
languages. As a result, our HICTL sets a new level of performance among cross-lingual PTMs, im-
proving on the state of the art by a large margin. We have also presented that by combing our method
with task-adaptive pre-training, the better results cab be obtained. Even rich-resource languages also
have been improved.
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