
Towards Understanding Grokking:
An Effective Theory of Representation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We aim to understand grokking, a phenomenon where models generalize long after1

overfitting their training set. We present both a microscopic analysis anchored by an2

effective theory and a macroscopic analysis of phase diagrams describing learning3

performance across hyperparameters. We find that generalization originates from4

structured representations whose training dynamics and dependence on training set5

size can be predicted by our effective theory in a toy setting. We observe empirically6

the presence of four learning phases: comprehension, grokking, memorization, and7

confusion. We find representation learning to occur only in a “Goldilocks zone”8

(including comprehension and grokking) between memorization and confusion.9

Compared to the comprehension phase, the grokking phase stays closer to the10

memorization phase, leading to delayed generalization. The Goldilocks phase11

is reminiscent of “intelligence from starvation” in Darwinian evolution, where12

resource limitations drive discovery of more efficient solutions. This study not only13

provides intuitive explanations of the origin of grokking, but also highlights the14

usefulness of physics-inspired tools, e.g., effective theories and phase diagrams,15

for understanding deep learning.16

1 Introduction17

Perhaps the central challenge of a scientific understanding of deep learning lies in accounting for neu-18

ral network generalization. Power et al. [1] recently added a new puzzle to the task of understanding19

generalization with their discovery of grokking. Grokking refers to the surprising phenomenon of20

delayed generalization where neural networks, on certain learning problems, generalize long after21

overfitting their training set. It is a rare albeit striking phenomenon that violates common machine22

learning intuitions, raising three key puzzles:23

Q1 The origin of generalization: When trained on the algorithmic datasets where grokking occurs,24

how do models generalize at all?25

Q2 The critical training size: Why does the training time needed to “grok” (generalize) diverge as26

the training set size decreases toward a critical point?27

Q3 Delayed generalization: Under what conditions does delayed generalization occur?28

We provide evidence that representation learning is central to answering each of these questions. Our29

answers can be summarized as follows:30

A1 Generalization can be attributed to learning a good representation of the input embeddings,31

i.e. a representation that has the appropriate structure for the task and which can be predicted32

from the theory in Section 3. See Figures 1 and 2.33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Initialization (0 iterations)
train acc: 0.0 — val acc: 0.0

Overfitting (1000 iterations)
train acc: 1.0 — val acc: 0.1

Representation Learning (20000 iterations)
train acc: 1.0 — val acc: 1.0

Figure 1: Visualization of the first two principal components of the learned input embeddings at
different training stages of a transformer learning modular addition. We observe that generalization
coincides with the emergence of structure in the embeddings. See Section 4.2 for the training details.

A2 The critical training set size corresponds to the least amount of training data that can determine34

such a representation (which, in some cases, is unique up to linear transformations).35

A3 Grokking is a phase between “comprehension” and “memorization” phases and it can be36

remedied with proper hyperparmeter tuning, as illustrated by the phase diagrams in Figure 5.37

This paper is organized as follows: In Section 2, we introduce the problem setting and build a38

simplified toy model. In Section 3, we will use an effective theory approach, a useful tool from39

theoretical physics, to shed some light on questions Q1 and Q2 and show the relationship between40

generalization and the learning of structured representations. In Section 4, we explain Q3 by41

displaying phase diagrams from a grid search of hyperparameters and show how we can "de-delay"42

generalization by following intuition developed from the phase diagram. We discuss related work in43

Section 5, followed by conclusions in Section 6.44

2 Problem Setting45

Power et al. [1] observe grokking on an unusual task – learning an “algorithmic” binary operation.46

Given some binary operation ◦, a network is tasked with learning the map (a, b) 7→ c where a ◦ b = c.47

They use a decoder-only transformer to predict the second to last token in a tokenized equation of the48

form “<lhs> <op> <rhs> <eq> <result> <eos>”. Each token is represented as a 256-dimensional49

embedding vector. The embeddings are learnable and initialized randomly. After the transformer, a50

final linear layer maps the output to class logits for each token.51

Toy Model We primarily study grokking in a simpler toy model, which still retains the key behaviors52

from the setup of [1]. Although [1] treated this as a classification task, we study both regression53

(mean-squared error) and classification (cross-entropy). The basic setup is as follows: our model54

takes as input the symbols a, b and maps them to trainable embedding vectors Ea,Eb ∈ Rdin . It55

then sums Ea,Eb and sends the resulting vector through a “decoder” MLP. The target output vector,56

denoted Yc ∈ Rdout is a fixed random vector (regression task) or a one-hot vector (classification57

task). Our model architecture can therefore be compactly described as (a, b) 7→ Dec(Ea + Eb),58

where the embeddings E∗ and the decoder are trainable. Despite its simplicity, this toy model can59

generalize to all abelian groups (discussed in Appendix A). In sections 3-4.1, we consider only the60

binary operation of addition. We consider modular addition in Section 4.2 to generalize some of our61

results to a transformer architecture and study general non-abelian operations in Appendix F.62

Dataset In our toy setting, we are concerned with learning the addition operation. A data sample63

corresponding to i+ j is denoted as (i, j) for simplicity. If i, j ∈ {0, . . . , p− 1}, there are in total64

p(p+ 1)/2 different samples since we consider i+ j and j + i to be the same sample. A dataset D65

is a set of non-repeating data samples. We denote the full dataset as D0 and split it into a training66

dataset D and a validation dataset D′, i.e., D
⋃

D′ = D0, D
⋂
D′ = ∅. We define training data67

fraction = |D|/|D0| where | · | denotes the cardinality of the set.68

2

RQI: 0.0 — Accuracy - train: 1.0, validation: 0.1

0

2

4

6

8

10

12

14

16

18

20

(a) Memorization in toy addition

RQI: 0.6 — Accuracy - train: 1.0, validation: 0.9

0

2

4

6

8

10

12

14

16

18

20

(b) Generalization in toy addition
Accuracy - train: 1.0, validation: 0.1

0

2

4

6

8

10

(c) Memorization in toy modular addition

Accuracy - train: 1.0, validation: 0.9

0

2

4

6

8

10

(d) Generalization in toy modular addition

Figure 2: Visualization of the learned set of embeddings (p = 11) and the decoder function associated
with it for the case of 2D embeddings. Axes refer to each dimension of the learned embeddings. The
decoder is evaluated on a grid of points in embedding-space and the color at each point represents
the highest probability class. For visualization purposes, the decoder is trained on inputs of the form
(Ei +Ej)/2. One can read off the output of the decoder when fed the operation i ◦ j from this figure
simply by taking the midpoint between the respective embeddings of i and j.

3 Why Generalization: Representations and Dynamics69

We can see that generalization appears to be linked to the emergence of highly-structured embeddings70

in Figure 2. In particular, Figure 2 (b) shows parallelograms in toy addition, and (d) shows a circle71

in toy modular addition. We now restrict ourselves to the toy addition setup and formalize a notion72

of representation quality and show that it predicts the model’s performance. We then develop a73

physics-inspired effective theory of learning which can accurately predict the critical training set size74

and training trajectories of representations. The concept of an effective theory in physics is similar to75

model reduction in computational methods, aiming to describe complex phenomena with simple yet76

intuitive pictures. In our effective theory, we will model the dynamics of representation learning not77

as gradient descent of the true task loss but rather a simpler effective loss function ℓeff which depends78

only on the representations in embedding space and not on the decoder.79

3.1 Representation quality predicts generalization for the toy model80

A rigorous definition for structure in the learned representation is necessary. We propose the following81

definition,82

Definition 1. (i, j,m, n) is a δ-parallelogram in the representation R ≡ [E0, · · · ,Ep−1] if

|(Ei +Ej)− (Em +En)| ≤ δ.

In the following derivations, we can take δ, which is a small threshold to tolerate numerical errors, to83

be zero.84

As long as training loss is effectively zero, any parallelogram (i, j,m, n) should satisfy i+j = m+n.85

Suppose that this is not the case, i.e., suppose Ei + Ej = Em + En but i + j ̸= m + n, then86

Yi+j = Dec(Ei + Ej) = Dec(Em + En) = Ym+n where the first and last equalities come from87

the zero training loss assumption. However, since i+ j ̸= m+ n, we have Yi+j ̸= Yn+m (almost88

surely in the regression task), a contradiction.89

3

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(a)

0.0 0.2 0.4 0.6 0.8 1.0

training set fraction

0.0

0.2

0.4

0.6

0.8

1.0

Â
cc

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Âcc

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

(c)

Figure 3: We compute accuracy (of the full dataset) either measured empirically Acc, or predicted
from representation Âcc. These two accuracies as a function of training data fraction are plotted in
(a)(b), and their agreement is shown in (c).

It is convenient to define the permissible parallelogram set associated with a training dataset D90

(“permissible” means consistent with 100% training accuracy) as91

P0(D) = {(i, j,m, n)|(i, j) ∈ D, (m,n) ∈ D, i+ j = m+ n}. (1)

For simplicity, we denote P0 ≡ P0(D0). Given a representation R, we can check how many92

permissible parallelograms actually exist in R within error δ, so we define the parallelogram set93

corresponding to R as94

P (R, δ) = {(i, j,m, n)|(i, j,m, n) ∈ P0, |(Ei +Ej)− (Em +En)| ≤ δ}. (2)

For brevity we will write P (R), suppressing the dependence on δ. We define the representation95

quality index (RQI) as96

RQI(R) =
|P (R)|
|P0|

∈ [0, 1]. (3)

We will use the term linear representation or linear structure to refer to a representation whose97

embeddings are of the form Ek = a+ kb (k = 0, · · · , p− 1;a,b ∈ Rdin). A linear representation98

has RQI = 1, while a random representation (sampled from, say, a normal dstribution) has RQI = 099

with high probability.100

Quantitatively, we denote the “predicted accuracy” Âcc as the accuracy achievable on the whole101

dataset given the representation R (see Appendix B for the full details). In Figure 3, we see that102

the predicted Âcc aligns well with the true accuracy Acc, establishing good evidence that structured103

representation of input embeddings leads to generalization. We use an example to illustrate the origin104

of generalization here. In the setup of Figure 2 (a), suppose the decoder can achieve zero training105

loss and E6 +E8 is a training sample hence Dec(E6 +E8) = Y14. At validation time, the decoder106

is tasked with predicting a validation sample E5 + E9. Since (5, 9, 6, 8) forms a parallelogram107

such that E5 + E9 = E6 + E8, the decoder can predict the validation sample correctly because108

Dec(E5 +E9) = Dec(E6 +E8) = Y14.109

110

3.2 The dynamics of embedding vectors111

Suppose that we have an ideal model M∗ = (Dec∗,R∗) such that:1112

• (1) M∗ can achieve zero training loss;113

• (2) M∗ has an injective decoder, i.e., Dec∗(x1) ̸= Dec∗(x2) for any x1 ̸= x2.114

Then Proposition 1 provides a mechanism for the formation of parallelograms.115

1One can verify a posteriori if a trained model M is close to being an ideal model M∗. Please refer to
Appendix C for details.

4

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

(l
in

ea
r

st
ru

ct
u

re
)

rc = 0.4

(a) Theory: phase transition

0.4 0.6 0.8 1.0
training data fraction

102

103

104

S
te

p
s

to
R

Q
I>

0.
95

rc = 0.4

(b) Empirical: phase transition

Runs that reached
RQI>0.95 in 104 steps

Runs that didn’t reach
RQI>0.95 in 104 steps

0 500 1000 1500 2000

step

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1D
re

p
re

se
nt

at
io

n

0
1
2
3
4
5
6
7
8
9

3nh

(c) Theory: trajectory

0 500 1000 1500 2000

step

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1D
n

or
m

al
iz

ed
re

p
re

se
nt

at
io

n

0
1
2
3
4
5
6
7
8
9

3nh

(d) Empirical: trajectory

Figure 4: (a) The effective theory predicts a phase transition in the probability of obtaining a linear
representation around rc = 0.4. (b) Empirical results display a phase transition of RQI around
rc = 0.4, in agreement with the theory (the blue line shows the median of multiple random seeds).
The evolution of 1D representations predicted by the effective theory or obtained from neural network
training (shown in (c) and (d) respectively) agree creditably well.

Proposition 1. If a training set D contains two samples (i, j) and (m,n) with i + j = m + n,116

then M∗ learns a representation R∗ such that Ei + Ej = Em + En, i.e., (i, j,m, n) forms a117

parallelogram.118

Proof. Due to the zero training loss assumption, we have Dec∗(Ei + Ej) = Yi+j = Ym+n =119

Dec∗(Em +En). Then the injectivity of Dec∗ implies Ei +Ej = Em +En.120

The dynamics of the trained embedding parameters are determined by various factors interacting in121

complex ways, for instance: the details of the decoder architecture, the optimizer hyperparameters,122

and the various kinds of implicit regularization induced by the training procedure. We will see that123

the dynamics of normalized quantities, namely, the normalized embeddings at time t, defined as124

Ẽ
(t)
k =

E
(t)
k −µt

σt
, where µt =

1
p

∑
k E

(t)
k and σt =

1
p

∑
k |E

(t)
k − µt|2, can be qualitatively described125

by a simple effective loss (in the physics effective theory sense). We will assume that the normalized126

embedding vectors obey a gradient flow for an effective loss function of the form127

dẼi

dt
= −∂ℓeff

∂Ẽi

, (4)

128

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ẽi + Ẽj − Ẽm − Ẽn|2/|P0(D)|, Z0 ≡
∑

k

|Ẽk|2, (5)

where | · | denotes Euclidean vector norm. Note that the embeddings do not collapse to the trivial129

solution E0 = · · · = Ep−1 = 0 unless initialized as such, because two conserved quantities exist, as130

proven in Appendix D:131

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2. (6)

We shall now use the effective dynamics to explain empirical observations such as the existence of a132

critical training set size for generalization.133

Degeneracy of ground states (loss optima) We define ground states as those representations134

satisfying ℓeff = 0, which requires the following linear equations to hold:135

A(P) = {Ei +Ej = Em +En|(i, j,m, n) ∈ P} (7)

Since each embedding dimension obeys the same set of linear equations, we will assume, without loss136

of generality, that din = 1. The dimension of the null space of A(P), denoted as n0, is the number of137

degrees of freedom of the ground states. Given a set of parallelograms implied by a training dataset138

D, the nullity of A(P (D)) could be obtained by computing the singular values 0 ≤ σ1 ≤ · · · ≤ σp.139

We always have n0 ≥ 2, i.e., σ1 = σ2 = 0 because the nullity of A(P0), the set of linear equations140

given by all possible parallelograms, is Nullity(A(P0)) = 2 which can be attributed to two degrees141

5

of freedom (translation and scaling). If n0 = 2, the representation is unique up to translations and142

scaling factors, and the embeddings have the form Ek = a + kb. Otherwise, when n0 > 2, the143

representation is not constrained enough such that all the embeddings lie on a line.144

We present theoretical predictions alongside empirical results for addition (p = 10) in Figure 4. As145

shown in Figure 4 (a), our effective theory predicts that the probability that the training set implies a146

unique linear structure (which would result in perfect generalization) depends on the training data147

fraction and has a phase transition around rc = 0.4. Empirical results from training different models148

are shown in Figure 4(b). The number of steps to reach RQI > 0.95 is seen to have a phase transition149

at rc = 0.4, agreeing with the proposed effective theory and with the empirical findings in [1].150

Time towards the linear structure We define the Hessian matrix of ℓ0 as151

Hij =
1

Z0

∂2ℓ0
∂Ei∂Ej

, (8)

Note that ℓ0 = 1
2R

THR, R = [E0,E1, · · · ,Ep−1], so the gradient descent is linear, i.e.,152

dR

dt
= −HR. (9)

If H has eigenvalues λi = σ2
i (sorted in increasing order) and eigenvectors v̄i, and we have the initial153

condition R(t = 0) =
∑

i aiv̄i, then we have R(t) =
∑

i aiv̄ie
−λit. The first two eigenvalues154

vanish and th = 1/λ3 determines the timescale for the slowest component to decrease by a factor155

of e. When the step size is η, the corresponding number of steps is nh = th/η = 1/(λ3η). See156

Appendix G for more details on the dependence of λ3 on training set size.157

We verify the above analysis with empirical results. Figure 4 (c)(d) show the trajectories obtained158

from the effective theory and from neural network training, respectively. The 1D neural representation159

in Figure 4(d) are manually normalized to zero mean and unit variance. The two trajectories agree160

qualitatively, and it takes about 3nh steps for two trajectories to converge to the linear structure. The161

quantitative differences might be due to the absence of the decoder in the effective theory, which162

assumes the decoder to be adiabatic in the sense that it takes infinitesimal step sizes.163

Limitations of the effective theory While our theory defines an effective loss based on the Euclidean164

distance between embeddings Ei +Ej and En +Em, one could imagine generalizing the theory to165

define a broader notion of parallogram given by some other metric on the representation space. For166

instance, if we have a decoder like in Figure 2(c) then the distance between distinct representations167

within the same “pizza slice” is low, meaning that representations arranged not in parallelograms168

w.r.t. the Euclidean metric may be parallelograms with respect to the metric defined by the decoder.169

4 Delayed Generalization: A Phase Diagram170

So far, we have (1) observed empirically that generalization on algorithmic datasets corresponds with171

the emergence of well-structured representations, (2) defined a notion of representation quality in a172

toy setting and shown that it predicts generalization, and (3) developed an effective theory to describe173

the learning dynamics of the representations in the same toy setting. We now study how optimizer174

hyperparameters affect high-level learning performance. In particular, we develop phase diagrams for175

how learning performance depend on the representation learning rate, decoder learning rate and the176

decoder weight decay. These parameters are of interest since they most explicitly regulate a kind of177

competition between the encoder and decoder, as we elaborate below.178

4.1 Phase diagram of a toy model179

Training details We update the representation and the decoder with different optimizers. For the180

1D embeddings, we use the Adam optimizer with learning rate [10−4, 10−2] and zero weight decay.181

For the decoder, we use an AdamW optimizer with the learning rate in [10−4, 10−2] and the weight182

decay in [0, 10] (regression) or [0, 20] (classification). For training/validation spliting, we choose183

45/10 for non-modulo addition (p = 10) and 24/12 for the permutation group S3. We hard-code184

addition or matrix multiplication (details in Appendix F) in the decoder for the addition group and185

the permutation group, respectively.186

6

1e-5 1e-4 1e-3 1e-2
decoder learning rate

1e-2

1e-3

1e-4

1e-5

re
p

re
se

nt
at

io
n

le
ar

n
in

g
ra

te

co
m

pr
eh

en
si
on

memorization

grokking

(a) Addition, regression

1e-5 1e-4 1e-3 1e-2
decoder learning rate

0

5

10

w
ei

gh
t

d
ec

ay

co
m

p
re

h
e
n

si
o
n

memorization

grokking

confusion

(b) Addition, regression

1e-5 1e-4 1e-3 1e-2
decoder learning rate

0

10

20

w
ei

gh
t

d
ec

ay

comprehension

memorization

grokking

co
n

fu
si

o
n

(c) Addition, classification

1e-5 1e-4 1e-3 1e-2
decoder learning rate

0

10

200

w
ei

gh
t

d
ec

ay

comprehension

memorization

grokking

confusion

(d) Permutation, regression

Figure 5: Phase diagrams of learning for the addition group and the permutation group. (a) shows the
competition between representation and decoder. (b)(c)(d): each phase diagram contains four phases:
comprehension, grokking, memorization and confusion, defined in Table 1. Grokking is sandwiched
between comprehension and memorization.

Table 1: Definitions of the four phases of learning
criteria

Phase training acc > 90%
within 105 steps

validation acc > 90%
within 105 steps

step(validation acc>90%)
−step(training acc>90%)<103

Comprehension Yes Yes Yes
Grokking Yes Yes No

Memorization Yes No Not Applicable
Confusion No No Not Applicable

For each choice of learning rate and weight decay, we compute the number of steps to reach high187

(90%) training/validation accuracy The 2D plane is split into four phases: comprehension, grokking,188

memorization and confusion, defined in Table 1. Both comprehension and grokking are able to189

generalize (in the “Goldilocks zone"), although the grokking phase has delayed generalization.190

Memorization is also called overfitting, and confusion means failure to even memorize training data.191

Figure 5 shows the phase diagrams for the addition group and the permutation group. They display192

quite rich phenomena.193

Competition between representation learning and decoder overfitting In the regression setup194

of the addition dataset, we show how the competition between representation learning and decoder195

learning (which depend on both learning rate and weight decay, among other things) lead to different196

learning phases in Figure 5 (a). As expected, a fast decoder coupled with slow representation learning197

(bottom right) lead to memorization. In the opposite extreme, although an extremely slow decoder198

coupled with fast representation learning (top left) will generalize in the end, the generalization time is199

7

long due to the inefficient decoder training. The ideal phase (comprehension) requires representation200

learning to be faster, but not too much, than the decoder.201

Drawing from an analogy to physical systems, one can think of embedding vectors as a group of202

particles. In our effective theory from Section 3.1, the dynamics of the particles are described only by203

their relative positions, in that sense, structure forms mainly due to these interaction. The decoder204

plays the role of an environment exerting external forces on the embeddings. If the magnitude of the205

external forces are small/large one can expect better/worse representations.206

Universality of phase diagrams We fix representation learning to be 10−3 and sweep instead207

decoder weight decay in Figure 5 (b)(c)(d). The phase diagrams correspond to addition regression208

(b), addition classification (c) and permutation regression (d), respectively. Common phenomenon209

emerge from these different tasks: (i) they all include four phases; (ii) The top right corner (a fast and210

capable decoder) is the memorization phase; (iii) the bottom right corner (a fast and simple decoder) is211

the confusion phase; (iv) grokking is sandwiched between comprehension and memorization, which212

seems to imply that it is an undesirable phase that stems from improperly tuned hyperparameters.213

4.2 Beyond the toy model214

We conjecture that many of the principles which we saw dictate the training dynamics in the toy215

model also apply more generally. Below, we will see how our framework generalizes to transformer216

architectures for the task of addition modulo p, a minimal reproducible example of the original217

grokking paper [1].218

We first encode p = 53 integers into 256D learnable embeddings, then pass two integers to a decoder-219

only transformer architecture. For simplicity, we do not encode the operation symbols here. The220

outputs from the last layer are concatenated and passed to a linear layer for classification. Training221

both the encoder and the decoder with the same optimizer (i.e., with the same hyperparameters)222

leads to the grokking phenomenon. Generalization appears much earlier once we lower the effective223

decoder capacity with weight decay (full phase diagram in Figure 6).224

100 102 104

step

30

35

40

45

50

55

eff
ec

ti
ve

d
im

en
si

on
eS

eS

generalization

memorization

0.0 0.2 0.4

dropout rate

101

103

105

ep
o
ch

s
to

90
%

ac
cu

ra
cy

validation

train

validation - train

3e-7 1e-4 4e-2

learning rate

1e-2

2e-1

2e+0

3e+1

w
ei

gh
t

d
ec

ay

co
m

p
re

h
en

si
o
n

memorization

grokking

confusion

Figure 6: Left: Evolution of the effective dimension of the embeddings (defined as the exponential of
the entropy) during training and evaluated over 100 seeds. Center: Effect of dropout on speeding up
generalization. Right: Phase diagram of the transformer architecture. A scan is performed over the
weight decay and learning rate of the decoder while the learning rate of the embeddings is kept fixed
at 10−3 (with zero weight decay).

Early on, the model is able to perfectly fit the training set while having no generalization. We study225

the embeddings at different training times and find that neither PCA (shown in Figure 1) nor t-SNE226

(not shown here) reveal any structure. Eventually, validation accuracy starts to increase, and perfect227

generalization coincides with the PCA projecting the embeddings into a circle in 2D. Of course, no228

choice of dimensionality reduction is guaranteed to find any structure, and thus, it is challenging229

to show explicitly that generalization only occurs when a structure exists. Nevertheless, the fact230

that, when coupled with the implicit regularization of the optimizer for sparse solutions, such a clear231

structure appears in a simple PCA so quickly at generalization time suggests that our analysis in232

the toy setting is applicable here as well. This is also seen in the evolution of the entropy of the233

explained variance ratio in the PCA of the embeddings (defined as S = −∑
i σi log σi where σi is234

the fractional variance explained by the ith principal component). As seen in Figure 6, the entropy235

increases up to generalization time then decreases drastically afterwards which would be consistent236

with the conjecture that generalization occurs when a low-dimensional structure is discovered. The237

8

decoder then primarily relies on the information in this low-dimensional manifold and essentially238

“prunes” the rest of the high-dimensional embedding space. See Appendix J for more details.239

In Figure 6 (right), we show a comparable phase diagram to Figure 5 evaluated now in the transformer240

setting. Note that, as opposed to the setting in [1], weight decay has only been applied to the decoder241

and not to the embedding layer. Contrary to the toy model, a certain amount of weight decay proves242

beneficial to generalization and speeds it up significantly. We conjecture that this difference comes243

from the different embedding dimensions. With a highly over-parameterized setting, a non-zero244

weight decay gives a crucial incentive to reduce complexity in the decoder and help generalize in245

fewer steps. This is subject to further investigation. We also explore the effect of dropout layers246

in the decoder blocks of the transformer. With a significant dropout rate, the generalization time247

can be brought down to under 103 steps and the grokking phenomenon vanishes completely. The248

overall trend suggests that constraining the decoder with the same tools used to avoid overfitting249

reduces generalization time and can avoid the grokking phenomenon. This is also observed in an250

image classification task where we were able to induce grokking. See Appendix I for more details.251

5 Related work252

We are not aware of other formal attempts to understand grokking, though some authors have provided253

speculative, informal accounts [2, 3]. Our work is related to the following broad research directions:254

Double descent Grokking is somewhat reminiscent of the phenomena of “epoch-wise” double255

descent [4], where generalization can improve after a period of overfitting. [5] find that regularization256

can mitigate double descent, similar perhaps to how weight decay influences grokking.257

Representation learning Representation learning lies at the core of machine learning [6–9]. Rep-258

resentation quality is usually measured by (perhaps vague) semantic meanings or performance on259

downstream tasks. In our study, the simplicity of arithmetic datasets allows us to define representation260

quality and study evolution of representations in a quantitative way.261

Physics of learning Physics-inspired tools have been proved useful to understand machine learning262

from a theoretical perspective. These tools include effective theories [10, 11], conservation laws [12]263

and free energy principle [13]. In particular, phase diagrams and statistical physics have been264

identified as a powerful tool in studying generalization of neural networks [14–17]. However, none265

of these works aim to develop an effective theory of representation learning.266

We have argued that grokking occurs when models learn a particularly structured representation of267

their inputs. This connects a low-level understanding of models with their high-level performance.268

In a recent work, researchers at Anthropic [18], connect a sudden decrease in loss during training269

with the emergence of induction heads within their models. They analogize their work to statistical270

physics, since it bridges a “microscopic”, mechanistic understanding of networks with “macroscopic”271

facts about overall model performance. We view our work in the same vein.272

6 Conclusion273

We have shown how, in both toy models and more general settings, that representation enables274

generalization when it reflects structure in the data. We developed an effective theory of representation275

learning dynamics (in a toy setting) which predicts the critical dependence of learning on the training276

data fraction. We then presented phase transitions between comprehension, grokking, memorization277

and confusion where the learning “phase” depends on the decoder capacity and learning rate in278

decoder-only architectures. While we have mostly focused on a toy model, we find preliminary279

evidence that our results generalize to the setting of [1].280

Our work can be viewed as a step towards a statistical physics of deep learning, a theory which281

connects the “microphysics” of low-level network dynamics with the “thermodynamics” of high-282

level model behavior. We view the application of theoretical tools from physics, such as effective283

theories [19], to be a rich area for further work. The broader impact of such work, if successful,284

would be to make models more transparent and predictable [18, 20, 21], crucial to the task of ensuring285

the safety of advanced AI systems.286

9

References287

[1] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-288

eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,289

2022.290

[2] Beren Millidge. Grokking ’grokking’. https://beren.io/291

2022-01-11-Grokking-Grokking/, 2022.292

[3] Rohin Shah. Alignment Newsletter #159. https:293

//www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/294

an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_,295

2021.296

[4] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.297

Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:298

Theory and Experiment, 2021(12):124003, 2021.299

[5] Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and Tengyu Ma. Optimal regularization can300

mitigate double descent. arXiv preprint arXiv:2003.01897, 2020.301

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and302

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):303

1798–1828, 2013.304

[7] Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised305

learning. arXiv preprint arXiv:2006.05278, 2020.306

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena307

Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,308

et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural309

Information Processing Systems, 33:21271–21284, 2020.310

[9] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A311

framework and review. IEEE Access, 8:193907–193934, 2020.312

[10] James Halverson, Anindita Maiti, and Keegan Stoner. Neural networks and quantum field313

theory. Machine Learning: Science and Technology, 2(3):035002, 2021.314

[11] Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory. arXiv315

preprint arXiv:2106.10165, 2021.316

[12] Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.317

Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv318

preprint arXiv:2012.04728, 2020.319

[13] Yansong Gao and Pratik Chaudhari. A free-energy principle for representation learning. In320

International Conference on Machine Learning, pages 3367–3376. PMLR, 2020.321

[14] Federica Gerace, Bruno Loureiro, Florent Krzakala, Marc Mézard, and Lenka Zdeborová.322

Generalisation error in learning with random features and the hidden manifold model. In323

International Conference on Machine Learning, pages 3452–3462. PMLR, 2020.324

[15] Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Multi-scale325

feature learning dynamics: Insights for double descent. In International Conference on Machine326

Learning, pages 17669–17690. PMLR, 2022.327

[16] Sebastian Goldt, Galen Reeves, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. The328

gaussian equivalence of generative models for learning with two-layer neural networks. 2020.329

[17] R Kuhn and S Bos. Statistical mechanics for neural networks with continuous-time dynamics.330

Journal of Physics A: Mathematical and General, 26(4):831, 1993.331

10

https://beren.io/2022-01-11-Grokking-Grokking/
https://beren.io/2022-01-11-Grokking-Grokking/
https://beren.io/2022-01-11-Grokking-Grokking/
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_

[18] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom332

Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,333

Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson334

Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,335

Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer336

Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-337

heads/index.html.338

[19] Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory.339

Cambridge University Press, 2022. https://deeplearningtheory.com.340

[20] Deep Ganguli, Danny Hernandez, Liane Lovitt, Nova DasSarma, Tom Henighan, Andy Jones,341

Nicholas Joseph, Jackson Kernion, Ben Mann, Amanda Askell, et al. Predictability and surprise342

in large generative models. arXiv preprint arXiv:2202.07785, 2022.343

[21] Jacob Steinhardt. Future ML Systems Will Be Qualitatively Different. https://www.344

lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc, 2022.345

[22] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,346

and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,347

2017.348

[23] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the349

terminal phase of deep learning training. Proceedings of the National Academy of Sciences, 117350

(40):24652–24663, 2020.351

[24] Wikipedia contributors. Thomson problem — Wikipedia, the free encyclope-352

dia. https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=353

1091431454, 2022. [Online; accessed 29-July-2022].354

[25] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings355

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758,356

2021.357

[26] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay358

Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models.359

In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty Third Conference on360

Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages 3635–3673.361

PMLR, 09–12 Jul 2020. URL https://proceedings.mlr.press/v125/woodworth20a.362

html.363

11

https://deeplearningtheory.com
https://www.lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc
https://www.lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc
https://www.lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc
https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454
https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454
https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454
https://proceedings.mlr.press/v125/woodworth20a.html
https://proceedings.mlr.press/v125/woodworth20a.html
https://proceedings.mlr.press/v125/woodworth20a.html

Appendix364

A Applicability of our toy setting365

In the main paper, we focused on the toy setting with (1) the addition dataset and (2) the addition366

operation hard coded in the decoder. Although both simplifications appear to have quite limited367

applicability, we argue below that the analysis of the toy setting can actually apply to all Abelian368

groups.369

The addition dataset is the building block of all Abelian groups A cyclic group is a group that370

is generated by a single element. A finite cyclic group with order n is Cn = {e, g, g2, · · · , gn−1}371

where e is the identify element and g is the generator and gi = gj whenever i = j (mod n). The372

modulo addition and {0, 1, · · · , n− 1} form a cyclic group with e = 0 and g can be any number q373

coprime to n such that (q, n) = 1. Since algorithmic datasets contain only symbolic but no arithmetic374

information, the datasets of modulo addition could apply to all other cyclic groups, e.g., modulo375

multiplication and discrete rotation groups in 2D.376

Although not all Abelian groups are cyclic, a finite Abelian group G can be always decomposed into377

a direct product of k cyclic groups G = Cn1 ×Cn2 · · ·Cnk
. So after training k neural networks with378

each handling one cyclic group separately, it is easy to construct a larger neural network that handles379

the whole Abelian group.380

The addition operation is valid for all Abelian groups It is proved in [22] that for a permutation381

invariant function f(x1, x2, · · · , xn), there exists ρ and ϕ such that382

f(x1, x2, · · · , xn) = ρ[

n∑

i=1

ϕ(xi)], (10)

or f(x1, x2) = ρ(ϕ(x1) + ϕ(x2)) for n = 2. Notice that ϕ(xi) corresponds to the embedding vector383

Ei, ρ corresponds to the decoder. The addition operator naturally emerges from the commutativity384

of the operator, not restricting the operator itself to be addition. For example, multiplication of385

two numbers x1 and x2 can be written as x1x2 = exp(ln(x1) + ln(x2)) where ρ(x) = exp(x) and386

ϕ(x) = ln(x).387

Figure 7: As we include more data in the training set, the (ideal) model is capable of discovering
increasingly structured representations (better RQI), from (a) to (b) to (c).

B Definition of Âcc388

Given a training set D and a representation R, if (i, j) is a validation sample, can the neural network389

correctly predict its output, i.e., Dec(Ei +Ej) = Yi+j? Since neural network has never seen (i, j)390

in the training set, one possible mechanism of induction is through391

Dec(Ei +Ej) = Dec(Em +En) = Ym+n(= Yi+j). (11)

The first equality Dec(Ei + Ej) = Dec(Em + En) holds only when Ei + Ej = Em + En (i.e.,392

(i, j,m, n) is a parallelogram). The second equality Dec(Em +En) = Ym+n, holds when (m,n) in393

training set, i.e., (m,n) ∈ D, under the zero training loss assumption. Rigorously, given a training394

12

set D and a parallelogram set P (which can be calculated from R), we collect all zero loss samples395

in an augmented training set D396

D(D,P) = D
⋃

{(i, j)|∃(m,n) ∈ D, (i, j,m, n) ∈ P}. (12)

Keeping D fixed, a larger P would probably produce a larger D, i.e., if P1 ⊆ P2, then D(D,P1) ⊆397

D(P, P2), which is why in Eq. (3) our defined RQI ∝ |P | gets its name “representation quality398

index", because higher RQI normally means better generalization. Finally, the expected accuracy399

from a dataset D and a parallelogram set P is:400

Âcc =
|D(D,P)|

|D0|
, (13)

which is the estimated accuracy (of the full dataset), and P = P (R) is defined on the representation401

after training. On the other hand, accuracy Acc can be accessed empirically from trained neural402

network. We verified Acc ≈ Âcc in a toy setup (addition dataset p = 10, 1D embedding space, hard403

code addition), as shown in FIG. 3 (c). FIG. 3 (a)(b) show Acc and Âcc as a function of training set404

ratio, with each dot corresponding to a different random seed. The dashed red diagonal corresponds405

to memorization of the training set, and the vertical gap refers to generalization.406

Although the agreement is good for 1D embedding space, we do not expect such agreement can407

trivially extend to high dimensional embedding space. In high dimensions, our definition of RQI is408

too restrictive. For example, suppose we have an embedding space with N dimensions. Although the409

representation may form a linear structure in the first dimension, the representation can be arbitrary410

in other N − 1 dimensions, leading to RQI ≈ 0. However, the model may still generalize well if the411

decoder learns to keep only the useful information (the 1st dimension) and drop all other useless412

information (other 31 dimensions). It would be interesting to investigate how to define an RQI that413

takes into account the role of decoder in future works.414

C The gap of a realistic model M and the ideal model M∗
415

Realistic models M usually form fewer number of parallelograms than ideal models M∗. In this416

section, we analyze the properties of ideal models and calculated ideal RQI and ideal accuracy,417

which set upper bounds for empirical RQI and accuracy. The upper bound relations are verified via418

numerical experiments in Fig. 8.419

Similar to Eq. (12) where some validation samples can be derived from training samples, we420

demonstrate how implicit parallelograms can be ‘derived’ from explicit ones in P0(D). The so-called421

derivation follows a simple geometric argument that: if A1B1 is equal and parallel to A2B2, and422

A2B2 is equal and parallel to A3B3, then we can deduce that A1B1 is equal and parallel to A3B3423

(hence (A1, B2, A2, B1) is a parallelogram).424

Recall that a parallelogram (i, j,m, n) is equivalent to Ei + Ej = Em + En (∗). So we are425

equivalently asking if equation (∗) can be expressed as a linear combination of equations in426

A(P0(D)). If yes, then (∗) is dependent on A(P0(D)) (defined in Eq. (7)), i.e., A(P0(D)) and427

A(P0(D)
⋃
(i, j,m, n)) should have the same rank. We augment P0(D) by adding implicit parallel-428

ograms, and denote the augmented parallelogram set as429

P (D) = P0(D)
⋃

{q ≡ (i, j,m, n)|q ∈ P0, rank(A(P0(D))) = rank(A(P0(D)
⋃

q))}. (14)

We need to emphasize that an assumption behind Eq. (14) is that we have an ideal model M∗. When430

the model is not ideal, e.g., when the injectivity of the encoder breaks down, fewer parallelograms431

are expected to form, i.e.,432

P (R) ⊆ P (D). (15)
The inequality is saying, whenever a parallelogram is formed in the representation after training, the433

reason is hidden in the training set. This is not a strict argument, but rather a belief that today’s neural434

networks can only copy what datasets (explicitly or implicitly) tell it to do, without any autonomous435

creativity or intelligence. For simplicity we call this belief Alexander Principle. In very rare cases436

when something lucky happens (e.g., neural networks are initialized at approximate correct weights),437

Alexander principle may be violated. Alexander principle sets an upper bound for RQI:438

RQI(R) ≤ |P (D)|
|P0|

≡ RQI, (16)

13

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(b)

0.0 0.2 0.4 0.6 0.8 1.0

RQI
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(c)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(d)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(e)

0.0 0.2 0.4 0.6 0.8 1.0

Acc
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(f)

Figure 8: We compare RQI and Acc for an ideal algorithm (with bar) and a realistic algorithm
(without bar). In (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc) as functions of training data
fraction are shown. In (c)(f), RQI and Acc of the ideal algorithm sets upper bounds for those of the
realistic algorithm.

and sets an upper bound for Âcc:439

Âcc ≡ Âcc(D,P (R)) ≤ Âcc(D,P (D)) ≡ Acc, (17)

In Figure 8 (c)(f), we verify Eq. (16) and Eq. (17). We choose δ = 0.01 to compute RQI(R,δ). We440

find the trained models are usually far from being ideal, although we already include a few useful441

tricks proposed in Section 4 to enhance representation learning. It would be an interesting future442

direction to develop better algorithms so that the gap due to Alexander principle can be reduced443

or even closed. In Figure 8 (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc) as functions of the444

training data fraction are shown, each dot corresponding to one random seed. It is interesting to445

note that it is possible to have RQI = 1 only with < 40% training data, i.e., 55× 0.4 = 22 samples,446

agreeing with our observation in Section 3.447

Realistic representations Suppose an ideal model M∗ and a realistic model M which train on the448

training set D give the representation R∗ and R, respectively. What is the relationship between R449

and R∗? Due to the Alexander principle we know P (R) ⊆ P (D) = P (R∗). This means R∗ has450

more parallelograms than R, hence R∗ has fewer degrees of freedom than R.451

We illustrate with the toy case p = 4. The whole dataset contains p(p+ 1)/2 = 10 samples, i.e.,452

D0 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. (18)

The parallelogram set contains only three elements, i.e.,453

P0 = {(0, 1, 1, 2), (0, 1, 2, 3), (1, 2, 2, 3)}, (19)

Or equivalently the equation set454

A0 = {A1 : E0 +E2 = 2E1,A2 : E0 +E3 = E1 +E2,A3 : E1 +E3 = 2E2}. (20)

Pictorially, we can split all possible subsets {A|A ⊆ A0} into different levels, each level defined by455

|A| (the number of elements). A subset A1 in the ith level points an direct arrow to another subset456

14

Figure 9: p = 4 case. Equation set A (or geometrically, representation) has a hierarchy: a → b means
a is a parent of b, and b is a child of a. A realistic model can only generate representations that are
descendants of the representation generated by an ideal model.

Figure 10: p = 4 case. Representations obtained from training neural networks are displayed. η1 and
η2 are learning rates of the representation and the decoder, respectively. As described in the main text,
(η1, η2) = (10−2, 10−3) (right) is more ideal than (η1, η2) = (10−3, 10−2) (left), thus producing
representations containing more parallelograms.

A2 in the (i + 1)th level if A2 ⊂ A1, and we say A2 is a child of A1, and A1 is a parent of A2.457

Each subset A can determine a representation R with n(A) degrees of freedom. So R should be a458

descendant of R∗, and n(R∗) ≤ n(R). Numerically, n(A) is equal to the dimension of the null space459

of A.460

Suppose we have a training set461

D = {(0, 2), (1, 1), (0, 3), (1, 2), (1, 3), (2, 2)}, (21)

and correspondingly P (D) = P0, A(P) = A0. So an ideal model M∗ will have the linear structure462

Ek = a+ kb (see Figure 9 leftmost). However, a realistic model M may produce any descendants463

of the linear structure, depending on various hyperparameters and even random seeds.464

In Figure 10, we show our algorithms actually generates all possible representations. We have465

two settings: (1) fast decoder (η1, η2) = (10−3, 10−2) (Figure 10 left), and (2) relatively slow466

decoder (η1, η2) = (10−2, 10−3) (Figure 10) right). The relatively slow decoder produces better467

representations (in the sense of higher RQI) than a fast decoder, agreeing with our observation in468

Section 4.469

D Conservation laws of the effective theory470

Recall that the effective loss function471

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ei +Ej −Em −En|2, Z0 ≡
∑

k

|Ek|2 (22)

15

where ℓ0 and Z0 are both quadratic functions of R = {E0, · · · ,Ep−1}, and ℓeff = 0 remains zero472

under rescaling and translation E′
i = aEi + b. The representation vector Ei evolves according to the473

gradient descent474

dEi

dt
= −∂ℓeff

∂Ei
. (23)

We will prove the following two quantities are conserved:475

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2 (24)

Eq. (22) and Eq. (23) give476

dEi

dt
= − ℓeff

∂Ei
= −

∂(ℓ0
Z0

)

∂Ei
= − 1

Z0

∂ℓ0
∂Ei

+
ℓ0
Z2
0

∂Z0

∂Ei
. (25)

Then477

dZ0

dt
= 2

∑

i

Ek · dEk

dt
(26)

=
2

Z2
0

∑

i

Ei · (−Z0
∂ℓ0
∂Ek

+ 2ℓ0Ek)

=
2

Z0
(−

∑

k

∂ℓ0
∂Ek

·Ek + 2ℓ0)

= 0.

where the last equation uses the fact that478

∑

k

∂ℓ0
∂Ek

·Ek = 2
∑

k

∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)(δik + δjk − δmk − δnk) ·Ek

= 2
∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)
∑

k

(δik + δjk − δmk − δnk) ·Ek

=
∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En) · (Ei +Ej −Em −En)

= 2ℓ0

The conservation of Z0 prohibits the representation from collapsing to zero. Now that we have479

demonstrated that Z0 is a conserved quantity, we can also show480

dC

dt
=

∑

k

dEk

dt
(27)

= − 1

Z0

∑

k

∂ℓ0
∂Ek

= − 2

Z0

∑

k

∑

(i,j,m,n)∈P0(D)

(Ei +Ej −Em −En)(δik + δjk − δmk − δnk)

= 0.

The last equality holds because the two summations can be swapped and
∑

k(δik+δjk−δmk−δnk) =481

0.482

E More phase diagrams of the toy setup483

We study another three hyperparameters in the toy setup by showing phase diagrams similar to484

Figure 5. The toy setup is: (1) addition without modulo (p = 10); (2) training/validation is split into485

45/10; (3) hard code addition; (4) 1D embedding. In the following experiments, the decoder is an486

16

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

grokking

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

g
ro

k
k
in

g

confusion

Addition group (classification)

Figure 11: Phase diagrams of decoder learning rate (x axis) and batch size (y axis) for the addition
group (left: regression; right: classification). Small decoder leanrning rate and large batch size
(bottom left) lead to comprehension.

MLP with size 1-200-200-30. The representation and the encoder are optimized with AdamW with487

different hyperparameters. The learning rate of the representation is 10−3. We sweep the learning488

rate of the decoder in range [10−4, 10−2] as the x axis, and sweep another hyperparameter as the489

y axis. By default, we use full batch size 45, initialization scale s = 1 and zero weight decay of490

representation.491

Batch size controls the amount of noise in the training dynamics. In Figure 11, the grokking region492

appears at the top left of the phase diagram (small decoder learning rate and small batch size).493

However, large batch size (with small learning rate) leads to comprehension, implying that smaller494

batch size seems harmful. This makes sense since to get crystals (good structures) in experiments,495

one needs a freezer which gradually decreases temperature, rather than something perturbing the496

system with noise.497

Initialization scale controls distances among embedding vectors at initialization. We initialize498

components of embedding vectors from independent uniform distribution U [−s/2, s/2] where s499

is called the initialization scale. Shown in Figure 12, it is beneficial to use a smaller initialization500

scale. This agrees with the physical intuition that closer particles are more likely to interact and form501

structures. For example, the distances among molecules in ice are much smaller than distances in gas.502

503

Representation weight decay controls the magnitude of embedding vectors. Shown in Figure 13,504

we see the representation weight decay in general does not affect model performance much.505

F General groups506

F.1 Theory507

We focused on Abelian groups for the most part of the paper. This is, however, simply due to508

pedagogical reasons. In this section, we show that it is straight-forward to extend definitions of509

parallelograms and representation quality index (RQI) to general non-Abelian groups. We will also510

show that most (if not all) qualitative results for the addition group also apply to the permutation511

group.512

Matrix representation for general groups Let us first review the definition of group representation.513

A representation of a group G on a vector space V is a group homomorphism from G to GL(V), the514

general linear group on V . That is, a representation is a map ρ : G → GL(V) such that515

ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (28)

17

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e comprehension

memorization

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e comprehension

memorization

confusion

Addition group (classification)

Figure 12: Phase diagrams of decoder learning rate (x axis) and initialization (y axis) for the addition
group (left: regression; right: classification). Small intialization scale (top) leads to comprehension.

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n
sio

n

memorization

g
ro

k
k
in

g

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n

si
o
n

m
e
m

o
ri

za
ti

o
ng

ro
k
k
in

g

co
n

fu
si

o
n

Addition group (classification)

Figure 13: Phase diagrams of decoder learning rate (x axis) and representation weight decay (y axis)
for the addition group (left: regression; right: classification). Representation weight decay does not
affect model performance much.

In the case V is of finite dimension n, it is common to identify GL(V) with n by n invertible matrices.516

The punchline is that: each group element can be represented as a matrix, and the binary operation is517

represented as matrix multiplication.518

A new architecture for general groups Inspired by the matrix representation, we embed each519

group element a as a learnable matrix Ea ∈ Rd×d (as opposed to a vector), and manually do matrix520

multiplication before sending the product to the deocder for regression or classification. More521

concretly, for a ◦ b = c, our architecture takes as input two embedding matrices Ea and Eb and522

aims to predict Yc such that Yc = Dec(EaEb), where EaEb means the matrix multiplication of Ea523

and Eb. The goal of this simplication is to disentangle learning the representation and learning the524

arithmetic operation (i.e, the matrix multiplication). We will show that, even with this simplification,525

we are still able to reproduce the characteristic grokking behavior and other rich phenomenon.526

Generalized parallelograms we define generalized parallelograms: (a, b, c, d) is a generalized527

parallelogram in the representation if ||EaEb −EcEd||2F ≤ δ, where δ > 0 is a threshold to tolerate528

numerical errors. Before presenting the numerical results for the permutation group, we show an529

intuitive picture about how new parallelograms can be deduced from old ones for general groups,530

which is the key to generalization.531

18

Figure 14: Deduction of parallelograms

Deduction of parallelograms532

We first recall the case of the Abelian group (e.g., addition group). As shown in Figure 14, when533

(a, d, b, c) and (c, f, d, e) are two parallelograms, we have534

Ea +Ed = Eb +Ec

Ec +Ef = Ed +Ed
(29)

We can derive that Ea +Ef = Eb +Ee implying that (a, f, b, e) is also a parallelogram. That is, for535

Abelian groups, two parallelograms are needed to deduce a new parallelogram.536

For the non-Abelian group, if we have only two parallelograms such that537

EaEd = EbEc

EfEc = EeEd
(30)

we have E−1
b Ea = EcE

−1
d = E−1

f Ee, but this does not lead to something like EfEa = EeEb,538

hence useless for generalization. However, if we have a third parallelogram such that539

EeEh = EfEg (31)

we have E−1
b Ea = EcE

−1
d = E−1

f Ee = EgE
−1
h , equivalent to EaEh = EbEg, thus establishing a540

new parallelogram (a, h, b, g). That is, for non-Abelian groups, three parallelograms are needed to541

deduce a new parallelogram.542

F.2 Numerical Results543

In this section, we conduct numerical experiments on a simple non-abelian group: the permutation544

group S3. The group has 6 group elements, hence the full dataset contains 36 samples. We embed each545

group element a into a learnable 3×3 embedding matrix Ea. We adopt the new architecture described546

in the above subsection: we hard code matrix multiplication of two input embedding matrices before547

feeding to the decoder. After defining the generalized parallelogram in the last subsection, we can548

continue to define RQI (as in Section 3) and predict accuracy Âcc from representation (as in appendix549

B). We also compute the number of steps needed to reach RQI = 0.95.550

Representation We flatten each embedding matrix into a vector, and apply principal component551

analysis (PCA) to the vectors. We show the first three principal components of these group elements552

in Figure 15. On the plane of PC1 and PC3, the six points are organized as a hexagon.553

19

PC 1
3 2 1 0 1 2 3

PC 2
1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC 3

1.5
1.0
0.5

0.0
0.5
1.0
1.5

[0, 1, 2]
[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
2

[0, 1, 2][0, 2, 1]
[1, 0, 2]

[1, 2, 0]
[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

PC2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

Figure 15: Permuation group S3. First three principal components of six embedding matrices R3×3.

0.4 0.6 0.8

training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.4 0.6 0.8

training data fraction

103

104
st

ep
s

to
R

Q
I>

0.
95

rc = 0.5

(b)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(c)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â
cc

(d)

0.2 0.4 0.6 0.8 1.0

Âcc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(e)

Figure 16: Permutation group S3. (a) RQI increases as training set becomes larger. Each scatter point
is a random seed, and the blue line is the highest RQI obtained with a fixed training set ratio; (b) steps
to reach RQI>0.95. The blue line is the smallest number of steps required. There is a phase transition
around rc = 0.5. (c) real accuracy Acc; (d) predicted accuracy Âcc; (e) comparison of Acc and Âcc:
Âcc serves as a lower bound of Acc.

RQI In Figure 16(a), we show RQI as a function of training data fraction. For each training data554

fraction, we run 11 random seeds (shown as scatter points), and the blue line corresponds to the555

highest RQI.556

Steps to reach RQI= 0.95 In Figure 16(b), we whow the steps to reach RQI > 0.95 as a function of557

training data fraction, and find a phase transition at r = rc = 0.5. The blue line corresponds to the558

best model (smallest number of steps).559

Accuracy The real accuracy Acc is shown in Figure 16(c), while the predicted accuracy Âcc560

(calculated from RQI) is shown in Figure 16(d). Their comparison is shown in (e): Âcc is a lower561

bound of Acc, implying that there must be some generalization mechanism beyond RQI.562

Phase diagram We investigate how the model performance varies under the change of two knobs:563

decoder learning rate and decoder weight decay. We calculate the number of steps to training accuracy564

≥ 0.9 and validation accuracy ≥ 0.9, respectively, shown in Figure 5 (d).565

G Dependence of grokking time on data size566

In Section 3.1, we built an effective theory with a quadratic loss function. ℓ0 = 1
2R

THR, R =567

[E0,E1, · · · ,Ep−1], so gradient descent on the loss function is linear, i.e.,568

dR

dt
= −HR (32)

where H has eigenvalues λi and eigenvectors v̄i. With the initial condition R(t = 0) = aiv̄i, we569

have R(t) = aiv̄ie
−λit, so the convergence time for the ith eigen-direction is 1/λi. Because the loss570

function is invariant under translation (Ei → Ei + c) and linear scaling (Ei → aEi), the first two571

eigenvalues are zero. As a result, the time scale towards the linear structure Ek = a+ kb is 1/λ3.572

We call λ3 the grokking rate. Note that ℓ0 involves averaging over parallelograms in the training573

set, it is dependent on training data size, so is λ3. In Figure 17 (a), we plot the dependence of λ3574

on training data fraction. There are many datasets with the same data size, so λ3 is a probabilistic575

function of data size.576

Two insights on grokking can be extracted from this plot: (i) When the data fraction is below some577

threshold (around 0.4), λ3 is zero with high probability, corresponding to no generalization. This578

20

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction

0.0

0.1

0.2

0.3

0.4

gr
ok

ki
n

g
ra

te
λ

3

(a)

10−2 10−1 100

grokking rate λ3

103

104

S
te

p
s

to
R

Q
I
>

0.
95

tth =
1/(2λ

3 η)

Runs that didn’t reach RQI > 0.95 in 104 steps

Runs that reached RQI > 0.95 in 104 steps

(b)

Figure 17: Effective theory explains the dependence of grokking time on data size, for the addition
task. (a) Dependence of λ3 on training data fraction. Above the critical data fraction (around 0.4),
as data size becomes larger, λ3 increases hence grokking time t ∼ 1/λ3 (predicted by our effective
theory) decreases. (b) Comparing grokking steps (defined as RQI > 0.95) predicted by the effective
theory with real neural network results. η = 10−3 is the learning rate of the embeddings.

again verifies our critical point in Figure 4. (ii) When data size is above the threshold, λ3 (on average)579

is an increasing function of λ3. This implies that grokking time t ∼ 1/λ3 decreases as training data580

size becomes larger, an important observation from [1].581

To verify our effective theory, we compare the grokking steps obtained from real neural network582

training (defined as steps to RQI > 0.95), and those predicted by our theory tth ∼ 1
λ3η

(η is the583

embedding learning rate), shown in Figure 17 (b). The theory agrees qualitatively with neural584

networks, showing the trend of decreasing grokking steps as increasing data size. The quantitative585

differences might be explained as the gap between our effective loss and actual loss.586

H Effective theory for image classification587

In this section, we show our effective theory proposed in Section 3.1 can generalize beyond algorith-588

mic datasets. In particular, we will apply the effective theory to image classifications. We find that:589

(i) The effective theory naturally gives rise to a novel self-supervised learning method, which can590

provably avoid mode collapse without contrastive pairs. (ii) The effective theory can shed light on the591

neural collapse phenomenon [23], in which same-class representations collapse to their class-means.592

We first describe how the effective theory applies to image classification. The basic idea is again that,593

similar to algorithmic datasets, neural network try to develop a structured representation of the inputs594

based on the relational information between samples (class labels in the case of image classification,595

sum parallelograms in the case of addition, etc.). The effective theory has two ingredients: (i) samples596

with the same label are encouraged to have similar representations; (ii) the effective loss function597

is scale-invariant to avoid all representations collapsing to zero (global collapse). As a result, an598

effective loss for image classification has the form599

ℓeff =
ℓ

Z
, ℓ =

∑

(x,y)∈P

|f(x)− f(y)|2, Z =
∑

x

|f(x)|2 (33)

where x is an image, f(x) is its representation, (x,y) ∈ P refers to unique pairs x and y that have600

the same label. Scale invariance means the loss function ℓeff does not change under the linear scaling601

f(x) → af(x).602

Relation to neural collapse It was observed in [23] that image representations in the penultimate603

layer of the model have some interesting features: (i) representations of same-class images collapse604

to their class-means; (ii) class-means of different classes develop into an equiangular tight frame. Our605

effective theory is able to predict the same-class collapse, but does not necessarily put class-means606

into equiangular tight frames. We conjecture that little explicit repulsion among different classes can607

help class-means develop into an equiangular tight frame, similar to electrons developing into lattice608

21

Figure 18: Our effective theory applies to MNIST image classifications. Same-class images collapse
to their class-means, while class-means of different classes stay separable. As such, the effective
theory serves as a novel self-supervised learning method, as well as shed some light on neural collapse.
Please see texts in Appendix H.

structures on a sphere under repulsive Coulomb forces (the Thomson problem [24]). We would like609

to investigate this modification of the effective theory in the future.610

Experiment on MNIST We directly apply the effective loss Eq. (33) to the MNIST dataset. Firstly,611

each image x is randomly encoded to a 2D embedding f(x) via the same encoder MLP whose weights612

are randomly initialized. We then train these embeddings by minimizing the effective loss ℓeff with613

an Adam optimizer (10−3 learning rate) for 100 steps. We show the evolution of these embeddings in614

Figure 18. Images of the same class collapse to their class-means, and different class-means do not615

collapse. This means that our effective theory can give rise to a good representation learning method616

which only exploits non-contrastive relational information in datasets.617

Link to self-supervised learning Note that ℓ itself is vulnerable to global collapse, in the context618

of Siamese learning without contrastive pairs. Various tricks (e.g. decoder with momentum, stop619

gradient) [8, 25] have been proposed to avoid global collapse. However, the reasons why these620

tricks can avoid global collapse are unclear. We argue ℓ fails simply because ℓ → a2ℓ under scaling621

f(x) → af(x) so gradient descent on ℓ encourage a → 0. Based on this picture, our effective theory622

provides another possible fix: make the loss function ℓ scale-invariant (by the normalized loss ℓeff),623

22

so the gradient flow has no incentive to change representation scales. In fact, we can prove that624

the gradient flow on ℓeff preserve Z (variance of representations) so that global collapse is avoided625

provably:626

∂ℓeff
∂f(x)

=
1

Z

∂ℓ

∂f(x)
− l

Z2

∂Z

∂f(x)
=

2

Z

∑

y∼x

(f(x)− f(y))− 2ℓ

Z2
f(x),

dZ

dt
= 2

∑

x

f(x) · df(x)
dt

= 2
∑

x

f(x) · ∂ℓeff
∂f(x)

=
4

Z

∑

x

f(x) · (
∑

y∼x

(f(x)− f(y))− ℓ

Z
f(x))

=
4

Z

[∑

x

f(x) ·
∑

y∼x

(f(x)− f(y))−
∑

x

ℓ

Z
|f(x)|2

]

= 0.

(34)

where we use the fact that627 ∑

x

f(x) ·
∑

y∼x

(f(x)− f(y)) =
∑

(x,y)∈P

(f(x)− f(y)) · (f(x)− f(y)) = ℓ (35)

I Grokking Experiment on MNIST628

102 103 104 105

Optimization Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train Points: 1000 | Initialization Scale: 9.0
train
val

(a)

1.00e-06
2.98e-05

8.86e-04
2.64e-02

7.85e-01
Last Layer Learning Rate

1.00e-05

2.98e-04

8.86e-03

2.64e-01

7.85e+00

W
ei

gh
t D

ec
ay

Mem
ori

zat
ion

Grokking

Com
pre

he
nsi

on

Con
fus

ion

(b)

Figure 19: Left: Training curves for a run on MNIST, in the setting where we observe grokking.
Right: Phase diagram with the four phases of learning dynamics on MNIST.

We now demonstrate, for the first time, that grokking (significantly delayed generalization) is a more629

general phenomenon in machine learning that can occur not only on algorithmic datasets, but also on630

mainstream benchmark datasets. In particular, we exhibit grokking on MNIST and demonstrate that631

we can control grokking by varying optimization hyperparameters, just as we did in the main text for632

algorithmic datasets in both the full case (transformers) and in the toy model.633

To induce grokking on MNIST, we make two nonstandard decisions: (1) we reduce the size of the634

training set from 50k to 1k samples (by taking a random subset) and (2) we increase the scale of the635

weight initialization distribution (by multiplying the initial weights, sampled with Kaiming uniform636

initialization, by a constant > 1).637

We will provide theoretical motivation for this decision, of changing the initialization distribution638

to induce grokking, in a follow-up work. Relevant to this, initialization scale is found to regulate639

“kernel” vs “rich” learning regimes in networks [26].640

With these modifications to training set size and initialization scale, we train a depth-3 width-200641

MLP with ReLU activations with the AdamW optimizer. We use MSE loss with one-hot targets,642

23

rather than cross-entropy. With this setup, we find that the network quickly fits the train set, and then643

much later in training validation accuracy improves, as shown in Figure 19a. This closely follows the644

stereotypical grokking learning, first observed in algorithmic datasets.645

With this setup, we also compute a phase diagram over the model weight decay and the last layer646

learning rate. See Figure 19b. While in MLPs it is less clear what parts of the network to consider647

the “encoder” vs the “decoder”, for our purposes here we consider the last layer to be the “decoder”648

and vary its learning rate relative to the rest of the network. The resulting phase diagram has some649

similarity to Figure 6. We observe a “confusion”phase in the bottom right (high learning rate and650

high weight decay), a “comprehension” phase bordering it, a “grokking” phase as one decreases651

weight decay and decoder learning rate, and a “memorization“ phase at low weight decay and low652

learning rate. Instead of an accuracy threshold of 95%, we use a threshold of 60% here for validation653

accuracy for runs to count as comprehension or grokking. This phase diagram demonstrates that with654

sufficient regularization, we can again “de-grok” learning.655

We also investigate the effect of training set size on time to generalization on MNIST. We find a result656

similar to what Power et al. [1] observed, namely that generalization time increases rapidly once one657

drops below a certain amount of training data. See Figure 20.658

0 5000 10000 15000 20000 25000 30000
Train Points

104

105

St
ep

s t
o

Va
lid

at
io

n
Ac

cu
ra

cy
 >

 6
0%

Steps until generalization for MNIST (weight decay 5e-3)
Mean
Runs that didn't reach 60% val acc in 10^5 steps
Runs that reached 60% val acc in 10^5 steps

Figure 20: Time to generalize as a function of training set size, on MNIST.

J Lottery Ticket Hypothesis Connection659

−4 −2 0 2 4

Generalization PCA 1

−4

−2

0

2

4

G
en

er
al

iz
at

io
n

P
C

A
2

After generalization

−5.0 −2.5 0.0 2.5 5.0 7.5

Initialization PCA 1

−6

−4

−2

0

2

4

6

In
it

ia
li
za

ti
on

P
C

A
2

At initialization

−4 −2 0 2 4

Generalization PCA 1

−3

−2

−1

0

1

2

3

4

G
en

er
al

iz
at

io
n

P
C

A
2

At initialization

Figure 21: (Left) Input embeddings after generalization projected on their first 2 principal compo-
nents.(Center) Input embeddings at initialization projected on their first 2 principal components.
(Right) Input embeddings at initialization projected on the first 2 principal components of the embed-
dings after generalization at the end of training (same PCA as the left figure).

In Figure 21, we show the projection of the learned embeddings after generalization to their first660

two principal components. Compared to the projection at initialization, structure clearly emerges in661

embedding space when the neural network is able to generalize (> 99% validation accuracy). What662

24

is intriguing is that the projection of the embeddings at initialization to the principal components663

of the embeddings at generalization seems to already contain much of that structure. In this sense,664

the structured representation necessary for generalization already existed (partially) at initialization.665

The training procedure essentially prunes other unnecessary dimensions and forms the required666

parallelograms for generalization. This is a nonstandard interpretation of the lottery ticket hypothesis667

where the winning tickets are not weights or subnetworks but instead particular axes or linear668

combinations of the weights.669

In Figure 22, we show the original training curves (dashed lines). In solid lines, we recompute670

accuracy with models which use embeddings that are projected onto the ten principal components of671

the embeddings at the end of training (and back). Clearly, the first few principal components contain672

enough information to reach 99% accuracy. The first few PCs explain the most variance by definition,673

however, we note that this is not necessarily the main reason for why they can generalize so well. In674

fact, embeddings reconstructed from the PCA at the end of training (solid lines) perform better than675

current highest variance axes (dotted line). This behavior is consistent across seeds.676

K Derivation of the effective loss677

In this section, we will further motivate the use of our effective loss to study the dynamics of678

representation learning by deriving it from the gradient flow dynamics on the actual MSE loss in679

linear regression. The loss landscape of a neural network is in general nonlinear, but the linear case680

may shed some light on how the effective loss can be derived from actual loss. For a sample r (which681

is the sum of two embeddings Ei and Ej), the prediction of the the linear network is D(r) = Ar+b.682

The loss function is (y is its corresponding label):683

ℓ =
1

2
|Ar+ b− y|2

︸ ︷︷ ︸
ℓpred

+
γ

2
||A||2F

︸ ︷︷ ︸
ℓreg

, (36)

where the first and the second term are prediction error and regularization, respectively. Both the684

model (A,b) and the input r are updated via gradient flow, with learning rate ηA and ηx, respectively:685

686

dA

dt
= −ηA

∂ℓ

∂A
,
db

dt
= −ηA

∂ℓ

∂b
,
dr

dt
= −ηx

∂ℓ

∂r
(37)

Inserting ℓ into the above equations, we obtain the gradient flow:687

dA

dt
= −ηA

∂ℓ

∂A
= −ηA[A(rrT + γ) + (b− y)rT],

db

dt
= −ηA

∂ℓ

∂b
= −ηA(Ar+ b− y)

dr

dt
= −ηx

∂ℓ

∂r
= −ηxA

T (Ar+ b− y).

(38)

For the db/dt equation, after ignoring the Ar term and set the initial condition b(0) = 0, we obtain688

analytically b(t) = (1− e−2ηAt)y. Inserting this into the first and third equations, we have689

dA

dt
= −ηA[A(rrT + γ)− e−2ηAtyrT]

dr

dt
= −ηxA

TAr︸ ︷︷ ︸
internal interaction

+ ηxe
−2ηAtATy︸ ︷︷ ︸

external force

(39)

For the second equation on the evolution of dr/dt, we can artificially decompose the right hand side690

into two terms, based on whether they depend on the label y. In this way, we call the first term691

"internal interaction" since it does not depend on y, while the second term "external force". Note692

this distinction seems a bit artificial from a mathematical perspective, but it can be conceptually693

helpful from a physics perspective. We will show below the internal interaction term is important for694

representations to form. Because we are interested in how two samples interact, we now consider695

25

another sample at r′, and the evolution becomes696

dA

dt
= −ηA[A(rrT + r′r′T + 2γ)− e−2ηAty(r+ r′)T]

dr

dt
= −ηxA

TAr+ ηxe
−2ηAtATy

dr′

dt
= −ηxA

TAr′ + ηxe
−2ηAtATy

(40)

Subtracting dr/dt by dr′/dt and setting r′ = −r, the above equations further simply to697

dA

dt
= −2ηAA(rrT + γ),

dr

dt
= −ηxA

TAr,

(41)

The second equation implies that the pair of samples interact via a quadratic potential U(r) =698
1
2r

TATAr, leading to a linear attractive force f(r) ∝ r. We now consider the adiabatic limit where699

ηA → 0.700

The adiabatic limit Using the standard initialization (e.g., Xavier initialization) of neural networks,701

we have AT
0 A0 ≈ I. As a result, the quadratic potential becomes U(r) = 1

2r
T r, which is time-702

independent because ηA → 0. We are now in the position to analyze the addition problem. For two703

samples x(1) = Ei +Ej and x(2) = Em +En with the same label (i+ j = m+ n), they contribute704

to an interaction term705

U(i, j,m, n) =
1

2
|Ei +Ej −Em −En|22. (42)

Summing over all possible quadruples in the training dataset D, the total energy of the system is706

ℓ0 =
∑

(i,j,m,n)∈P0(D)

1

2
|Ei +Ej −Em −En|22/|P0(D)|, (43)

where P0(D) = {(i, j,m, n)|i+ j = m+ n, (i, j) ∈ D, (m,n) ∈ D}. To make it scale-invariant,707

we define the normalized Hamiltonian Eq. (43) as708

ℓeff =
ℓ0
Z0

, Z0 =
∑

i

|Ei|22 (44)

which is the effective loss we used in Section 3.1.709

26

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

10 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

6 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

5 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

2 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

Figure 22: Train and test accuracy computed while using actual embeddings (dashed line) and
embeddings projected onto and reconstructed from their first n principal components (dotted lines)
and, finally, using embeddings projected onto and reconstructed from the first n PCs of the embeddings
at the end of training (solid lines).

27

	Introduction
	Problem Setting
	Why Generalization: Representations and Dynamics
	Representation quality predicts generalization for the toy model
	The dynamics of embedding vectors

	Delayed Generalization: A Phase Diagram
	Phase diagram of a toy model
	Beyond the toy model

	Related work
	Conclusion
	Applicability of our toy setting
	Definition of Acc
	The gap of a realistic model M and the ideal model M*
	Conservation laws of the effective theory
	More phase diagrams of the toy setup
	General groups
	Theory
	Numerical Results

	Dependence of grokking time on data size
	Effective theory for image classification
	Grokking Experiment on MNIST
	Lottery Ticket Hypothesis Connection
	Derivation of the effective loss

